# E·XFL



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Obsolete                                                   |
|--------------------------------|------------------------------------------------------------|
| Number of LABs/CLBs            | 1232                                                       |
| Number of Logic Elements/Cells | 11088                                                      |
| Total RAM Bits                 | 811008                                                     |
| Number of I/O                  | 248                                                        |
| Number of Gates                | -                                                          |
| Voltage - Supply               | 1.425V ~ 1.575V                                            |
| Mounting Type                  | Surface Mount                                              |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                         |
| Package / Case                 | 456-BBGA                                                   |
| Supplier Device Package        | 456-FBGA (23x23)                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/xilinx/xc2vp7-5fg456i |
|                                |                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- HSTL (1.5V and 1.8V, Class I, II, III, and IV)
- SSTL (1.8V and 2.5V, Class I and II)

The DCI I/O feature automatically provides on-chip termination for each single-ended I/O standard.

The IOB elements also support the following differential signaling I/O standards:

- LVDS and Extended LVDS (2.5V)
- BLVDS (Bus LVDS)
- ULVDS
- LDT
- LVPECL (2.5V)

Two adjacent pads are used for each differential pair. Two or four IOBs connect to one switch matrix to access the routing resources. On-chip differential termination is available for LVDS, LVDS Extended, ULVDS, and LDT standards.

# Configurable Logic Blocks (CLBs)

CLB resources include four slices and two 3-state buffers. Each slice is equivalent and contains:

- Two function generators (F & G)
- Two storage elements
- Arithmetic logic gates
- Large multiplexers
- Wide function capability
- Fast carry look-ahead chain
- Horizontal cascade chain (OR gate)

The function generators F & G are configurable as 4-input look-up tables (LUTs), as 16-bit shift registers, or as 16-bit distributed SelectRAM+ memory.

In addition, the two storage elements are either edge-triggered D-type flip-flops or level-sensitive latches.

Each CLB has internal fast interconnect and connects to a switch matrix to access general routing resources.

# Block SelectRAM+ Memory

The block SelectRAM+ memory resources are 18 Kb of True Dual-Port RAM, programmable from 16K x 1 bit to 512 x 36 bit, in various depth and width configurations. Each port is totally synchronous and independent, offering three "read-during-write" modes. Block SelectRAM+ memory is cascadable to implement large embedded storage blocks. Supported memory configurations for dual-port and single-port modes are shown in Table 2.

# Table 2: Dual-Port and Single-Port Configurations

| 16K x 1 bit | 4K x 4 bits | 1K x 18 bits  |
|-------------|-------------|---------------|
| 8K x 2 bits | 2K x 9 bits | 512 x 36 bits |

# 18 X 18 Bit Multipliers

A multiplier block is associated with each SelectRAM+ memory block. The multiplier block is a dedicated 18 x 18-bit 2s complement signed multiplier, and is optimized for operations based on the block SelectRAM+ content on one port. The 18 x 18 multiplier can be used independently of the block SelectRAM+ resource. Read/multiply/accumulate operations and DSP filter structures are extremely efficient.

Both the SelectRAM+ memory and the multiplier resource are connected to four switch matrices to access the general routing resources.

# Global Clocking

The DCM and global clock multiplexer buffers provide a complete solution for designing high-speed clock schemes.

Up to twelve DCM blocks are available. To generate deskewed internal or external clocks, each DCM can be used to eliminate clock distribution delay. The DCM also provides 90-, 180-, and 270-degree phase-shifted versions of its output clocks. Fine-grained phase shifting offers high-resolution phase adjustments in increments of  $1/_{256}$  of the clock period. Very flexible frequency synthesis provides a clock output frequency equal to a fractional or integer multiple of the input clock frequency. For exact timing parameters, see Virtex-II Pro and Virtex-II Pro X Platform FPGAs: DC and Switching Characteristics.

Virtex-II Pro devices have 16 global clock MUX buffers, with up to eight clock nets per quadrant. Each clock MUX buffer can select one of the two clock inputs and switch glitch-free from one clock to the other. Each DCM can send up to four of its clock outputs to global clock buffers on the same edge. Any global clock pin can drive any DCM on the same edge.

# **Routing Resources**

The IOB, CLB, block SelectRAM+, multiplier, and DCM elements all use the same interconnect scheme and the same access to the global routing matrix. Timing models are shared, greatly improving the predictability of the performance of high-speed designs.

There are a total of 16 global clock lines, with eight available per quadrant. In addition, 24 vertical and horizontal long lines per row or column, as well as massive secondary and local routing resources, provide fast interconnect. Virtex-II Pro buffered interconnects are relatively unaffected by net fanout, and the interconnect layout is designed to minimize crosstalk.

Horizontal and vertical routing resources for each row or column include:

- 24 long lines
- 120 hex lines
- 40 double lines
- 16 direct connect lines (total in all four directions)

# **Boundary Scan**

Boundary-scan instructions and associated data registers support a standard methodology for accessing and configuring Virtex-II Pro devices, complying with IEEE standards 1149.1 and 1532. A system mode and a test mode are RXP and RXN as shown in Figure 5. This supports multiple termination styles, including high-side, low-side, and differential (floating or active). This configuration supports receiver termination compatible to Virtex-II Pro devices,

using a CML (high-side) termination to an active supply of 1.8V - 2.5V. For DC coupling of two Virtex-II Pro X devices, a 1.5V CML termination for VTRX is recommended.



Figure 5: RocketIO X Receive Termination

# PCS

# Fabric Data Interface

Internally, the PCS operates in either 2-byte mode (16/20 bits) or 4-byte mode (32/40 bits). When in 2-byte mode, the FPGA fabric interface can either be 1, 2, or 4 bytes wide. When in 4-byte mode, the FPGA fabric interface can either be 4 or 8 bytes wide. When accompanied by the predefined modes of the PMA, the user thus has a large combination of protocols and data rates from which to choose.

USRCLK2 clocks data on the fabric side, while USRCLK clocks data on the PCS side. This creates distinct USRCLK/USRCLK2 frequency ratios for different combinations of fabric and internal data widths. Table 2 summarizes the USRCLK2-to-USRCLK ratios for the different possible combinations of data widths.

|                      | Frequency Ratio of USRCLK:USRCLK2 |                               |  |  |  |  |
|----------------------|-----------------------------------|-------------------------------|--|--|--|--|
| Fabric<br>Data Width | 2-Byte Internal<br>Data Width     | 4-Byte Internal<br>Data Width |  |  |  |  |
| 1 byte               | 1:2 <sup>(1)</sup>                | N/A                           |  |  |  |  |
| 2 byte               | 1:1                               | N/A                           |  |  |  |  |
| 4 byte               | 2:1 <sup>(1)</sup>                | 1:1                           |  |  |  |  |
| 8 byte               | N/A                               | 2:1 <sup>(1)</sup>            |  |  |  |  |

# Table 2: Clock Ratios for Various Data Widths

# Notes:

1. Each edge of slower clock must align with falling edge of faster clock.

As a general guide, use 2-byte internal data width mode when the serial speed is below 5 Gb/s, and 4-byte internal data width mode when the serial speed is greater than 5 Gb/s. In 2-byte mode, the PCS processes 4-byte data every other byte. No fixed phase relationship is assumed between REFCLK, RXRECCLK, and/or any other clock that is not tied to either of these clocks. When RXUSRCLK and RXUSRCLK2 have different frequencies, each edge of the slower clock is aligned to a falling edge of the faster clock. The same relationships apply to TXUSRCLK and TXUSRCLK2.

