

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	29
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/mini52tan

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NuMicro[™] Mini51 Series Data Sheet

	9.1	48-pin LQFP	64
	9.2	33-pin QFN (4mm x 4mm)	65
	9.3	33-pin QFN (5mm x 5mm)	66
10	REVI	SION HISTORY	67

List of Figures

Figure 3.1-1 NuMicro Mini51™ Series Product Selection Guide
Figure 3.2-1 NuMicro Mini51™ Series LQFP 48-pin Assignment
Figure 3.2-2 NuMicro Mini51™ Series QFN 33-pin Assignment
Figure 4.1-1 NuMicro Mini51™ Series Block Diagram
Figure 5.3-1 NuMicro Mini51™ Series Power Distribution Diagram
Figure 5.4-1 Clock Generator Block Diagram
Figure 5.4-2 System Clock Block Diagram
Figure 5.4-3 SysTick Clock Control Block Diagram
Figure 5.4-4 AHB Clock Source for HCLK
Figure 5.4-5 Peripherals Clock Source Selection for PCLK
Figure 5.4-6 Clock Source of Frequency Divider
Figure 5.4-7 Block Diagram of Frequency Divider
Figure 5.9-1 Bus Timing
Figure 5.10-1 Application Circuit Diagram
Figure 5.14-1 Timing of Interrupt and Reset Signal
Figure 6.1-1 Functional Block Diagram
Figure 8.3-1 Typical Crystal Application Circuit

1 GENERAL DESCRIPTION

The NuMicro Mini51[™] series 32-bit microcontroller is embedded with an ARM[®] Cortex[™]-M0 core for industrial controls and applications which require high performance, high integration, and low cost. The Cortex[™]-M0 is the newest ARM embedded processor with 32-bit performance at a cost equivalent to the traditional 8-bit microcontroller.

The NuMicro Mini51[™] series can run up to 24 MHz, and thus can afford to support a variety of industrial controls and applications requiring high CPU performance. The NuMicro Mini51[™] series provides 4K/8K/16K-byte embedded program flash, size configurable data flash (shared with program flash), 2K-byte flash for the ISP, and 2K-byte embedded SRAM.

A number of system-level peripheral functions, such as I/O Port, Timer, UART, SPI, I²C, PWM, ADC, Watchdog Timer, and low voltage detector, have been incorporated in the NuMicro Mini51[™] series to reduce component count, board space, and system cost. These useful functions make the NuMicro Mini51[™] series powerful for a wide range of applications.

Additionally, the NuMicro Mini51[™] series is equipped with ISP (In-System Programming) and ICP (In-Circuit Programming) functions, allowing user to update program memory without removing a chip from an actual end product.

NuMicroTM Mini51 Series Data Sheet

- Serial clock synchronization used as a handshake mechanism to suspend and resume serial transfer
- Programmable clocks allowing for versatile rate control
- Supports multiple address recognition (4 slave addresses with mask option)
- ADC (Analog-to-Digital Converter)
 - 10-bit SAR ADC with 150K SPS
 - Up to 8-ch single-end input and one internal input from band-gap
 - Conversion started by software or external pin
- Analog Comparator
 - Two analog comparators with programmable 16-level internal voltage reference
 - Built-in CRV (comparator reference voltage)
- BOD (Brown-Out Detection) Reset
 - Three programmable threshold levels: 3.8V/2.7V/2.0V (default as 2.0V)
 - Optional BOD interrupt or reset
- 96-bit unique ID
- Operating Temperature: -40°C ~85°C
- Packages:
 - Green package (RoHS)
 - LQFP 48-pin (7x7), QFN 33-pin (5x5), QFN 33-pin (4x4)

