
E·XFL

AMD Xilinx - XC2VP40-6FG676I Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

5

Details	
Product Status	Obsolete
Number of LABs/CLBs	4848
Number of Logic Elements/Cells	43632
Total RAM Bits	3538944
Number of I/O	416
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2vp40-6fg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

implemented. In system mode, a Virtex-II Pro device will continue to function while executing non-test Boundary-Scan instructions. In test mode, Boundary-Scan test instructions control the I/O pins for testing purposes. The Virtex-II Pro Test Access Port (TAP) supports BYPASS, PRELOAD, SAMPLE, IDCODE, and USERCODE non-test instructions. The EXTEST, INTEST, and HIGHZ test instructions are also supported.

Configuration

Virtex-II Pro / Virtex-II Pro devices are configured by loading the bitstream into internal configuration memory using one of the following modes:

- Slave-serial mode
- Master-serial mode
- Slave SelectMAP mode
- Master SelectMAP mode
- Boundary-Scan mode (IEEE 1532)

A Data Encryption Standard (DES) decryptor is available on-chip to secure the bitstreams. One or two triple-DES key sets can be used to optionally encrypt the configuration data.

The Xilinx System Advanced Configuration Environment (System ACE) family offers high-capacity and flexible solution for FPGA configuration as well as program/data storage for the processor. See <u>DS080</u>, *System ACE CompactFlash Solution* for more information.

Readback and Integrated Logic Analyzer

Configuration data stored in Virtex-II Pro / Virtex-II Pro configuration memory can be read back for verification. Along with the configuration data, the contents of all flip-flops and latches, distributed SelectRAM+, and block SelectRAM+ memory resources can be read back. This capability is useful for real-time debugging. The Xilinx ChipScope Integrated Logic Analyzer (ILA) cores and Integrated Bus Analyzer (IBA) cores, along with the ChipScope Pro Analyzer software, provide a complete solution for accessing and verifying user designs within Virtex-II Pro devices.

IP Core and Reference Support

Intellectual Property is part of the Platform FPGA solution. In addition to the existing FPGA fabric cores, the list below shows some of the currently available hardware and software intellectual properties specially developed for Virtex-II Pro / Virtex-II Pro X by Xilinx. Each IP core is modular, portable, Real-Time Operating System (RTOS) independent, and CoreConnect compatible for ease of design migration. Refer to <u>www.xilinx.com/ipcenter</u> for the latest and most complete list of cores.

Hardware Cores

- Bus Infrastructure cores (arbiters, bridges, and more)
- Memory cores (DDR, Flash, and more)
- Peripheral cores (UART, IIC, and more)
- Networking cores (ATM, Ethernet, and more)

Software Cores

- Boot code
- Test code
- Device drivers
- Protocol stacks
- RTOS integration
- Customized board support package

Virtex-II Pro Ordering Examples

Virtex-II Pro ordering examples are shown in Figure 1 (flip-chip package) and Figure 2 (Pb-free wire-bond package).

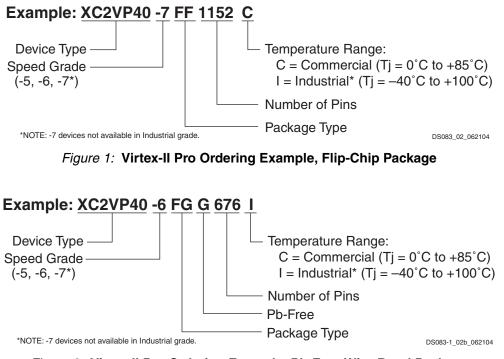


Figure 2: Virtex-II Pro Ordering Example, Pb-Free Wire-Bond Package

Virtex-II Pro X Ordering Example

A Virtex-II Pro X ordering example is shown in Figure 3.

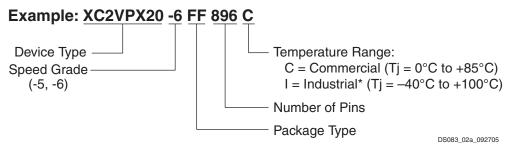


Figure 3: Virtex-II Pro X Ordering Example, Flip-Chip Package

Disparity Control

The 8B/10B encoder is initialized with a negative running disparity. Unique control allows forcing the current running disparity state.

TXRUNDISP signals its current running disparity. This may be useful in those cases where there is a need to manipulate the initial running disparity value.

Bits TXCHARDISPMODE and TXCHARDISPVAL control the generation of running disparity before each byte.

For example, the transceiver can generate the sequence

```
K28.5+ K28.5+ K28.5- K28.5-
Or
K28.5- K28.5- K28.5+ K28.5+
```

by specifying inverted running disparity for the second and fourth bytes.

Transmit FIFO

Proper operation of the circuit is only possible if the FPGA clock (TXUSRCLK) is frequency-locked to the reference clock (REFCLK). Phase variations up to one clock cycle are allowable. The FIFO has a depth of four. Overflow or underflow conditions are detected and signaled at the interface. Bypassing of this FIFO is programmable.

8B/10B Encoder

Note: In the RocketIO transceiver, the most-significant byte is sent first; in the RocketIO X transceiver, the least-significant byte is sent first.