# FPGA Transmit Interface

The FPGA can send either one, two, or four characters of data to the transmitter. Each character can be either 8 bits or 10 bits wide. If 8-bit data is applied, the additional inputs become control signals for the 8B/10B encoder. When the 8B/10B encoder is bypassed, the 10-bit character order is generated as follows:

| TXCHARDISPN | 1ODE[0]     | (first bit transmitted)  |
|-------------|-------------|--------------------------|
| TXCHARDISPV | 'AL[0]      |                          |
| TXDATA[7:0] | (last bit t | ransmitted is TXDATA[0]) |

# 64B/66B Encoder/Decoder

The RocketIO X PCS features a 64B/66B encoder/decoder, scrambler/descrambler, and gearbox functions that can be bypassed as needed. The encoder is compliant with IEEE 802.3ae specifications.

# Scrambler/Gearbox

The bypassable scrambler operates on the read side of the transmit FIFO. The scrambler uses the following generator polynomial to scramble 64B/66B payload data:

$$G(x) = 1 + x^{39} + x^{58}$$

The scrambler works in conjunction with the gearbox, which frames 64B/66B data for the PMA. The gearbox should always be enabled when using the 64B/66B protocal.



Figure 20: Double Data Rate Registers

This DDR mechanism can be used to mirror a copy of the clock on the output. This is useful for propagating a clock along the data that has an identical delay. It is also useful for multiple clock generation, where there is a unique clock driver for every clock load. Virtex-II Pro devices can produce many copies of a clock with very little skew.

Each group of two registers has a clock enable signal (ICE for the input registers, OCE for the output registers, and TCE for the 3-state registers). The clock enable signals are active High by default. If left unconnected, the clock enable for that storage element defaults to the active state.

Each IOB block has common synchronous or asynchronous set and reset (SR and REV signals). Two neighboring IOBs have a shared routing resource connecting the ICLK and OTCLK pins on pairs of IOBs. If two adjacent IOBs using DDR registers do not share the same clock signals on their clock pins (ICLK1, ICLK2, OTCLK1, and OTCLK2), one of the clock signals will be unroutable.

The IOB pairing is identical to the LVDS IOB pairs. Hence, the package pin-out table can also be used for pin assignment to avoid conflict.

SR forces the storage element into the state specified by the SRHIGH or SRLOW attribute. SRHIGH forces a logic 1. SRLOW forces a logic "0". When SR is used, a second input

(REV) forces the storage element into the opposite state. The reset condition predominates over the set condition. The initial state after configuration or global initialization state is defined by a separate INIT0 and INIT1 attribute. By default, the SRLOW attribute forces INIT0, and the SRHIGH attribute forces INIT1.

For each storage element, the SRHIGH, SRLOW, INITO, and INIT1 attributes are independent. Synchronous or asynchronous set / reset is consistent in an IOB block.

All the control signals have independent polarity. Any inverter placed on a control input is automatically absorbed.

Each register or latch, independent of all other registers or latches, can be configured as follows:

- No set or reset
- Synchronous set
- Synchronous reset
- · Synchronous set and reset
- Asynchronous set (preset)
- Asynchronous reset (clear)
- Asynchronous set and reset (preset and clear)

The synchronous reset overrides a set, and an asynchronous clear overrides a preset.

Refer to Figure 21.

Figure 57 shows clock distribution in Virtex-II Pro devices.

In each quadrant, up to eight clocks are organized in clock rows. A clock row supports up to 16 CLB rows (eight up and eight down). To reduce power consumption, any unused clock branches remain static.



Figure 57: Virtex-II Pro Clock Distribution

Global clocks are driven by dedicated clock buffers (BUFG), which can also be used to gate the clock (BUFGCE) or to multiplex between two independent clock inputs (BUFGMUX).

The most common configuration option of this element is as a buffer. A BUFG function in this (global buffer) mode, is shown in Figure 58.



Figure 58: Virtex-II Pro BUFG Function

The Virtex-II Pro global clock buffer BUFG can also be configured as a clock enable/disable circuit (Figure 59), as well as a two-input clock multiplexer (Figure 60). A functional description of these two options is provided below. Each of them can be used in either of two modes, selected by configuration: rising clock edge or falling clock edge.

This section describes the rising clock edge option. For the opposite option, falling clock edge, just change all "rising" references to "falling" and all "High" references to "Low", except for the description of the CE and S levels. The rising clock edge option uses the BUFGCE and BUFGMUX primitives. The falling clock edge option uses the BUFGCE\_1 and BUFGMUX\_1 primitives.

# BUFGCE

If the CE input is active (High) prior to the incoming rising clock edge, this Low-to-High-to-Low clock pulse passes through the clock buffer. Any level change of CE during the incoming clock High time has no effect.



Figure 59: Virtex-II Pro BUFGCE Function

If the CE input is inactive (Low) prior to the incoming rising clock edge, the following clock pulse does not pass through the clock buffer, and the output stays Low. Any level change of CE during the incoming clock High time has no effect. CE must not change during a short setup window just prior to the rising clock edge on the BUFGCE input I. Violating this setup time requirement can result in an undefined runt pulse output.

# BUFGMUX

BUFGMUX can switch between two unrelated, even asynchronous clocks. Basically, a Low on S selects the  $I_0$  input, a High on S selects the  $I_1$  input. Switching from one clock to the other is done in such a way that the output High and Low time is never shorter than the shortest High or Low time of either input clock. As long as the presently selected clock is High, any level change of S has no effect.

# Master SelectMAP Mode

This mode is a master version of the SelectMAP mode. The device is configured byte-wide on a CCLK supplied by the Virtex-II Pro FPGA device. Timing is similar to the Slave SerialMAP mode except that CCLK is supplied by the Virtex-II Pro FPGA.

# Boundary-Scan (JTAG, IEEE 1532) Mode

In Boundary-Scan mode, dedicated pins are used for configuring the Virtex-II Pro device. The configuration is done entirely through the IEEE 1149.1 Test Access Port (TAP). Virtex-II Pro device configuration using Boundary-Scan is compatible with with IEEE 1149.1-1993 standard and the new IEEE 1532 standard for In-System Configurable (ISC) devices. The IEEE 1532 standard is backward compliant with the IEEE 1149.1-1993 TAP and state machine. The IEEE Standard 1532 for In-System Configurable (ISC) devices is intended to be programmed, reprogrammed, or tested on the board via a physical and logical protocol. Configuration through the Boundary-Scan port is always available, independent of the mode selection. Selecting the Boundary-Scan mode simply turns off the other modes.

| Configuration Mode <sup>(1)</sup> | M2 | M1 | МО | CCLK Direction | Data Width | Serial D <sub>OUT</sub> <sup>(2)</sup> |  |  |  |
|-----------------------------------|----|----|----|----------------|------------|----------------------------------------|--|--|--|
| Master Serial                     | 0  | 0  | 0  | Out            | 1          | Yes                                    |  |  |  |
| Slave Serial                      | 1  | 1  | 1  | In             | 1          | Yes                                    |  |  |  |
| Master SelectMAP                  | 0  | 1  | 1  | Out            | 8          | No                                     |  |  |  |
| Slave SelectMAP                   | 1  | 1  | 0  | In             | 8          | No                                     |  |  |  |
| Boundary-Scan                     | 1  | 0  | 1  | N/A            | 1          | No                                     |  |  |  |

Table 32: Virtex-II Pro Configuration Mode Pin Settings

#### Notes:

1. The HSWAP\_EN pin controls the pull-ups. Setting M2, M1, and M0 selects the configuration mode, while the HSWAP\_EN pin controls whether or not the pull-ups are used.

 Daisy chaining is possible only in modes where Serial D<sub>OUT</sub> is used. For example, in SelectMAP modes, the first device does NOT support daisy chaining of downstream devices.