ηυνοτοη

3 PARTS INFORMATION LIST AND PIN CONFIGURATION

Part Number	APROM	RAM	Data Flash	ISP Loader	1/0	Timer	Cor	nectiv	/ity	Comn	PWM	ADC	ISP	IRC	Package
i art Humber		T C-CIM	Dutu Fluori	ROM		Timer	UART	SPI	I ² C	comp.		100	ICP	MHz	ruonugo
MINI51LAN	4 KB	2 KB	Configurable	2 KB	up to 30	2x32-bit	1	1	1	2	6	8x10-bit	v	v	LQFP48
MINI51ZAN	4 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	v	v	QFN33(5x5)
MINI51TAN	4 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	v	v	QFN33(4x4)
MINI52LAN	8 KB	2 KB	Configurable	2 KB	up to 30	2x32-bit	1	1	1	2	6	8x10-bit	v	v	LQFP48
MINI52ZAN	8 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	v	v	QFN33(5x5)
MINI52TAN	8 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	v	v	QFN33(4x4)
MINI54LAN	16 KB	2 KB	Configurable	2 KB	up to 30	2x32-bit	1	1	1	2	6	8x10-bit	v	v	LQFP48
MINI54ZAN	16 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	v	v	QFN33(5x5)
MINI54TAN	16 KB	2 KB	Configurable	2 KB	up to 29	2x32-bit	1	1	1	2	6	8x10-bit	v	v	QFN33(4x4)

3.1 NuMicro Mini51™ Series Product Selection Guide

Figure 3.1-1 NuMicro Mini51™ Series Product Selection Guide

NuMicro[™] Mini51 Series Data Sheet

Pin Number								
LQFP 48-pin	QFN 33-pin	Pin Name	Pin Type	Description				
28		NC		Not connected				
20	10	P4.6	I/O	Digital GPIO pin				
29	19	ICE_CLK	I	Serial wired debugger clock pin				
20	20	P4.7	I/O	Digital GPIO pin				
30	20	ICE_DAT	I/O	Serial wired debugger data pin				
31		NC		Not connected				
22	21	P0.7	I/O	Digital GPIO pin				
32	21	SPICLK	I/O	SPI serial clock pin				
22	22	P0.6	I/O	Digital GPIO pin				
55	22	MISO	I/O	SPI MISO (master in/slave out) pin				
34	23	P0.5	I/O	Digital GPIO pin				
54	23	MOSI	0	SPI MOSI (master out/slave in) pin				
		P0.4	I/O	Digital GPIO pin				
35	24	SPISS	I/O	SPI slave select pin				
		PWM5	0	PWM5 output of PWM unit				
36		NC		Not connected				
		P0.1	I/O	Digital GPIO pin				
37	25	RTSn	0	UART RTS pin				
57		RX	I	UART data receiver input pin				
		SPISS	I/O	SPI slave select pin				
		P0.0	I/O	Digital GPIO pin				
38	26	CTSn	I	UART CTS pin				
		тх	0	UART transmitter output pin				
39		NC		Not connected				
40		NC		Not connected				
4 1	27	P5.3	I/O	Digital GPIO pin				
41 27 AINO		AI	ADC analog input pin					
42	28	VDD	Ρ	Power supply for digital circuit				
43		AVDD	Р	Power supply for analog circuit				
44	29	P1.0	I/O	Digital GPIO pin				

4 BLOCK DIAGRAM

4.1 NuMicro Mini51™ Block Diagram

Figure 4.1-1 NuMicro Mini51™ Series Block Diagram

5.1.2 System Memory Map

The memory locations assigned to each on-chip controllers are shown in the following table.