A bypassable 8B/10B encoder is included. The encoder uses the same 256 data characters and 12 control characters used by Gigabit Ethernet, Fibre Channel, and InfiniBand.

The encoder accepts 8 bits of data along with a K-character signal for a total of 9 bits per character applied, and generates a 10 bit character for transmission. If the K-character signal is High, the data is encoded into one of the twelve possible K-characters available in the 8B/10B code. If the K-character input is Low, the 8 bits are encoded as standard data. If the K-character input is High, and a user applies other than one of the twelve possible combinations, TXKERR indicates the error.

8B/10B Decoder

Note: In the RocketIO transceiver, the most-significant byte is sent first; in the RocketIO X transceiver, the least-significant byte is sent first.

An optional 8B/10B decoder is included. A programmable option allows the decoder to be bypassed. When the 8B/10B decoder is bypassed, the 10-bit character order is, for example,

RXCHARISK[0]	(first bit received)
RXRUNDISP[0]	
RXDATA[7:0]	(last bit received is RXDATA[0])

The decoder uses the same table that is used for Gigabit Ethernet, Fibre Channel, and InfiniBand. In addition to

decoding all data and K-characters, the decoder has several extra features. The decoder separately detects both "disparity errors" and "out-of-band" errors. A disparity error is the reception of 10-bit character that exists within the 8B/10B table but has an incorrect disparity. An out-of-band error is the reception of a 10-bit character that does not exist within the 8B/10B table. It is possible to obtain an out-of-band error without having a disparity error. The proper disparity is always computed for both legal and illegal characters. The current running disparity is available at the RXRUNDISP signal.

The 8B/10B decoder performs a unique operation if out-of-band data is detected. If out-of-band data is detected, the decoder signals the error and passes the illegal 10-bits through and places them on the outputs. This can be used for debugging purposes if desired.

The decoder also signals the reception of one of the 12 valid K-characters. In addition, a programmable comma detect is included. The comma detect signal registers a comma on the receipt of any comma+, comma-, or both. Since the comma is defined as a 7-bit character, this includes several out-of-band characters. Another option allows the decoder to detect only the three defined commas (K28.1, K28.5, and K28.7) as comma+, comma-, or both. In total, there are six possible options, three for valid commas and three for "any comma."

Note that all bytes (1, 2, 4, or 8) at the RX FPGA interface each have their own individual 8B/10B indicators (K-character, disparity error, out-of-band error, current running disparity, and comma detect).

Receiver Buffer

The receiver includes buffers (FIFOs) in the datapath. This section gives the reasons for including the buffers and outlines their operation.

The receiver buffer is required for two reasons:

- *Clock correction* to accommodate the slight difference in frequency between the recovered clock RXRECCLK and the internal FPGA user clock RXUSRCLK
- *Channel bonding* to allow realignment of the input stream to ensure proper alignment of data being read through multiple transceivers

The receiver uses an *elastic buffer*, where "elastic" refers to the ability to modify the read pointer for clock correction and channel bonding.

Comma Detection

Word alignment is dependent on the state of comma detect bits. If comma detect is enabled, the transceiver recognizes up to two 10-bit preprogrammed characters. Upon detection of the character or characters, the comma detect output is driven high and the data is synchronously aligned. If a comma is detected and the data is aligned, no further alignment alteration takes place. If a comma is received and realignment is necessary, the data is realigned and an indi-

XILINX[®]

- Single-cycle and multi-cycle mode option for I-side and D-side interfaces
- Single cycle = one CPU clock cycle; multi-cycle = minimum of two and maximum of eight CPU clock cycles
- FPGA configurable DCR addresses within DSOCM and ISOCM.
- Independent 16 MB logical memory space available within PPC405 memory map for each of the DSOCM and ISOCM. The number of block RAMs in the device might limit the maximum amount of OCM supported.
- Maximum of 64K and 128K bytes addressable from DSOCM and ISOCM interfaces, respectively, using address outputs from OCM directly without additional decoding logic.

Data-Side OCM (DSOCM)

- 32-bit Data Read bus and 32-bit Data Write bus
- Byte write access to DSBRAM support
- Second port of dual port DSBRAM is available to read/write from an FPGA interface
- 22-bit address to DSBRAM port
- 8-bit DCR Registers: DSCNTL, DSARC
- Three alternatives to write into DSBRAM: BRAM initialization, CPU, FPGA H/W using second port

Instruction-Side OCM (ISOCM)

The ISOCM interface contains a 64-bit read only port, for instruction fetches, and a 32-bit write only port, to initialize or test the ISBRAM. When implementing the read only port, the user must deassert the write port inputs. The preferred method of initializing the ISBRAM is through the configuration bitstream.

- 64-bit Data Read Only bus (two instructions per cycle)
- 32-bit Data Write Only bus (through DCR)
- Separate 21-bit address to ISBRAM
- 8-bit DCR Registers: ISCNTL, ISARC
- 32-bit DCR Registers: ISINIT, ISFILL
- Two alternatives to write into ISBRAM: BRAM initialization, DCR and write instruction

Clock/Control Interface Logic

The clock/control interface logic provides proper initialization and connections for PPC405 clock/power management, resets, PLB cycle control, and OCM interfaces. It also couples user signals between the FPGA fabric and the embedded PPC405 CPU core.