Table 33 lists the default total number of bits required to configure each device.

| Device   | Number of Configuration<br>Bits |
|----------|---------------------------------|
| XC2VP2   | 1,305,376                       |
| XC2VP4   | 3,006,496                       |
| XC2VP7   | 4,485,408                       |
| XC2VP20  | 8,214,560                       |
| XC2VPX20 | 8,214,560                       |
| XC2VP30  | 11,589,920                      |
| XC2VP40  | 15,868,192                      |
| XC2VP50  | 19,021,344                      |
| XC2VP70  | 26,098,976                      |
| XC2VPX70 | 26,098,976                      |
| XC2VP100 | 34,292,768                      |

Table 33: Virtex-II Pro Default Bitstream Lengths

# **Configuration Sequence**

The configuration of Virtex-II Pro devices is a three-phase process. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process.

Configuration is automatically initiated on power-up unless it is delayed by the user. The INIT\_B pin can be held Low using an open-drain driver. An open-drain is required since INIT\_B is a bidirectional open-drain pin that is held Low by a Virtex-II Pro FPGA device while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded.

The configuration process can also be initiated by asserting the PROG\_B pin. The end of the memory-clearing phase is signaled by the INIT\_B pin going High, and the completion of the entire process is signaled by the DONE pin going High. The Global Set/Reset (GSR) signal is pulsed after the last frame of configuration data is written but before the start-up sequence. The GSR signal resets all flip-flops on the device.

The default start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary. One CCLK cycle later, the Global Write Enable (GWE) signal is released. This permits the internal storage elements to begin changing state in response to the logic and the user clock.

The relative timing of these events can be changed via configuration options in software. In addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start

# **Power-On Power Supply Requirements**

Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on ramp rate of the power supply.

The V<sub>CCINT</sub> power supply must ramp on, monotonically, no faster than 200  $\mu$ s and no slower than 50 ms. Ramp-on is defined as: 0 V<sub>DC</sub> to minimum supply voltages (see Table 2).

 $V_{CCAUX}$  and  $V_{CCO}$  can power on at any ramp rate. Power supplies can be turned on in any sequence.

Table 5 shows the minimum current required by Virtex-II Prodevices for proper power-on and configuration.

If the current minimums shown in Table 5 are met, the device powers on properly after all three supplies have passed through their power-on reset threshold voltages.

Once initialized and configured, use the power calculator to estimate current drain on these supplies.

For more information on  $V_{CCAUX}$ ,  $V_{CCO}$ , and configuration mode, refer to Chapter 3 in the *Virtex-II Pro Platform FPGA User Guide*.

|                       | Device |        |        |         |          |         |         |         |         |          |          |       |
|-----------------------|--------|--------|--------|---------|----------|---------|---------|---------|---------|----------|----------|-------|
| Symbol                | XC2VP2 | XC2VP4 | XC2VP7 | XC2VP20 | XC2VPX20 | XC2VP30 | XC2VP40 | XC2VP50 | XC2VP70 | XC2VPX70 | XC2VP100 | Units |
| I <sub>CCINTMIN</sub> | 500    | 500    | 500    | 600     | 600      | 800     | 1050    | 1250    | 1700    | 1700     | 2200     | mA    |
| I <sub>CCAUXMIN</sub> | 250    | 250    | 250    | 250     | 250      | 250     | 250     | 250     | 250     | 250      | 250      | mA    |
| I <sub>CCOMIN</sub>   | 100    | 100    | 100    | 100     | 100      | 100     | 100     | 100     | 100     | 100      | 100      | mA    |

#### Table 5: Power-On Current for Virtex-II Pro Devices

#### Notes:

1. Power-on current parameter values are specified for Commercial Grade. For Industrial Grade values, multiply Commercial Grade values by 1.5.

2. I<sub>CCOMIN</sub> values listed here apply to the entire device (all banks).

# **General Power Supply Requirements**

Proper decoupling of all FPGA power supplies is essential. Consult Xilinx Application Note <u>XAPP623</u> for detailed information on power distribution system design.

 $V_{CCAUX}$  powers critical resources in the FPGA. Therefore, this supply voltage is especially susceptible to power supply noise.  $V_{CCAUX}$  can share a power plane with  $V_{CCO}$ , but only if  $V_{CCO}$  does not have excessive noise. Staying within simultaneously switching output (SSO) limits is essential for keeping power supply noise to a minimum. Refer to

XAPP689, "Managing Ground Bounce in Large FPGAs," to determine the number of simultaneously switching outputs allowed per bank at the package level.

Changes in  $V_{CCAUX}$  voltage beyond 200 mV peak-to-peak should take place at a rate no faster than 10 mV per millisecond.

Recommended practices that can help reduce jitter and period distortion are described in Xilinx Answer Record 13756.

# **Output Delay Measurements**

Output delays are measured using a Tektronix P6245 TDS500/600 probe (<1 pF) across approximately 4" of FR4 microstrip trace. Standard termination was used for all testing. (See <u>Virtex-II Pro Platform FPGA User Guide</u> for details.) The propagation delay of the 4" trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setup shown in Figure 6.

Measurements and test conditions are reflected in the IBIS models except where the IBIS format precludes it. (IBIS models can be found on the web at <u>http://support.xilinx.com/support/sw\_ibis.htm</u>.) Parameters  $V_{REF}$ ,  $R_{REF}$ ,  $C_{REF}$ , and  $V_{MEAS}$  fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using the following method:

- 1. Simulate the output driver of choice into the generalized test setup, using values from Table 40.
- 2. Record the time to  $V_{MEAS}$ .
- Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load.

#### Table 40: Output Delay Measurement Methodology

- 4. Record the time to V<sub>MEAS</sub>.
- Compare the results of steps 2 and 4. The increase or decrease in delay should be added to or subtracted from the I/O Output Standard Adjustment value (Table 38) to yield the actual worst-case propagation delay (clock-to-input) of the PCB trace.



Figure 6: Generalized Test Setup

| Description                                        | IOSTANDARD<br>Attribute | R <sub>REF</sub><br>(Ω) | C <sub>REF</sub> <sup>(1)</sup><br>(pF) | V <sub>MEAS</sub><br>(V) | V <sub>REF</sub><br>(V) |
|----------------------------------------------------|-------------------------|-------------------------|-----------------------------------------|--------------------------|-------------------------|
| LVTTL (Low-Voltage Transistor-Transistor Logic)    | LVTTL (all)             | 1M                      | 0                                       | 1.65                     | 0                       |
| LVCMOS (Low-Voltage CMOS ), 3.3V                   | LVCMOS33                | 1M                      | 0                                       | 1.65                     | 0                       |
| LVCMOS, 2.5V                                       | LVCMOS25                | 1M                      | 0                                       | 1.25                     | 0                       |
| LVCMOS, 1.8V                                       | LVCMOS18                | 1M                      | 0                                       | 0.9                      | 0                       |
| LVCMOS, 1.5V                                       | LVCMOS15                | 1M                      | 0                                       | 0.75                     | 0                       |
| PCI (Parinharal Component Interface) 22 MHz 2 2)/  | PCI33_3 (rising edge)   | 25                      | 10 <sup>(2)</sup>                       | 0.94                     | 0                       |
| ren (renpheral component interlace), 35 Minz, 3.3V | PCI33_3 (falling edge)  | 25                      | 10 <sup>(2)</sup>                       | 2.03                     | 3.3                     |
|                                                    | PCI66_3 (rising edge)   | 25                      | 10 <sup>(2)</sup>                       | 0.94                     | 0                       |
| PCI, 66 MHZ, 3.3V                                  | PCI66_3 (falling edge)  | 25                      | 10 <sup>(2)</sup>                       | 2.03                     | 3.3                     |
|                                                    | PCIX (rising edge)      | 25                      | 10 <sup>(3)</sup>                       | 0.94                     | 0                       |
| PCI-X, 133 MITZ, 3.3V                              | PCIX (falling edge      | 25                      | 10 <sup>(3)</sup>                       | 2.03                     | 3.3                     |
| GTL (Gunning Transceiver Logic)                    | GTL                     | 25                      | 0                                       | 0.8                      | 1.2                     |
| GTL Plus                                           | GTLP                    | 25                      | 0                                       | 1.0                      | 1.5                     |
| HSTL (High-Speed Transceiver Logic), Class I       | HSTL_I                  | 50                      | 0                                       | V <sub>REF</sub>         | 0.75                    |
| HSTL, Class II                                     | HSTL_II                 | 25                      | 0                                       | V <sub>REF</sub>         | 0.75                    |
| HSTL, Class III                                    | HSTL_III                | 50                      | 0                                       | 0.9                      | 1.5                     |
| HSTL, Class IV                                     | HSTL_IV                 | 25                      | 0                                       | 0.9                      | 1.5                     |
| HSTL, Class I, 1.8V                                | HSTL_I_18               | 50                      | 0                                       | V <sub>REF</sub>         | 0.9                     |
| HSTL, Class II, 1.8V                               | HSTL_II_18              | 25                      | 0                                       | V <sub>REF</sub>         | 0.9                     |
| HSTL, Class III, 1.8V                              | HSTL_III_18             | 50                      | 0                                       | 1.1                      | 1.8                     |
| HSTL, Class IV, 1.8V                               | HSTL_IV_18              | 25                      | 0                                       | 1.1                      | 1.8                     |