Address Space	Token	Controllers					
Flash and SRAM Memory Spa	ce						
0x0000_0000 – 0x0000_3FFF FLASH_BA		Flash Memory Space (16 KB)					
0x2000_0000 – 0x2000_07FF SRAM_B		SRAM Memory Space (2 KB)					
AHB Controllers Space (0x500	00_0000 – 0x501	F_FFFF)					
0x5000_0000 – 0x5000_01FF	GCR_BA	Global Control Registers					
0x5000_0200 – 0x5000_02FF	CLK_BA	Clock Control Registers					
0x5000_0300 – 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers					
0x5000_4000 – 0x5000_7FFF	GP_BA	GPIO Control Registers					
0x5000_C000 – 0x5000_FFFF	FMC_BA	Flash Memory Control Registers					
APB1 Controllers Space (0x40	000_0000 – 0x40	11F_FFFF)					
0x4000_4000 – 0x4000_7FFF	WDT_BA	Watchdog Timer Control Registers					
0x4001_0000 – 0x4001_3FFF	TMR_BA	Timer0/Timer1 Control Registers					
0x4002_0000 – 0x4002_3FFF	I2C_BA	I ² C Interface Control Registers					
0x4003_0000 – 0x4003_3FFF	SPI_BA	SPI Control Registers					
0x4004_0000 – 0x4004_3FFF	PWM_BA	PWM Control Registers					
0x4005_0000 – 0x4005_3FFF	UART_BA	UART Control Registers					
0x400D_0000 – 0x400D_3FFF	CMP_BA	Analog Comparator Control Registers					
0x400E_0000 - 0x400E_3FFF	ADC_BA	Analog-Digital-Converter (ADC) Control Registers					
System Controllers Space (0x	System Controllers Space (0xE000_E000 – 0xE000_EFFF)						
0xE000_E010 - 0xE000_E0FF	SCS_BA	System Timer Control Registers					
0xE000_E100 - 0xE000_ECFF	SCS_BA	Nested Vectored Interrupt Control Registers					
0xE000_ED00 - 0xE000_ED8F	SCB_BA	System Control Block Registers					

Table 5.1-1 Address Space Assignments for On-Chip Modules

Exception Number	IRQ Number (Bit in Interrupt Registers)	Exception Name	Source IP	Exception Description	Power-down Wake-up
30	14	SPI_INT	SPI	SPI interrupt	No
31	15	-	-	-	
32	16	GP5_INT	GPIO	External signal interrupt from GPIO group P5 except P5.2	Yes
33	17	HFIRC_TRIM _INT	HFIRC	HFIRC trim interrupt	No
34	18	I2C_INT	I ² C	I ² C interrupt	No
35 ~ 40	19 ~ 24	-	-	-	
41	25	ACMP_INT	ACMP	Analog Comparator 0 or 1 interrupt	Yes
42 ~ 43	26 ~ 27	-	-	-	
44	28	PWRWU_INT	CLKC	Clock controller interrupt for chip wake-up from Power-down state	Yes
45	29	ADC_INT	ADC	ADC interrupt	No
46 ~ 47	30 ~ 31	-	-	-	

Table 5.2-2 System	Interrupt I	Иар
--------------------	-------------	-----

5.2.4 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table based address is fixed at 0x0000_0000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with the exception handler entry as illustrated in the previous section.

Vector Table Word Offset (Bytes)	Description
0x00	Initial Stack Pointer Value
Exception Number × 0x04	Exception Entry Pointer using that Exception Number

Table 5.2-3 Vector Table Format

5.3 System Manager

5.3.1 Overview

The following functions are included in the system manager section:

- System Memory Map
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System management registers for product ID
- System management registers for chip and module functional reset and multi-function pin control
- Brown-out and chip miscellaneous Control Register
- Combined peripheral interrupt source identify

5.3.2 System Reset

The system reset includes one of the following as the event occurs. For these reset events flags can be read by RSTSRC register.

- Power-On Reset (POR)
- Low level on the /RESET pin
- Watchdog Time-out Reset (WDT)
- Brown-out Detected Reset (BOD)
- Cortex[™]-M0 CPU Reset
- Software one shot Reset

5.3.3 System Power Distribution

In this device, the power distribution is divided into three segments.