The processor clock connectivity is similar to CLB clock pins. It can connect either to global clock nets or general routing resources. Therefore the processor clock source can come from DCM, CLB, or user package pin.

CPU-FPGA Interfaces

All Processor Block user pins link up with the general FPGA routing resources through the CPU-FPGA interface. Therefore processor signals have the same routability as other

non-Processor Block user signals. Longlines and hex lines travel across the Processor Block both vertically and horizontally, allowing signals to route through the Processor Block.

Processor Local Bus (PLB) Interfaces

The PPC405 core accesses high-speed system resources through PLB interfaces on the instruction and data cache controllers. The PLB interfaces provide separate 32-bit address/64-bit data buses for the instruction and data sides.

The cache controllers are both PLB masters. PLB arbiters are implemented in the FPGA fabric and are available as soft IP cores.

Device Control Register (DCR) Bus Interface

The device control register (DCR) bus has 10 bits of address space for components external to the PPC405 core. Using the DCR bus to manage status and configuration registers reduces PLB traffic and improves system integrity. System resources on the DCR bus are protected or isolated from wayward code since the DCR bus is not part of the system memory map.

External Interrupt Controller (EIC) Interface

Two level-sensitive user interrupt pins (critical and non-critical) are available. They can be either driven by user defined logic or Xilinx soft interrupt controller IP core outside the Processor Block.

Clock/Power Management (CPM) Interface

The CPM interface supports several methods of clock distribution and power management. Three modes of operation that reduce power consumption below the normal operational level are available.

Reset Interface

There are three user reset input pins (core, chip, and system) and three user reset output pins for different levels of reset, if required.

Debug Interface

Debugging interfaces on the embedded PPC405 core, consisting of the JTAG and Trace ports, offer access to resources internal to the core and assist in software development. The JTAG port provides basic JTAG chip testing functionality as well as the ability for external debug tools to gain control of the processor for debug purposes. The Trace port furnishes programmers with a mechanism for acquiring instruction execution traces.

The JTAG port is compatible with IEEE Std 1149.1, which defines a test access port (TAP) and Boundary-Scan architecture. Extensions to the JTAG interface provide debuggers with processor control that includes stopping, starting, and stepping the PPC405 core. These extensions are compliant with the IEEE 1149.1 specifications for vendor-specific extensions.

synchronously. The sequence can also be paused at any stage, until lock has been achieved on any or all DCMs, as well as DCI.

Readback

In this mode, configuration data from the Virtex-II Pro FPGA device can be read back. Readback is supported only in the SelectMAP (master and slave) and Boundary-Scan mode.

Along with the configuration data, it is possible to read back the contents of all registers, distributed SelectRAM+, and block RAM resources. This capability is used for real-time debugging. For more detailed configuration information, see the *Virtex-II Pro Platform FPGA User Guide*.

Bitstream Encryption

Virtex-II Pro devices have an on-chip decryptor using one or two sets of three keys for triple-key Data Encryption Standard (DES) operation. Xilinx software tools offer an optional encryption of the configuration data (bitstream) with a triple-key DES determined by the designer.

The keys are stored in the FPGA by JTAG instruction and retained by a battery connected to the V_{BATT} pin, when the device is not powered. Virtex-II Pro devices can be config-

ured with the corresponding encrypted bitstream, using any of the configuration modes described previously.

A detailed description of how to use bitstream encryption is provided in the <u>Virtex-II Pro Platform FPGA User Guide</u>. Your local FAE can also provide specific information on this feature.

Partial Reconfiguration

Partial reconfiguration of Virtex-II Pro devices can be accomplished in either Slave SelectMAP mode or Boundary-Scan mode. Instead of resetting the chip and doing a full configuration, new data is loaded into a specified area of the chip, while the rest of the chip remains in operation. Data is loaded on a column basis, with the smallest load unit being a configuration "frame" of the bitstream (device size dependent).

Partial reconfiguration is useful for applications that require different designs to be loaded into the same area of a chip, or that require the ability to change portions of a design without having to reset or reconfigure the entire chip.

For more information on Partial Reconfiguration in Virtex-II Pro devices, please refer to Xilinx Application Note XAPP290, *Two Flows for Partial Reconfiguration*.

Revision History

This section records the change history for this module of the data sheet.

Date	Version	Revision
01/31/02	1.0	Initial Xilinx release.
06/13/02	2.0	New Virtex-II Pro family members. New timing parameters per speedsfile v1.62.
09/03/02	2.1	 Revised Reset and Power sections. Updated Table 8, which lists compatible input standards. [Table deleted in v2.6.] Added Figure 28, Figure 29, and Figure 30, which provide examples illustrating the use of I/O standards.
09/27/02	2.2	 In section RocketIO Overview, corrected max number of MGTs from 16 to 24. In section Input/Output Blocks (IOBs), added references to XAPP653 regarding implementation of 3.3V I/O standards.
11/20/02	2.3	 Table 8: Added rows for LVTTL, LVCMOS33, and PCI-X. Table 8: Added LVTTL and LVCMOS33 to compatible 3.3V cells. [Table deleted in v2.6.] Table 33: Correct bitstream lengths.
12/03/02	2.4	Added mention of LVTTL and PCI with respect to SelectIO-Ultra configurations. See section Input/Output Individual Options and Figure 22.
01/20/03	2.5	 Added qualification to features vs. Virtex-II (open-drain output pin TDO does not have internal pull-up resistor) Table 7: Added HSTL18 (I, II, III, & IV) and HSTL18_DCI (I,II, III & IV) to 1.8V VCCO row. [Table deleted in v2.6.] Table 8: Numerous revisions. [Table deleted in v2.6.]