# Virtex-II Pro Receiver Data-Valid Window (R<sub>X</sub>)

 $R_X$  is the required minimum aggregate valid data period for a source-synchronous data bus at the pins of the device and is calculated as follows:

$$R_{X} = [TSAMP^{(1)} + TCKSKEW^{(2)} + TPKGSKEW^{(3)}]$$

#### Notes:

- This parameter indicates the total sampling error of Virtex-II Pro DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers' edges of operation. These measurements include:
  - CLK0 and CLK180 DCM jitter in a quiet system

- Worst-case duty-cycle distortion
- DCM accuracy (phase offset)
- DCM phase shift resolution.
- These measurements do not include package or clock tree skew.
- This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA\_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.
- 3. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball.

# **Revision History**

This section records the change history for this module of the data sheet.

| Date     | Version | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01/31/02 | 1.0     | Initial Xilinx release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 06/17/02 | 2.0     | <ul> <li>Added new Virtex-II Pro family members.</li> <li>Added timing parameters from speedsfile v1.62.</li> <li>Added Table 46, Pipelined Multiplier Switching Characteristics.</li> <li>Added 3.3V-vs-2.5V table entries for some parameters.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 09/03/02 | 2.1     | <ul> <li>Added Source-Synchronous Switching Characteristics section.</li> <li>Added absolute max ratings for 3.3V-vs-2.5V parameters in Table 1.</li> <li>Added recommended operating conditions for V<sub>IN</sub> and RocketIO footnote to Table 2.</li> <li>Updated SSTL2 values in Table 6. Added SSTL18 values: Table 6, Table 39, Table 32.<br/>[Table 32 removed in v2.8.]</li> <li>Added Table 10, which contains LVPECL DC specifications.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 09/27/02 | 2.2     | Added section General Power Supply Requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11/20/02 | 2.3     | <ul> <li>Updated parametric information in:</li> <li>Table 1: Increase Absolute Max Rating for V<sub>CCO</sub>, V<sub>REF</sub>, V<sub>IN</sub>, and V<sub>TS</sub> from 3.6V to 3.75V. Delete cautionary footnotes related to voltage overshoot/undershoot.</li> <li>Table 2: Delete V<sub>CCO</sub> specifications for 2.5V and below operation. Delete footnote referencing special information for 3.3V operation. Add footnote for PCI/PCI-X.</li> <li>Table 3: Add I<sub>BATT</sub>. Delete I<sub>L</sub> specifications for 2.5V and below operation.</li> <li>Table 4: Add Typical Quiescent Supply Currents for XC2VP4 and XC2VP7 only</li> <li>Table 6: Correct I<sub>OL</sub> and I<sub>OH</sub> for SSTL2 I. Add rows for LVTTL, LVCMOS33, and PCI-X. Correct max V<sub>IH</sub> from V<sub>CCO</sub> to 3.6V.</li> <li>Table 7: Correct Min/Max V<sub>OD</sub>, V<sub>OCM</sub>, and V<sub>ICM</sub></li> <li>Table 10: Reformat LVPECL DC Specifications to match Virtex-II data sheet format</li> <li>Table 12: Correct parameter name from Differential Output Voltage to Single-Ended Output Voltage Swing.</li> <li>Table 16: Add CPMC405CLOCK max frequencies</li> <li>Table 27: Add footnote regarding serial data rate limitation in -5 part.</li> <li>Table 39: Add rows for LVTTL, LVCMOS33, and PCI-X.</li> <li>Table 32: Add LVTTL, LVCMOS33, and PCI-X. Correct all capacitive load values (except PCI/PCI-X) to 0 pF. [Table 32 removed in v2.8.]</li> </ul> |
| 11/25/02 | 2.4     | Table 1: Correct lower limit of voltage range of $V_{IN}$ and $V_{TS}$ from -0.3V to -0.5V for 3.3V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# Table 6: FG456/FGG456 — XC2VP2, XC2VP4, and XC2VP7

|      |                 |            | No Connects |        | 5      |
|------|-----------------|------------|-------------|--------|--------|
| Bank | Pin Description | Pin Number | XC2VP2      | XC2VP4 | XC2VP7 |
|      |                 |            |             |        |        |
| 0    | VCCO_0          | G9         |             |        |        |
| 0    | VCCO_0          | G11        |             |        |        |
| 0    | VCCO_0          | G10        |             |        |        |
| 0    | VCCO_0          | F8         |             |        |        |
| 0    | VCCO_0          | F7         |             |        |        |
| 1    | VCCO_1          | G14        |             |        |        |
| 1    | VCCO_1          | G13        |             |        |        |
| 1    | VCCO_1          | G12        |             |        |        |
| 1    | VCCO_1          | F16        |             |        |        |
| 1    | VCCO_1          | F15        |             |        |        |
| 2    | VCCO_2          | L16        |             |        |        |
| 2    | VCCO_2          | K16        |             |        |        |
| 2    | VCCO_2          | J16        |             |        |        |
| 2    | VCCO_2          | H17        |             |        |        |
| 2    | VCCO_2          | G17        |             |        |        |
| 3    | VCCO_3          | T17        |             |        |        |
| 3    | VCCO 3          | R17        |             |        |        |
| 3    | VCCO 3          | P16        |             |        |        |
| 3    | VCCO 3          | N16        |             |        |        |
| 3    | VCCO 3          | M16        |             |        |        |
| 4    | VCCO_4          | U16        |             |        |        |
| 4    | VCCO 4          | U15        |             |        |        |
| 4    | VCCO 4          | T14        |             |        |        |
| 4    | VCCO 4          | T13        |             |        |        |
| 4    | VCCO 4          | T12        |             |        |        |
| 5    | VCCO 5          | U8         |             |        |        |
| 5    | VCCO 5          | U7         |             |        |        |
| 5    | VCCO 5          | Т9         |             |        |        |
| 5    | VCCO 5          | T11        |             |        |        |
| 5    | VCCO 5          | T10        |             |        |        |
| 6    | VCCO 6          | T6         |             |        |        |
| 6    | VCCO 6          | R6         |             |        |        |
| 6    | VCCO 6          | P7         |             |        |        |
| 6    | VCC0 6          | N7         |             |        |        |
| 6    | VCCO 6          | M7         |             |        |        |
| 7    | VCCO 7          | L7         |             |        |        |