- Analog power from AVDD and AVSS supplies power for analog module operation
- Digital power from VDD and VSS supplies power to the internal regulator which provides a fixed 1.8V power for digital operation and I/O pins
- Built-in capacitor for internal voltage regulator

The output of internal voltage regulator, LDO_CAP, requires an external capacitor which should be located close to the corresponding pin. 錯誤! 找不到參照來源。 shows the power architecture of this device.

NuMicroTM Mini51 Series Data Sheet

nuvoton

Figure 5.3-1 NuMicro Mini51™ Series Power Distribution Diagram

5.4.6 Power-down Mode Clock

When entering Power-down mode, some clock sources and peripheral clocks and system clocks will be disabled. Some clock sources and peripheral clocks are still active in Power-down mode.

Clocks that still be kept active are listed below.

- Clock Generator
 - Internal 10 KHz RC oscillator (LIRC) clock
 - External 32.768 KHz crystal oscillator (LXT) clock (If PD_32K = "1" and XTLCLK_EN[1:0] = "10")
- Peripherals Clock (When these IP adopt 10 KHz as clock source)
 - Watchdog Clock
 - ♦ Timer 0/1 Clock

5.6 Analog-to-Digital Converter (ADC)

5.6.1 Overview

The NuMicro Mini51[™] series contains one 10-bit successive approximation analog-to-digital converters (SAR A/D converter) with 8 input channels. The A/D converters can be started by software and external STADC/P3.2 pin.

Note that the analog input pins must be configured as input type before ADC function is enabled.

5.6.2 Features

- Analog input voltage range: 0 ~ Vref (Max to 5.0 V)
- 10-bit resolution and 8-bit accuracy is guaranteed
- Up to 8 single-end analog input channels
- Maximum ADC clock frequency is 6 MHz
- Up to 150K SPS conversion rate
- An A/D conversion is performed one time on a specified channel
- An A/D conversion can be started by:
 - Software write "1" to ADST bit
 - External pin STADC
- Conversion results are held in data register with valid and overrun indicators
- Conversion results can be compared with specified value and user can select whether to generate an interrupt when conversion results are equal to the compare register settings
- Channel 7 supports 2 input sources: External analog voltage and internal fixed bandgap voltage

5.7 Flash Memory Controller (FMC)

5.7.1 Overview

The NuMicro Mini51[™] series is equipped with 4K/8K/16K bytes on chip embedded Flash EPROM for application program memory (APROM) that can be updated through ISP procedure. In System Programming (ISP) function enables user to update program memory when chip is soldered on PCB. After chip powered on Cortex-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in Config0. By the way, the NuMicro Mini51[™] series also provides DATA Flash Region, where the data flash is shared with original program memory and its start address is configurable and defined by user in Config1. The data flash size is defined by user depending on the application request.

5.7.2 Features

- Compatible with AHB interface
- Running up to 24 MHz with zero wait state for discontinuous address read access
- 4K/8K/16KB application program memory (APROM)
- 2KB in system programming (ISP) loader program memory (LDROM)
- Programmable data flash start address and memory size with 512 bytes page erase unit
- In System Program (ISP) to update on chip Flash EPROM

- Built-in 14-bit time-out counter that requests the I²C interrupt if the I²C bus hangs up and timer-out counter overflows
- External pull-up needed for higher output pull-up speed
- Programmable clocks allowing for versatile rate control
- Supports 7-bit addressing mode
- Supports multiple address recognition (four slave address registers with mask option)

		A=14, B=11	
57600	A=22	A=22, B=15 A=30, B=11	A=382
38400	A=34	A=62, B=8 A=46, B=11 A=34, B=15	A=574
19200	A=70	A=126, B=8 A=94, B=11 A=70, B=15	A=1150
9600	A=142	A=254, B=8 A=190, B=11 A=142, B=15	A=2302
4800	A=286	A=510, B=8 A=382, B=11 A=286, B=15	A=4606

5.13.1.1 Auto-Flow Control

The UART controller supports auto-flow control function that uses two low-level signals, CTSn (clear-to-send) and RTSn (request-to-send), to control the flow of data transfer between the UART and external devices (ex: Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts RTSn to external device. When the number of bytes in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR[19:16]), the RTSn is de-asserted. The UART sends data out when UART controller detects CTSn is asserted from external device. If a validly asserted CTSn is not detected the UART controller will not send data out.