Table 27: RocketIO Transmitter Switching Characteristics

Description	Symbol	Conditions	Min	Тур	Max	Units
		Flipchip packages	1.0		3.125 ⁽¹⁾	Gb/s
Serial data rate, full-speed clock	_	Wirebond packages	1.0		2.5 ⁽¹⁾	Gb/s
Serial data rate, half-speed clock ⁽³⁾	— F _{GTX}	Flipchip packages	0.600		1.0	Gb/s
(2X oversampling)		Wirebond packages	0.600		1.0	Gb/s
		2.126 Gb/s – 3.125 Gb/s			0.17	UI ⁽²⁾
		1.0626 Gb/s – 2.125 Gb/s			0.08	UI
Serial data output deterministic jitter	T _{DJ}	1.0 Gb/s – 1.0625 Gb/s			0.05	UI
		600 Mb/s – 999 Mb/s			0.08 ⁽⁴⁾	UI
		2.126 Gb/s – 3.125 Gb/s			0.18	UI
Carial data autout vandara iittav		1.0626 Gb/s – 2.125 Gb/s			0.19	UI
Serial data output random jitter	T _{RJ}	1.0 Gb/s – 1.0625 Gb/s			0.18	UI
		600 Mb/s – 999 Mb/s			0.18 ⁽⁴⁾	UI
TX rise time	T _{RTX}	000/ 000/		120		ps
TX fall time	T _{FTX}	20% - 80%		120		ps
Transmit latency ⁽⁵⁾	т	Including CRC		14	17	TXUSR CLK
	T _{TXLAT}	Excluding CRC		8	11	cycles
TXUSRCLK duty cycle	T _{TXDC}		45	50	55	%
TXUSRCLK2 duty cycle	T _{TX2DC}		45	50	55	%

Notes:

1. Serial data rate in the -5 speed grade is limited to 2.0 Gb/s in both wirebond and flipchip packages.

2. UI = Unit Interval

3. For serial rates under 1 Gb/s, the 3X (or greater) oversampling techniques described in XAPP572 are required to meet the transmit jitter and receive jitter tolerance specifications defined in this data sheet.

4. The oversampling techniques described in XAPP572 are required to meet these specifications for serial rates less than 1 Gb/s.

5. Transmit latency delay TXDATA to TXP/TXN. Refer to RocketIO Transceiver User Guide for more information on calculating latency.

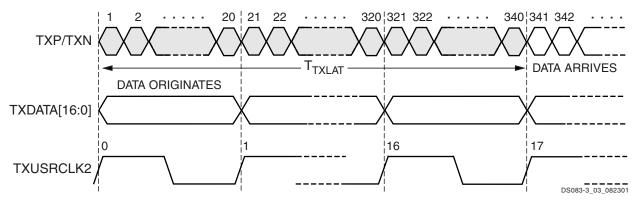


Figure 5: RocketIO Transmit Latency (Maximum, Including CRC)

Global Clock Set-Up and Hold for LVCMOS25 Standard, Without DCM

Table 56: Global Clock Set-Up and Hold for LVCMOS25 Standard, Without DCM

			Speed Grade			
Description	Symbol	Device	-7	-6	-5	Units
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard. For data input with different standards, adjust the setup time delay by the values shown in IOB Input Switching Characteristics Standard Adjustments, page 25.						
Full Delay						
Global Clock and IFF without DCM	T _{PSFD} /T _{PHFD}	XC2VP2	1.80/-0.44	1.85/-0.41	1.96/0.43	ns
		XC2VP4	1.82/-0.53	1.83/-0.31	1.90/-0.29	ns
		XC2VP7	1.80/-0.34	1.81/-0.24	1.88/-0.19	ns
		XC2VP20	1.76/-0.24	1.83/-0.17	1.92/0.15	ns
		XC2VPX20	1.76/-0.24	1.83/-0.17	1.92/-0.15	ns
		XC2VP30	1.75/-0.22	1.92/0.26	1.99/0.23	ns
		XC2VP40	2.25/-0.54	2.40/-0.56	2.49/-0.54	ns
		XC2VP50	2.93/-1.02	2.98/-0.93	3.00/-0.83	ns
		XC2VP70	2.79/-0.72	2.79/-0.55	2.78/-0.41	ns
		XC2VPX70	2.79/-0.72	2.79/-0.55	2.78/-0.41	ns
		XC2VP100	N/A	5.58/-2.35	5.60/-2.35	ns

Notes:

1. IFF = Input Flip-Flop or Latch

2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load.