# Table 7: FG676/FGG676 — XC2VP20, XC2VP30, and XC2VP40

|      |                 |            | No Connects |         |         |  |  |
|------|-----------------|------------|-------------|---------|---------|--|--|
| Bank | Pin Description | Pin Number | XC2VP20     | XC2VP30 | XC2VP40 |  |  |
| 3    | VCCO_3          | AB24       |             |         |         |  |  |
| 4    | VCCO_4          | U14        |             |         |         |  |  |
| 4    | VCCO_4          | U15        |             |         |         |  |  |
| 4    | VCCO_4          | V16        |             |         |         |  |  |
| 4    | VCCO_4          | V17        |             |         |         |  |  |
| 4    | VCCO_4          | AC16       |             |         |         |  |  |
| 4    | VCCO_4          | AD19       |             |         |         |  |  |
| 4    | VCCO_4          | AD22       |             |         |         |  |  |
| 5    | VCCO_5          | U12        |             |         |         |  |  |
| 5    | VCCO_5          | U13        |             |         |         |  |  |
| 5    | VCCO_5          | V10        |             |         |         |  |  |
| 5    | VCCO_5          | V11        |             |         |         |  |  |
| 5    | VCCO_5          | AC11       |             |         |         |  |  |
| 5    | VCCO_5          | AD5        |             |         |         |  |  |
| 5    | VCCO_5          | AD8        |             |         |         |  |  |
| 6    | VCCO_6          | P10        |             |         |         |  |  |
| 6    | VCCO_6          | R10        |             |         |         |  |  |
| 6    | VCCO_6          | T4         |             |         |         |  |  |
| 6    | VCCO_6          | Т9         |             |         |         |  |  |
| 6    | VCCO_6          | U9         |             |         |         |  |  |
| 6    | VCCO_6          | W3         |             |         |         |  |  |
| 6    | VCCO_6          | AB3        |             |         |         |  |  |
| 7    | VCCO_7          | E3         |             |         |         |  |  |
| 7    | VCCO_7          | H3         |             |         |         |  |  |
| 7    | VCCO_7          | K9         |             |         |         |  |  |
| 7    | VCCO_7          | L4         |             |         |         |  |  |
| 7    | VCCO_7          | L9         |             |         |         |  |  |
| 7    | VCCO_7          | M10        |             |         |         |  |  |
| 7    | VCCO_7          | N10        |             |         |         |  |  |
|      |                 |            |             | -       | •       |  |  |
| N/A  | PROG_B          | B1         |             |         |         |  |  |
| N/A  | HSWAP_EN        | B3         |             |         |         |  |  |
| N/A  | DXP             | A3         |             |         |         |  |  |
| N/A  | DXN             | C4         |             |         |         |  |  |
| N/A  | AVCCAUXTX4      | B5         |             |         |         |  |  |

# Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7

|      |                  | Pin    | No Connects |        |        |  |  |
|------|------------------|--------|-------------|--------|--------|--|--|
| Bank | Pin Description  | Number | XC2VP2      | XC2VP4 | XC2VP7 |  |  |
| 6    | IO_L01P_6/VRN_6  | AF24   |             |        |        |  |  |
| 6    | IO_L01N_6/VRP_6  | AE24   |             |        |        |  |  |
| 6    | IO_L02P_6        | AD23   |             |        |        |  |  |
| 6    | IO_L02N_6        | AC24   |             |        |        |  |  |
| 6    | IO_L03P_6        | AE26   |             |        |        |  |  |
| 6    | IO_L03N_6/VREF_6 | AF25   |             |        |        |  |  |
| 6    | IO_L04P_6        | AD25   |             |        |        |  |  |
| 6    | IO_L04N_6        | AD26   |             |        |        |  |  |
| 6    | IO_L05P_6        | AC25   |             |        |        |  |  |
| 6    | IO_L05N_6        | AC26   |             |        |        |  |  |
| 6    | IO_L06P_6        | AB23   |             |        |        |  |  |
| 6    | IO_L06N_6        | AB24   |             |        |        |  |  |
| 6    | IO_L39P_6        | AB25   | NC          | NC     | NC     |  |  |
| 6    | IO_L39N_6/VREF_6 | AB26   | NC          | NC     | NC     |  |  |
| 6    | IO_L41P_6        | AA22   | NC          | NC     | NC     |  |  |
| 6    | IO_L41N_6        | AA23   | NC          | NC     | NC     |  |  |
| 6    | IO_L42P_6        | AA24   | NC          | NC     | NC     |  |  |
| 6    | IO_L42N_6        | AA25   | NC          | NC     | NC     |  |  |
| 6    | IO_L43P_6        | Y21    | NC          |        |        |  |  |
| 6    | IO_L43N_6        | Y22    | NC          |        |        |  |  |
| 6    | IO_L44P_6        | Y23    | NC          |        |        |  |  |
| 6    | IO_L44N_6        | Y24    | NC          |        |        |  |  |
| 6    | IO_L45P_6        | AA26   | NC          |        |        |  |  |
| 6    | IO_L45N_6/VREF_6 | Y26    | NC          |        |        |  |  |
| 6    | IO_L46P_6        | W21    | NC          |        |        |  |  |
| 6    | IO_L46N_6        | W22    | NC          |        |        |  |  |
| 6    | IO_L47P_6        | W23    | NC          |        |        |  |  |
| 6    | IO_L47N_6        | W24    | NC          |        |        |  |  |
| 6    | IO_L48P_6        | W25    | NC          |        |        |  |  |
| 6    | IO_L48N_6        | W26    | NC          |        |        |  |  |
| 6    | IO_L49P_6        | V20    | NC          |        |        |  |  |
| 6    | IO_L49N_6        | V21    | NC          |        |        |  |  |
| 6    | IO_L50P_6        | V22    | NC          |        |        |  |  |
| 6    | IO_L50N_6        | V23    | NC          |        |        |  |  |
| 6    | IO_L51P_6        | V24    | NC          |        |        |  |  |
| 6    | IO_L51N_6/VREF_6 | V25    | NC          |        |        |  |  |
| 6    | IO_L52P_6        | U21    | NC          |        |        |  |  |