5.13.1.2 IrDA Function Mode

The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (user must set IrDA_EN (UA_FUN_SEL[1:0]) to enable IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. Thus it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10ms transfer delay between transmission and reception. This delay feature must be implemented by software.

5.13.1.3 RS-485 Function Mode

Alternate function of UART controllers is RS-485 9 bit mode function, direction control provided by RTSn pin or can program GPIO (P0.1 for RTSn) to implement the function by software. The RS-485 mode is selected by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 driver control is implemented using the RTSn control signal from an asynchronous serial port to enable the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are the same as UART.

5.13.2 Features

- Full duplex, asynchronous communications
- Separates receive/transmit 16 bytes entry FIFO for data payloads
- Supports hardware auto flow control/flow control function (CTSn, RTSn) and programmable RTSn flow control trigger level
- Programmable receiver buffer trigger level
- Supports programmable baud-rate generator for each channel individually
- Supports CTSn wake-up function
- Supports 7-bit receiver buffer time-out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting UA_TOR[DLY] register
- Supports break error, frame error, parity error and receive/transmit buffer overflow detection function
- Fully programmable serial-interface characteristics
 - Programmable number of data bit, 5, 6, 7, 8 character
 - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
 - Programmable stop bit, 1, 1.5, or 2 stop bit generation
- Supports IrDA SIR function mode
 - Supports 3/16-bit duration for normal mode
- Supports RS-485 function mode
 - Supports RS-485 9-bit mode
 - Supports hardware or software RTSn control or software GPIO control to control transfer direction

DADAMETED	Sum		Speci	fication		
PARAMETER	C y	Min.	TYP.	Max.	Unit	
	I _{IDLE16}		1.2		mA	V _{DD} = 3.3V at 22.1184 MHz, all IP Disabled
	I _{IDLE17}		110		μA	V _{DD} = 5.5V at 32.768 KHz, all IP Enabled
Operating current Idle mode	I _{IDLE18}		107		μΑ	V _{DD} = 5.5V at 32.768 KHz, all IP Disabled
at 32.768 KHz crystal oscillator	I _{IDLE19}		105		μΑ	V _{DD} = 3.3V at 32.768 KHz, all IP Enabled
	I _{IDLE20}		102		μΑ	V _{DD} = 3.3V at 32.768 KHz, all IP Disabled
	I _{IDLE21}		103		μA	V_{DD} = 5.5V at 10 KHz, all IP Enabled
Operating current	I _{IDLE22}		102		μΑ	V_{DD} = 5.5V at 10 KHz, all IP Disabled
at 10 KHz IRC	I _{IDLE23}		96		μA	V _{DD} = 3.3V at 10 KHz, all IP Enabled
	I _{IDLE24}		95		μA	V _{DD} = 3.3V at 10 KHz, all IP Disabled
Standby current	I _{PWD1}		10		μA	V _{DD} = 5.0V, CPU STOP All IP and Clock OFF
Power-down mode	I _{PWD2}		5		μA	V _{DD} = 3.3V, CPU STOP All IP and Clock OFF
Standby current Power-down mode with	I _{PWD3}		12		μΑ	V _{DD} = 5.0V, CPU STOP All IP and Clock OFF except 32.768KHz crystal oscillator
32.768 KHz crystal enabled	I _{PWD4}		7		μΑ	V _{DD} = 3.3V, CPU STOP All IP and Clock OFF except 32.768KHz crystal oscillator
Input current P0~P5 (Quasi-bidirectional mode)	I _{IN1}		-50	-60	μΑ	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{IN} = V_{DD}$
Input current at /RESET ^[1]	I _{IN2}	-55	-45	-30	μΑ	$V_{DD} = 3.3 \text{ V}, V_{IN} = 0.45 \text{ V}$
Input leakage current PA, PB, PC, PD, PE	I _{LK}	-0.1	-	+0.1	μA	$V_{DD} = 5.5 \text{ V}, 0 < V_{IN} < V_{DD}$
Logic 1 to 0 transition current PA~PE (Quasi- bidirectional mode)	I _{TL} ^[3]	-650	-	-200	μΑ	$V_{DD} = 5.5 \text{ V}, \text{ V}_{IN} < 2.0 \text{ V}$
Input low voltage	V _{IL1}	-0.3	-	0.8	V	V _{DD} = 4.5 V