3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7

		Pin		No Connects	
Bank	Pin Description	Number	XC2VP2	XC2VP4	XC2VP7
2	VCCO_2	K2			
2	VCCO_2	K8			
2	VCCO_2	L9			
2	VCCO_2	M9			
2	VCCO_2	N9			
3	VCCO_3	P9			
3	VCCO_3	R9			
3	VCCO_3	Т9			
3	VCCO_3	U2			
3	VCCO_3	U8			
3	VCCO_3	V8			
3	VCCO_3	Y2			
4	VCCO_4	W9			
4	VCCO_4	AD7			
4	VCCO_4	V11			
4	VCCO_4	V12			
4	VCCO_4	V13			
4	VCCO_4	W10			
4	VCCO_4	AD10			
5	VCCO_5	V14			
5	VCCO_5	V15			
5	VCCO_5	V16			
5	VCCO_5	W17			
5	VCCO_5	W18			
5	VCCO_5	AD17			
5	VCCO_5	AD20			
6	VCCO_6	P18			
6	VCCO_6	R18			
6	VCCO_6	T18			
6	VCCO_6	U19			
6	 VCCO_6	U25			
6	VCCO_6	V19			
6	 VCCO_6	Y25			
7	VCCO_7	G25			
7	VCCO_7	J19			
7	VCCO_7	K19			
7	VCCO_7	K25			

Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7

		Pin	No Connects			
Bank	Pin Description	Number	XC2VP2	XC2VP4	XC2VP7	
N/A	AVCCAUXRX19	AE15				
N/A	VTRXPAD19	AE16				
N/A	RXNPAD19	AF15				
N/A	RXPPAD19	AF16				
N/A	GNDA19	AD16				
N/A	TXPPAD19	AF17				
N/A	TXNPAD19	AF18				
N/A	VTTXPAD19	AE18				
N/A	AVCCAUXTX19	AE17				
N/A	AVCCAUXRX21	AE20	NC	NC		
N/A	VTRXPAD21	AE21	NC	NC		
N/A	RXNPAD21	AF20	NC	NC		
N/A	RXPPAD21	AF21	NC	NC		
N/A	GNDA21	AD22	NC	NC		
N/A	TXPPAD21	AF22	NC	NC		
N/A	TXNPAD21	AF23	NC	NC		
N/A	VTTXPAD21	AE23	NC	NC		
N/A	AVCCAUXTX21	AE22	NC	NC		
N/A	VCCINT	H8				
N/A	VCCINT	J9				
N/A	VCCINT	К9				
N/A	VCCINT	U9				
N/A	VCCINT	V9				
N/A	VCCINT	W8				
N/A	VCCINT	H19				
N/A	VCCINT	J10				
N/A	VCCINT	J17				
N/A	VCCINT	J18				
N/A	VCCINT	K11				
N/A	VCCINT	K16				
N/A	VCCINT	K18				
N/A	VCCINT	L10				
N/A	VCCINT	L17				
N/A	VCCINT	T10				
N/A	VCCINT	T17				
N/A	VCCINT	U11				

Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7

		Pin	No Connects				
Bank	Pin Description	Number	XC2VP2	XC2VP4	XC2VP7		
N/A	GND	K15					
N/A	GND	K17					
N/A	GND	L11					
N/A	GND	L12					
N/A	GND	L13					
N/A	GND	L14					
N/A	GND	L15					
N/A	GND	L16					
N/A	GND	M10					
N/A	GND	M11					
N/A	GND	M12					
N/A	GND	M13					
N/A	GND	M14					
N/A	GND	M15					
N/A	GND	M16					
N/A	GND	M17					
N/A	GND	N10					
N/A	GND	N11					
N/A	GND	N12					
N/A	GND	N13					
N/A	GND	N14					
N/A	GND	N15					
N/A	GND	N16					
N/A	GND	N17					
N/A	GND	P10					
N/A	GND	P11					
N/A	GND	P12					
N/A	GND	P13					
N/A	GND	P14					
N/A	GND	P15					
N/A	GND	P16					
N/A	GND	P17					
N/A	GND	R10					
N/A	GND	R11					
N/A	GND	R12					
N/A	GND	R13					
N/A	GND	R14					

Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30

	Pin Description		No Connects			
Bank	Virtex-II Pro devices	XC2VPX20 (if Different)	Pin Number	XC2VP7	XC2VP20, XC2VPX20	XC2VP30
2	IO_L59N_2		P8			
2	IO_L59P_2		P7			
2	IO_L60N_2		N4			
2	IO_L60P_2		N3			
2	IO_L85N_2		P3			
2	IO_L85P_2		P2			
2	IO_L86N_2		R8			
2	IO_L86P_2		R7			
2	IO_L87N_2		P5			
2	IO_L87P_2		P4			
2	IO_L88N_2/VREF_2		R2			
2	IO_L88P_2		T2			
2	IO_L89N_2		R6			
2	IO_L89P_2		R5			
2	IO_L90N_2		R4			
2	IO_L90P_2		R3			
3	IO_L90N_3		U1			
3	IO_L90P_3		V1			
3	IO_L89N_3		T5			
3	IO_L89P_3		Т6			
3	IO_L88N_3		Т3			
3	IO_L88P_3		T4			
3	IO_L87N_3/VREF_3		U2			
3	IO_L87P_3		U3			
3	IO_L86N_3		T7			
3	IO_L86P_3		Т8			
3	IO_L85N_3		U4			
3	IO_L85P_3		U5			
3	IO_L60N_3		V2			
3	IO_L60P_3		W2			
3	IO_L59N_3		Т9			
3	IO_L59P_3		U9			
3	IO_L58N_3		V3			
3	IO_L58P_3		V4			
3	IO_L57N_3/VREF_3		W1			