# Table 8: FF672 — XC2VP2, XC2VP4, and XC2VP7

|      |                  | Pin    | No Connects |        |        |
|------|------------------|--------|-------------|--------|--------|
| Bank | Pin Description  | Number | XC2VP2      | XC2VP4 | XC2VP7 |
| 7    | IO_L44P_7        | G24    | NC          |        |        |
| 7    | IO_L44N_7        | G23    | NC          |        |        |
| 7    | IO_L43P_7        | G22    | NC          |        |        |
| 7    | IO_L43N_7        | G21    | NC          |        |        |
| 7    | IO_L42P_7        | F25    | NC          | NC     | NC     |
| 7    | IO_L42N_7        | F24    | NC          | NC     | NC     |
| 7    | IO_L40P_7        | F23    | NC          | NC     | NC     |
| 7    | IO_L40N_7/VREF_7 | F22    | NC          | NC     | NC     |
| 7    | IO_L06P_7        | E26    |             |        |        |
| 7    | IO_L06N_7        | E25    |             |        |        |
| 7    | IO_L05P_7        | E24    |             |        |        |
| 7    | IO_L05N_7        | E23    |             |        |        |
| 7    | IO_L04P_7        | D26    |             |        |        |
| 7    | IO_L04N_7/VREF_7 | D25    |             |        |        |
| 7    | IO_L03P_7        | C26    |             |        |        |
| 7    | IO_L03N_7        | C25    |             |        |        |
| 7    | IO_L02P_7        | B26    |             |        |        |
| 7    | IO_L02N_7        | A25    |             |        |        |
| 7    | IO_L01P_7/VRN_7  | D24    |             |        |        |
| 7    | IO_L01N_7/VRP_7  | C23    |             |        |        |
|      |                  |        |             |        |        |
| 0    | VCCO_0           | C17    |             |        |        |
| 0    | VCCO_0           | C20    |             |        |        |
| 0    | VCCO_0           | H17    |             |        |        |
| 0    | VCCO_0           | H18    |             |        |        |
| 0    | VCCO_0           | J14    |             |        |        |
| 0    | VCCO_0           | J15    |             |        |        |
| 0    | VCCO_0           | J16    |             |        |        |
| 1    | VCCO_1           | C7     |             |        |        |
| 1    | VCCO_1           | H9     |             |        |        |
| 1    | VCCO_1           | C10    |             |        |        |
| 1    | VCCO_1           | H10    |             |        |        |
| 1    | VCCO_1           | J11    |             |        |        |
| 1    | VCCO_1           | J12    |             |        |        |
| 1    | VCCO_1           | J13    |             |        |        |
| 2    | VCCO_2           | G2     |             |        |        |
| 2    | VCCO_2           | J8     |             |        |        |

# Table 9: FF896 — XC2VP7, XC2VP20, XC2VPX20, and XC2VP30

|      | Pin Description       |                            |               | No Connects |                      |         |
|------|-----------------------|----------------------------|---------------|-------------|----------------------|---------|
| Bank | Virtex-II Pro devices | XC2VPX20<br>(if Different) | Pin<br>Number | XC2VP7      | XC2VP20,<br>XC2VPX20 | XC2VP30 |
| 6    | IO_L86P_6             |                            | T23           |             |                      |         |
| 6    | IO_L86N_6             |                            | T24           |             |                      |         |
| 6    | IO_L87P_6             |                            | U28           |             |                      |         |
| 6    | IO_L87N_6/VREF_6      |                            | U29           |             |                      |         |
| 6    | IO_L88P_6             |                            | T27           |             |                      |         |
| 6    | IO_L88N_6             |                            | T28           |             |                      |         |
| 6    | IO_L89P_6             |                            | T25           |             |                      |         |
| 6    | IO_L89N_6             |                            | T26           |             |                      |         |
| 6    | IO_L90P_6             |                            | V30           |             |                      |         |
| 6    | IO_L90N_6             |                            | U30           |             |                      |         |
|      |                       |                            |               |             |                      |         |
| 7    | IO_L90P_7             |                            | R28           |             |                      |         |
| 7    | IO_L90N_7             |                            | R27           |             |                      |         |
| 7    | IO_L89P_7             |                            | R26           |             |                      |         |
| 7    | IO_L89N_7             |                            | R25           |             |                      |         |
| 7    | IO_L88P_7             |                            | T29           |             |                      |         |
| 7    | IO_L88N_7/VREF_7      |                            | R29           |             |                      |         |
| 7    | IO_L87P_7             |                            | P27           |             |                      |         |
| 7    | IO_L87N_7             |                            | P26           |             |                      |         |
| 7    | IO_L86P_7             |                            | R24           |             |                      |         |
| 7    | IO_L86N_7             |                            | R23           |             |                      |         |
| 7    | IO_L85P_7             |                            | P29           |             |                      |         |
| 7    | IO_L85N_7             |                            | P28           |             |                      |         |
| 7    | IO_L60P_7             |                            | N28           |             |                      |         |
| 7    | IO_L60N_7             |                            | N27           |             |                      |         |
| 7    | IO_L59P_7             |                            | P24           |             |                      |         |
| 7    | IO_L59N_7             |                            | P23           |             |                      |         |
| 7    | IO_L58P_7             |                            | P30           |             |                      |         |
| 7    | IO_L58N_7/VREF_7      |                            | N30           |             |                      |         |
| 7    | IO_L57P_7             |                            | M28           |             |                      |         |
| 7    | IO_L57N_7             |                            | M27           |             |                      |         |
| 7    | IO_L56P_7             |                            | R22           |             |                      |         |
| 7    | IO_L56N_7             |                            | P22           |             |                      |         |
| 7    | IO_L55P_7             |                            | N29           |             |                      |         |
| 7    | IO_L55N_7             |                            | M29           |             |                      |         |
| 7    | IO_L54P_7             |                            | L27           |             |                      |         |

# Table 12: FF1517 — XC2VP50 and XC2VP70

|      |                  | Pin    | No Connects |         |  |
|------|------------------|--------|-------------|---------|--|
| Bank | Pin Description  | Number | XC2VP50     | XC2VP70 |  |
| 3    | IO_L47P_3        | AC10   |             |         |  |
| 3    | IO_L46N_3        | AE7    |             |         |  |
| 3    | IO_L46P_3        | AE8    |             |         |  |
| 3    | IO_L45N_3/VREF_3 | AE5    |             |         |  |
| 3    | IO_L45P_3        | AE6    |             |         |  |
| 3    | IO_L44N_3        | AB13   |             |         |  |
| 3    | IO_L44P_3        | AC13   |             |         |  |
| 3    | IO_L43N_3        | AE3    |             |         |  |
| 3    | IO_L43P_3        | AE4    |             |         |  |
| 3    | IO_L42N_3        | AE1    |             |         |  |
| 3    | IO_L42P_3        | AE2    |             |         |  |
| 3    | IO_L41N_3        | AD10   |             |         |  |
| 3    | IO_L41P_3        | AD11   |             |         |  |
| 3    | IO_L40N_3        | AF6    |             |         |  |
| 3    | IO_L40P_3        | AF7    |             |         |  |
| 3    | IO_L39N_3/VREF_3 | AF4    |             |         |  |
| 3    | IO_L39P_3        | AF5    |             |         |  |
| 3    | IO_L38N_3        | AC12   |             |         |  |
| 3    | IO_L38P_3        | AD12   |             |         |  |
| 3    | IO_L37N_3        | AF1    |             |         |  |
| 3    | IO_L37P_3        | AF2    |             |         |  |
| 3    | IO_L36N_3        | AG6    |             |         |  |
| 3    | IO_L36P_3        | AG7    |             |         |  |
| 3    | IO_L35N_3        | AE9    |             |         |  |
| 3    | IO_L35P_3        | AE10   |             |         |  |
| 3    | IO_L34N_3        | AF3    |             |         |  |
| 3    | IO_L34P_3        | AG3    |             |         |  |
| 3    | IO_L33N_3/VREF_3 | AG1    |             |         |  |
| 3    | IO_L33P_3        | AG2    |             |         |  |
| 3    | IO_L32N_3        | AE11   |             |         |  |
| 3    | IO_L32P_3        | AE12   |             |         |  |
| 3    | IO_L31N_3        | AH6    |             |         |  |
| 3    | IO_L31P_3        | AH7    |             |         |  |
| 3    | IO_L30N_3        | AG5    |             |         |  |
| 3    | IO_L30P_3        | AH4    |             |         |  |
| 3    | IO_L29N_3        | AD13   |             |         |  |
| 3    | IO_L29P_3        | AE13   |             |         |  |
| 3    | IO_L28N_3        | AH2    |             |         |  |