DADAMETED	Sym.		Speci	fication		TEST CONDITIONS	
PARAMETER		Min.	TYP.	Max.	Unit		
P0~P5 (TTL input)		-0.3	-	0.6		V _{DD} = 2.5 V	
Input high voltage	N/	2.0	-	V _{DD} +0.2	V	$V_{DD} = 5.5V$	
P0~P5 (TTL input)	V _{IH1}	1.5	-	V _{DD} +0.2	v	$V_{DD} = 3.0V$	
Input low voltage P0~P5, (Schmitt input)	V_{IL2}		0.4 V _{DD}		V		
Input high voltage P0~P5, (Schmitt input)	V _{IH2}		0.6 V _{DD}		V		
Hysteresis voltage of P0~P5 (Schmitt input)	V_{HY}		0.2 V _{DD}		V		
Input low voltage	.,	0	-	0.8	V	V _{DD} = 4.5V	
XTAL1 ^[*2]	V _{IL3}	0	-	0.4	v	V _{DD} = 3.0V	
Input high voltage		3.5	-	V _{DD} +0.2	V	$V_{DD} = 5.5V$	
XTAL1 ^[*2]	V _{IH3}	2.4	-	V _{DD} +0.2		V _{DD} = 3.0V	
Internal /RESET pin pull-up resistor	R _{RST}	40	-	100	KΩ		
Negative going threshold (Schmitt input), /RESET	V _{ILS}	-0.5	-	0.3 V _{DD}	V		
Positive going threshold (Schmitt input), /RESET	V _{IHS}	0.6 V _{DD}	-	V _{DD} +0. 5	V		
	I _{SR11}	-300	-370	-450	μΑ	$V_{DD} = 4.5V, V_{S} = 2.4V$	
(Quasi-bidirectional	I _{SR12}	-50	-70	-90	μΑ	$V_{DD} = 2.7V, V_{S} = 2.2V$	
mode)	I _{SR12}	-40	-60	-80	μΑ	$V_{DD} = 2.5V, V_{S} = 2.0V$	
	I _{SR21}	-20	-24	-28	mA	$V_{DD} = 4.5V, V_{S} = 2.4V$	
Source current P0~P5, (Push-pull mode)	I _{SR22}	-4	-6	-8	mA	$V_{DD} = 2.7V, V_{S} = 2.2V$	
	I _{SR22}	-3	-5	-7	mA	$V_{DD} = 2.5V, V_{S} = 2.0V$	
Sink ourront DO DE	I _{SK1}	10	16	20	mA	$V_{DD} = 4.5 V, V_{S} = 0.45 V$	
(Quasi-bidirectional and	I _{SK1}	7	10	13	mA	$V_{DD} = 2.7V, V_{S} = 0.45V$	
rusn-pull mode)	I _{SK1}	6	9	12	mA	$V_{DD} = 2.5 V, V_{S} = 0.45 V$	

Notes:

1. /RESET pin is a Schmitt trigger input.

9.3 33-pin QFN (5mm x 5mm)