Table 10: FF1152 — XC2VP20, XC2VP30, XC2VP40, and XC2VP50

		Pin	No Connects			
Bank	Pin Description	Number	XC2VP20	XC2VP30	XC2VP40	XC2VP50
3	IO_L06P_3	AL2				
3	IO_L05N_3	AG7				
3	IO_L05P_3	AH8				
3	IO_L04N_3	AH5				
3	IO_L04P_3	AH6				
3	IO_L03N_3/VREF_3	AK3				
3	IO_L03P_3	AK4				
3	IO_L02N_3	AJ7				
3	IO_L02P_3	AJ8				
3	IO_L01N_3/VRP_3	AJ4				
3	IO_L01P_3/VRN_3	AJ5				
			I	1	ł	
4	IO_L01N_4/BUSY/DOUT ⁽¹⁾	AL5				
4	IO_L01P_4/INIT_B	AL6				
4	IO_L02N_4/D0/DIN ⁽¹⁾	AG9				
4	IO_L02P_4/D1	AH9				
4	IO_L03N_4/D2	AK6				
4	IO_L03P_4/D3	AK7				
4	IO_L05_4/No_Pair	AF10				
4	IO_L06N_4/VRP_4	AL7				
4	IO_L06P_4/VRN_4	AM7				
4	IO_L07N_4	AE11				
4	IO_L07P_4/VREF_4	AF11				
4	IO_L08N_4	AG10				
4	IO_L08P_4	AH10				
4	IO_L09N_4	AK8				
4	IO_L09P_4/VREF_4	AL8				
4	IO_L19N_4	AE12	NC	NC		
4	IO_L19P_4	AF12	NC	NC		
4	IO_L20N_4	AJ9	NC	NC		
4	IO_L20P_4	AK9	NC	NC		
4	IO_L21N_4	AL9	NC	NC		
4	IO_L21P_4	AM9	NC	NC		
4	IO_L25N_4	AG11	NC	NC		
4	IO_L25P_4	AH11	NC	NC		
4	IO_L26N_4	AH12	NC	NC		
4	IO_L26P_4	AJ12	NC	NC		
4	IO_L27N_4	AK10	NC	NC		

Table 11: FF1148 — XC2VP40 and XC2VP50

	Pin Description		No Connects		
Bank		Pin Number	XC2VP40	XC2VP50	
2	IO_L21P_2	E6			
2	IO_L22N_2/VREF_2	F7			
2	IO_L22P_2	F8			
2	IO_L23N_2	M10			
2	IO_L23P_2	L10			
2	IO_L24N_2	G5			
2	IO_L24P_2	F5			
2	IO_L25N_2	F3			
2	IO_L25P_2	F4			
2	IO_L26N_2	M8			
2	IO_L26P_2	M9			
2	IO_L27N_2	F1			
2	IO_L27P_2	F2			
2	IO_L28N_2/VREF_2	G6			
2	IO_L28P_2	G7			
2	IO_L29N_2	M7			
2	IO_L29P_2	N8		-	
2	IO_L30N_2	G3		-	
2	IO_L30P_2	H4		-	
2	IO_L31N_2	G1			
2	IO_L31P_2	G2			
2	IO_L32N_2	N10			
2	IO_L32P_2	N11			
2	IO_L33N_2	H5			
2	IO_L33P_2	H6			
2	IO_L34N_2/VREF_2	H2		-	
2	IO_L34P_2	H3			
2	IO_L35N_2	N6			
2	IO_L35P_2	N7		-	
2	IO_L36N_2	K4			
2	IO_L36P_2	J4			
2	IO_L37N_2	J2			
2	IO_L37P_2	J3			
2	IO_L38N_2	P10			
2	IO_L38P_2	P11		+	
2	IO_L39N_2	K5		+	
2	IO_L39P_2	K6		+	
2	 IO_L40N_2/VREF_2	L3		+	

Table 12: FF1517 — XC2VP50 and XC2VP70

		Pin	No Connects		
Bank	Pin Description	Number	XC2VP50	XC2VP70	
0	IO_L34P_0	E27	NC		
0	IO_L35N_0	L26	NC		
0	IO_L35P_0	L25	NC		
0	IO_L36N_0	G26	NC		
0	IO_L36P_0/VREF_0	H26	NC		
0	IO_L37N_0	E26			
0	IO_L37P_0	F26			
0	IO_L38N_0	K25			
0	IO_L38P_0	K24			
0	IO_L39N_0	C26			
0	IO_L39P_0	D26			
0	IO_L43N_0	H25			
0	IO_L43P_0	J25			
0	IO_L44N_0	M25			
0	IO_L44P_0	M24			
0	IO_L45N_0	F25			
0	IO_L45P_0/VREF_0	G25			
0	IO_L46N_0	C25			
0	IO_L46P_0	D25			
0	IO_L47N_0	L23			
0	IO_L47P_0	M22			
0	IO_L48N_0	H24			
0	IO_L48P_0	J24			
0	IO_L49N_0	E25			
0	IO_L49P_0	E24			
0	IO_L50_0/No_Pair	N23			
0	IO_L53_0/No_Pair	M23			
0	IO_L54N_0	H23			
0	IO_L54P_0	J23			
0	IO_L55N_0	F24			
0	IO_L55P_0	G23			
0	IO_L56N_0	K22			
0	IO_L56P_0	L22			
0	IO_L57N_0	C23			
0	IO_L57P_0/VREF_0	D23			
0	IO_L58N_0	H22			
0	IO_L58P_0	J22			
0	IO_L59N_0	N22			