# Table 12: FF1517 — XC2VP50 and XC2VP70

|      |                 | Pin    | No Connects |         |  |
|------|-----------------|--------|-------------|---------|--|
| Bank | Pin Description | Number | XC2VP50     | XC2VP70 |  |
| 7    | VCCO_7          | P27    |             |         |  |
| 7    | VCCO_7          | W26    |             |         |  |
| 7    | VCCO_7          | V26    |             |         |  |
| 7    | VCCO_7          | U26    |             |         |  |
| 7    | VCCO_7          | T26    |             |         |  |
| 7    | VCCO_7          | R26    |             |         |  |
| 6    | VCCO_6          | AR39   |             |         |  |
| 6    | VCCO_6          | AC37   |             |         |  |
| 6    | VCCO_6          | AR36   |             |         |  |
| 6    | VCCO_6          | AL36   |             |         |  |
| 6    | VCCO_6          | AG36   |             |         |  |
| 6    | VCCO_6          | AC33   |             |         |  |
| 6    | VCCO_6          | AP32   |             |         |  |
| 6    | VCCO_6          | AL32   |             |         |  |
| 6    | VCCO_6          | AG32   |             |         |  |
| 6    | VCCO_6          | AC29   |             |         |  |
| 6    | VCCO_6          | AG28   |             |         |  |
| 6    | VCCO_6          | AF27   |             |         |  |
| 6    | VCCO_6          | AE26   |             |         |  |
| 6    | VCCO_6          | AD26   |             |         |  |
| 6    | VCCO_6          | AC26   |             |         |  |
| 6    | VCCO_6          | AB26   |             |         |  |
| 6    | VCCO_6          | AA26   |             |         |  |
| 6    | VCCO_6          | Y26    |             |         |  |
| 5    | VCCO_5          | AP27   |             |         |  |
| 5    | VCCO_5          | AK27   |             |         |  |
| 5    | VCCO_5          | AG26   |             |         |  |
| 5    | VCCO_5          | AG25   |             |         |  |
| 5    | VCCO_5          | AF25   |             |         |  |
| 5    | VCCO_5          | AG24   |             |         |  |
| 5    | VCCO_5          | AF24   |             |         |  |
| 5    | VCCO_5          | AP23   |             |         |  |
| 5    | VCCO_5          | AK23   |             |         |  |
| 5    | VCCO_5          | AF23   |             |         |  |
| 5    | VCCO_5          | AF22   |             |         |  |
| 5    | VCCO_5          | AF21   |             |         |  |
| 4    | VCCO_4          | AF19   |             |         |  |
| 4    | VCCO_4          | AF18   |             |         |  |

# Table 12: FF1517 — XC2VP50 and XC2VP70

|      |                 | Pin No Conne |         | nects   |  |
|------|-----------------|--------------|---------|---------|--|
| Bank | Pin Description | Number       | XC2VP50 | XC2VP70 |  |
| N/A  | GND             | W18          |         |         |  |
| N/A  | GND             | V18          |         |         |  |
| N/A  | GND             | U18          |         |         |  |
| N/A  | GND             | T18          |         |         |  |
| N/A  | GND             | AD17         |         |         |  |
| N/A  | GND             | AC17         |         |         |  |
| N/A  | GND             | AB17         |         |         |  |
| N/A  | GND             | AA17         |         |         |  |
| N/A  | GND             | Y17          |         |         |  |
| N/A  | GND             | W17          |         |         |  |
| N/A  | GND             | V17          |         |         |  |
| N/A  | GND             | U17          |         |         |  |
| N/A  | GND             | P20          |         |         |  |
| N/A  | GND             | L20          |         |         |  |
| N/A  | GND             | G20          |         |         |  |
| N/A  | GND             | C20          |         |         |  |
| N/A  | GND             | AD19         |         |         |  |
| N/A  | GND             | AC19         |         |         |  |
| N/A  | GND             | AB19         |         |         |  |
| N/A  | GND             | AA19         |         |         |  |
| N/A  | GND             | Y19          |         |         |  |
| N/A  | GND             | W19          |         |         |  |
| N/A  | GND             | V19          |         |         |  |
| N/A  | GND             | U19          |         |         |  |
| N/A  | GND             | T19          |         |         |  |
| N/A  | GND             | AD18         |         |         |  |
| N/A  | GND             | AC18         |         |         |  |
| N/A  | GND             | U21          |         |         |  |
| N/A  | GND             | T21          |         |         |  |
| N/A  | GND             | AU20         |         |         |  |
| N/A  | GND             | AN20         |         |         |  |
| N/A  | GND             | AJ20         |         |         |  |
| N/A  | GND             | AF20         |         |         |  |
| N/A  | GND             | AD20         |         |         |  |
| N/A  | GND             | AC20         |         |         |  |
| N/A  | GND             | AB20         |         |         |  |
| N/A  | GND             | AA20         |         |         |  |
| N/A  | GND             | Y20          |         |         |  |

# Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100

|      | Pin Description       |                            |            | No Connects          |          |
|------|-----------------------|----------------------------|------------|----------------------|----------|
| Bank | Virtex-II Pro Devices | XC2VPX70<br>(if Different) | Pin Number | XC2VP70,<br>XC2VPX70 | XC2VP100 |
| 7    | IO_L09P_7             |                            | K36        |                      |          |
| 7    | IO_L09N_7             |                            | K35        |                      |          |
| 7    | IO_L08P_7             |                            | K38        |                      |          |
| 7    | IO_L08N_7             |                            | K37        |                      |          |
| 7    | IO_L07P_7             |                            | L33        |                      |          |
| 7    | IO_L07N_7             |                            | K34        |                      |          |
| 7    | IO_L84P_7             |                            | J41        |                      |          |
| 7    | IO_L84N_7             |                            | J42        |                      |          |
| 7    | IO_L83P_7             |                            | J39        |                      |          |
| 7    | IO_L83N_7             |                            | J38        |                      |          |
| 7    | IO_L82P_7             |                            | J36        |                      |          |
| 7    | IO_L82N_7/VREF_7      |                            | J37        |                      |          |
| 7    | IO_L81P_7             |                            | J35        |                      |          |
| 7    | IO_L81N_7             |                            | H36        |                      |          |
| 7    | IO_L80P_7             |                            | H41        |                      |          |
| 7    | IO_L80N_7             |                            | H40        |                      |          |
| 7    | IO_L79P_7             |                            | H38        |                      |          |
| 7    | IO_L79N_7             |                            | H39        |                      |          |
| 7    | IO_L78P_7             |                            | H37        |                      |          |
| 7    | IO_L78N_7             |                            | G38        |                      |          |
| 7    | IO_L77P_7             |                            | G42        |                      |          |
| 7    | IO_L77N_7             |                            | G41        |                      |          |
| 7    | IO_L76P_7             |                            | G39        |                      |          |
| 7    | IO_L76N_7/VREF_7      |                            | G40        |                      |          |
| 7    | IO_L75P_7             |                            | F41        |                      |          |
| 7    | IO_L75N_7             |                            | F42        |                      |          |
| 7    | IO_L74P_7             |                            | F40        |                      |          |
| 7    | IO_L74N_7             |                            | F39        |                      |          |
| 7    | IO_L73P_7             |                            | E41        |                      |          |
| 7    | IO_L73N_7             |                            | E42        |                      |          |
| 7    | IO_L06P_7             |                            | D41        |                      |          |
| 7    | IO_L06N_7             |                            | D42        |                      |          |
| 7    | IO_L05P_7             |                            | E40        |                      |          |
| 7    | IO_L05N_7             |                            | D40        |                      |          |
| 7    | IO_L04P_7             |                            | F36        |                      |          |
| 7    | IO_L04N_7/VREF_7      |                            | G37        |                      |          |

# Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100

|      | Pin Description       |                            |            | No Connects          |          |
|------|-----------------------|----------------------------|------------|----------------------|----------|
| Bank | Virtex-II Pro Devices | XC2VPX70<br>(if Different) | Pin Number | XC2VP70,<br>XC2VPX70 | XC2VP100 |
| 7    | IO_L03P_7             |                            | D37        |                      |          |
| 7    | IO_L03N_7             |                            | E37        |                      |          |
| 7    | IO_L02P_7             |                            | D36        |                      |          |
| 7    | IO_L02N_7             |                            | E36        |                      |          |
| 7    | IO_L01P_7/VRN_7       |                            | C37        |                      |          |
| 7    | IO_L01N_7/VRP_7       |                            | C38        |                      |          |
|      |                       |                            |            |                      |          |
| 0    | VCCO_0                |                            | D25        |                      |          |
| 0    | VCCO_0                |                            | G23        |                      |          |
| 0    | VCCO_0                |                            | G28        |                      |          |
| 0    | VCCO_0                |                            | G32        |                      |          |
| 0    | VCCO_0                |                            | J25        |                      |          |
| 0    | VCCO_0                |                            | J29        |                      |          |
| 0    | VCCO_0                |                            | P22        |                      |          |
| 0    | VCCO_0                |                            | P23        |                      |          |
| 0    | VCCO_0                |                            | P24        |                      |          |
| 0    | VCCO_0                |                            | P25        |                      |          |
| 0    | VCCO_0                |                            | P26        |                      |          |
| 0    | VCCO_0                |                            | R22        |                      |          |
| 0    | VCCO_0                |                            | R23        |                      |          |
| 0    | VCCO_0                |                            | R24        |                      |          |
| 0    | VCCO_0                |                            | R25        |                      |          |
| 1    | VCCO_1                |                            | R21        |                      |          |
| 1    | VCCO_1                |                            | R20        |                      |          |
| 1    | VCCO_1                |                            | R19        |                      |          |
| 1    | VCCO_1                |                            | R18        |                      |          |
| 1    | VCCO_1                |                            | P21        |                      |          |
| 1    | VCCO_1                |                            | P20        |                      |          |
| 1    | VCCO_1                |                            | P19        |                      |          |
| 1    | VCCO_1                |                            | P18        |                      |          |
| 1    | VCCO_1                |                            | P17        |                      |          |
| 1    | VCCO_1                |                            | J18        |                      |          |
| 1    | VCCO_1                |                            | J14        |                      |          |
| 1    | VCCO_1                |                            | G20        |                      |          |
| 1    | VCCO_1                |                            | G15        |                      |          |
| 1    | VCCO_1                |                            | G11        |                      |          |

# Table 13: FF1704 — XC2VP70, XC2VPX70, and XC2VP100

|      | Pin Description       |                            |            | No Connects          |          |
|------|-----------------------|----------------------------|------------|----------------------|----------|
| Bank | Virtex-II Pro Devices | XC2VPX70<br>(if Different) | Pin Number | XC2VP70,<br>XC2VPX70 | XC2VP100 |
| N/A  | TXPPAD3               |                            | A36        |                      |          |
| N/A  | GNDA3                 |                            | C35        |                      |          |
| N/A  | RXPPAD3               |                            | A35        |                      |          |
| N/A  | RXNPAD3               |                            | A34        |                      |          |
| N/A  | VTRXPAD3              |                            | B35        |                      |          |
| N/A  | AVCCAUXRX3            |                            | B34        |                      |          |
| N/A  | AVCCAUXTX4            |                            | B32        |                      |          |
| N/A  | VTTXPAD4              |                            | B33        |                      |          |
| N/A  | TXNPAD4               |                            | A33        |                      |          |
| N/A  | TXPPAD4               |                            | A32        |                      |          |
| N/A  | GNDA4                 |                            | C31        |                      |          |
| N/A  | RXPPAD4               |                            | A31        |                      |          |
| N/A  | RXNPAD4               |                            | A30        |                      |          |
| N/A  | VTRXPAD4              |                            | B31        |                      |          |
| N/A  | AVCCAUXRX4            |                            | B30        |                      |          |
| N/A  | AVCCAUXTX5            |                            | B28        |                      |          |
| N/A  | VTTXPAD5              |                            | B29        |                      |          |
| N/A  | TXNPAD5               |                            | A29        |                      |          |
| N/A  | TXPPAD5               |                            | A28        |                      |          |
| N/A  | GNDA5                 |                            | C27        |                      |          |
| N/A  | RXPPAD5               |                            | A27        |                      |          |
| N/A  | RXNPAD5               |                            | A26        |                      |          |
| N/A  | VTRXPAD5              |                            | B27        |                      |          |
| N/A  | AVCCAUXRX5            |                            | B26        |                      |          |
| N/A  | AVCCAUXTX6            |                            | B24        |                      |          |
| N/A  | VTTXPAD6              |                            | B25        |                      |          |
| N/A  | TXNPAD6               |                            | A25        |                      |          |
| N/A  | TXPPAD6               |                            | A24        |                      |          |
| N/A  | GNDA6                 |                            | C22        |                      |          |
| N/A  | RXPPAD6               |                            | A23        |                      |          |
| N/A  | RXNPAD6               |                            | A22        |                      |          |
| N/A  | VTRXPAD6              |                            | B23        |                      |          |
| N/A  | AVCCAUXRX6            |                            | B22        |                      |          |
| N/A  | AVCCAUXTX7            |                            | B20        |                      |          |
| N/A  | VTTXPAD7              |                            | B21        |                      |          |
| N/A  | TXNPAD7               |                            | A21        |                      |          |

# Table 14: FF1696 — XC2VP100

|      |                  |            | No Connects |
|------|------------------|------------|-------------|
| Bank | Pin Description  | Pin Number | XC2VP100    |
| 6    | IO_L62N_6        | AL35       |             |
| 6    | IO_L63P_6        | AV36       |             |
| 6    | IO_L63N_6/VREF_6 | AU36       |             |
| 6    | IO_L64P_6        | AV35       |             |
| 6    | IO_L64N_6        | AU35       |             |
| 6    | IO_L65P_6        | AK35       |             |
| 6    | IO_L65N_6        | AJ34       |             |
| 6    | IO_L66P_6        | AU41       |             |
| 6    | IO_L66N_6        | AU42       |             |
| 6    | IO_L67P_6        | AU38       |             |
| 6    | IO_L67N_6        | AT38       |             |
| 6    | IO_L68P_6        | AK32       |             |
| 6    | IO_L68N_6        | AK33       |             |
| 6    | IO_L69P_6        | AU37       |             |
| 6    | IO_L69N_6/VREF_6 | AT37       |             |
| 6    | IO_L70P_6        | AT41       |             |
| 6    | IO_L70N_6        | AT42       |             |
| 6    | IO_L71P_6        | AK31       |             |
| 6    | IO_L71N_6        | AJ31       |             |
| 6    | IO_L72P_6        | AT39       |             |
| 6    | IO_L72N_6        | AT40       |             |
| 6    | IO_L07P_6        | AT35       |             |
| 6    | IO_L07N_6        | AT36       |             |
| 6    | IO_L08P_6        | AJ32       |             |
| 6    | IO_L08N_6        | AJ33       |             |
| 6    | IO_L09P_6        | AR42       |             |
| 6    | IO_L09N_6/VREF_6 | AP41       |             |
| 6    | IO_L10P_6        | AR40       |             |
| 6    | IO_L10N_6        | AR41       |             |
| 6    | IO_L11P_6        | AH34       |             |
| 6    | IO_L11N_6        | AH35       |             |
| 6    | IO_L12P_6        | AR38       |             |
| 6    | IO_L12N_6        | AR39       |             |
| 6    | IO_L13P_6        | AR36       |             |
| 6    | IO_L13N_6        | AR37       |             |
| 6    | IO_L14P_6        | AH32       |             |
| 6    | IO_L14N_6        | AH33       |             |