Table 12: FF1517 — XC2VP50 and XC2VP70

		Pin	No Connects		
Bank	Pin Description	Number	XC2VP50	XC2VP70	
N/A	M2	AJ29			
N/A	ТСК	E8			
N/A	TDI	L30			
N/A	TDO	L10			
N/A	TMS	F9			
N/A	PWRDWN_B	AP9			
N/A	HSWAP_EN	E32			
N/A	RSVD	D8			
N/A	VBATT	L11			
N/A	DXP	L29			
N/A	DXN	F31			
N/A	AVCCAUXTX2	B35			
N/A	VTTXPAD2	B36			
N/A	TXNPAD2	A36			
N/A	TXPPAD2	A35			
N/A	GNDA2	C34			
N/A	RXPPAD2	A34			
N/A	RXNPAD2	A33			
N/A	VTRXPAD2	B34			
N/A	AVCCAUXRX2	B33			
N/A	AVCCAUXTX4	B31			
N/A	VTTXPAD4	B32			
N/A	TXNPAD4	A32			
N/A	TXPPAD4	A31			
N/A	GNDA4	C31			
N/A	RXPPAD4	A30			
N/A	RXNPAD4	A29			
N/A	VTRXPAD4	B30			
N/A	AVCCAUXRX4	B29			
N/A	AVCCAUXTX5	B27			
N/A	VTTXPAD5	B28			
N/A	TXNPAD5	A28			
N/A	TXPPAD5	A27			
N/A	GNDA5	C27			
N/A	RXPPAD5	A26			
N/A	RXNPAD5	A25			
N/A	VTRXPAD5	B26			
N/A	AVCCAUXRX5	B25			

	Pin Description			No Connects	
Bank	Virtex-II Pro Devices	XC2VPX70 (if Different)	Pin Number	XC2VP70, XC2VPX70	XC2VP100
0	IO_L34N_0		E30		
0	IO_L34P_0		F30		
0	IO_L35N_0		D30		
0	IO_L35P_0		C30		
0	IO_L36N_0		M28		
0	IO_L36P_0/VREF_0		M29		
0	IO_L78N_0		K29	NC	
0	IO_L78P_0		L29	NC	
0	IO_L83_0/No_Pair		H29	NC	
0	IO_L84N_0		F29	NC	
0	IO_L84P_0		G29	NC	
0	IO_L85N_0		D29	NC	
0	IO_L85P_0		E29	NC	
0	IO_L86N_0		L28	NC	
0	IO_L86P_0		K28	NC	
0	IO_L87N_0		H28	NC	
0	IO_L87P_0/VREF_0		J28	NC	
0	IO_L37N_0		E28		
0	IO_L37P_0		F28		
0	IO_L38N_0		C29		
0	IO_L38P_0		C28		
0	IO_L39N_0		L27		
0	IO_L39P_0		M27		
0	IO_L43N_0		J27		
0	IO_L43P_0		K27		
0	IO_L44N_0		H27		
0	IO_L44P_0		G27		
0	IO_L45N_0		E27		
0	IO_L45P_0/VREF_0		F27		
0	IO_L46N_0		M25		
0	IO_L46P_0		M26		
0	IO_L47N_0		L26		
0	IO_L47P_0		K26		
0	IO_L48N_0		H26		
0	IO_L48P_0		J26		
0	IO_L49N_0		F26		

Bank	Pin Description			No Connects	
	Virtex-II Pro Devices	XC2VPX70 (if Different)	Pin Number	XC2VP70, XC2VPX70	XC2VP100
2	IO_L02P_2		D7		
2	IO_L03N_2		E6		
2	IO_L03P_2		D6		
2	IO_L04N_2/VREF_2		G6		
2	IO_L04P_2		F7		
2	IO_L05N_2		D3		
2	IO_L05P_2		E3		
2	IO_L06N_2		D1		
2	IO_L06P_2		D2		
2	IO_L73N_2		E1		
2	IO_L73P_2		E2		
2	IO_L74N_2		F4		
2	IO_L74P_2		F3		
2	IO_L75N_2		F1		
2	IO_L75P_2		F2		
2	IO_L76N_2/VREF_2		G3		
2	IO_L76P_2		G4		
2	IO_L77N_2		G2		
2	IO_L77P_2		G1		
2	IO_L78N_2		G5		
2	IO_L78P_2		H6		
2	IO_L79N_2		H4		
2	IO_L79P_2		H5		
2	IO_L80N_2		H3		
2	IO_L80P_2		H2		
2	IO_L81N_2		H7		
2	IO_L81P_2		J8		
2	IO_L82N_2/VREF_2		J6		
2	IO_L82P_2		J7		
2	IO_L83N_2		J5		
2	IO_L83P_2		J4		
2	IO_L84N_2		J1		
2	IO_L84P_2		J2		
2	IO_L07N_2		K9		
2	IO_L07P_2		L10		
2	IO_L08N_2		K6		

Bank	Pin Description			No Connects	
	Virtex-II Pro Devices	XC2VPX70 (if Different)	Pin Number	XC2VP70, XC2VPX70	XC2VP100
4	IO_L60P_4		AR19		
4	IO_L64N_4		AV19		
4	IO_L64P_4		AU19		
4	IO_L65N_4		AW19		
4	IO_L65P_4		AY19		
4	IO_L66N_4		AL21		
4	IO_L66P_4/VREF_4		AL20		
4	IO_L67N_4		AN20		
4	IO_L67P_4		AM20		
4	IO_L68N_4		AP20		
4	IO_L68P_4		AR20		
4	IO_L69N_4		AV20		
4	IO_L69P_4/VREF_4		AU20		
4	IO_L73N_4		AY20		
4	IO_L73P_4		AW20		
4	IO_L74N_4/GCLK3S		AN21		
4	IO_L74P_4/GCLK2P		AP21		
4	IO_L75N_4/GCLK1S		AU21		
4	IO_L75P_4/GCLK0P		AT21		
5	IO_L75N_5/GCLK7S	BREFCLKN	AT22		
5	IO_L75P_5/GCLK6P	BREFCLKP	AU22		
5	IO_L74N_5/GCLK5S		AP22		
5	IO_L74P_5/GCLK4P		AN22		
5	IO_L73N_5		AW23		
5	IO_L73P_5		AY23		
5	IO_L69N_5/VREF_5		AU23		
5	IO_L69P_5		AV23		
5	IO_L68N_5		AR23		
5	IO_L68P_5		AP23		
5	IO_L67N_5		AM23		
5	IO_L67P_5		AN23		
5	IO_L66N_5/VREF_5		AL23		
5	IO_L66P_5		AL22		
5	IO_L65N_5		AY24		
5	IO_L65P_5		AW24		

Bank	Pin Description			No Connects	
	Virtex-II Pro Devices	XC2VPX70 (if Different)	Pin Number	XC2VP70, XC2VPX70	XC2VP100
N/A	VCCINT		U26		
N/A	VCCINT		U17		
N/A	VCCINT		U16		
N/A	VCCINT		T27		
N/A	VCCINT		T26		
N/A	VCCINT		T25		
N/A	VCCINT		T24		
N/A	VCCINT		T23		
N/A	VCCINT		T22		
N/A	VCCINT		T21		
N/A	VCCINT		T20		
N/A	VCCINT		T19		
N/A	VCCINT		T18		
N/A	VCCINT		T17		
N/A	VCCINT		T16		
N/A	VCCINT		R28		
N/A	VCCINT		R27		
N/A	VCCINT		R26		
N/A	VCCINT		R17		
N/A	VCCINT		R16		
N/A	VCCINT		R15		
N/A	VCCINT		P29		
N/A	VCCINT		P28		
N/A	VCCINT		P27		
N/A	VCCINT		P16		
N/A	VCCINT		P15		
N/A	VCCINT		P14		
N/A	VCCINT		N30		
N/A	VCCINT		N13		
N/A	VCCAUX		AB42		
N/A	VCCAUX		AB41		
N/A	VCCAUX		AB2		
N/A	VCCAUX		AB1		
N/A	VCCAUX		AC42		
N/A	VCCAUX		AC1		
N/A	VCCAUX		AM32		

Table 14: FF1696 — XC2VP100

			No Connects	
Bank	Pin Description	Pin Number	XC2VP100	
2	IO_L69P_2	F6		
2	IO_L70N_2/VREF_2	G5		
2	IO_L70P_2	F5		
2	IO_L71N_2	P10		
2	IO_L71P_2	P11		
2	IO_L72N_2	G3		
2	IO_L72P_2	G4		
2	IO_L07N_2	G1		
2	IO_L07P_2	G2		
2	IO_L08N_2	N8		
2	IO_L08P_2	P9		
2	IO_L09N_2	H6		
2	IO_L09P_2	H7		
2	IO_L10N_2/VREF_2	H4		
2	IO_L10P_2	H5		
2	IO_L11N_2	R12		
2	IO_L11P_2	T12		
2	IO_L12N_2	H2		
2	IO_L12P_2	H3		
2	IO_L13N_2	J6		
2	IO_L13P_2	J7		
2	IO_L14N_2	R10		
2	IO_L14P_2	R11		
2	IO_L15N_2	J3		
2	IO_L15P_2	J4		
2	IO_L16N_2/VREF_2	J2		
2	IO_L16P_2	H1		
2	IO_L17N_2	R8		
2	IO_L17P_2	R9		
2	IO_L18N_2	K5		
2	IO_L18P_2	K6		
2	IO_L19N_2	K1		
2	IO_L19P_2	K2		
2	IO_L20N_2	T10		
2	IO_L20P_2	T11		
2	IO_L21N_2	L7		
2	IO_L21P_2	K7		