

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	· · · · · · · · · · · · · · · · · · ·
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/mini54tan

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 3.1-1 NuMicro Mini51™ Series Product Selection Guide
Figure 3.2-1 NuMicro Mini51™ Series LQFP 48-pin Assignment
Figure 3.2-2 NuMicro Mini51™ Series QFN 33-pin Assignment
Figure 4.1-1 NuMicro Mini51™ Series Block Diagram
Figure 5.3-1 NuMicro Mini51™ Series Power Distribution Diagram
Figure 5.4-1 Clock Generator Block Diagram
Figure 5.4-2 System Clock Block Diagram
Figure 5.4-3 SysTick Clock Control Block Diagram
Figure 5.4-4 AHB Clock Source for HCLK
Figure 5.4-5 Peripherals Clock Source Selection for PCLK
Figure 5.4-6 Clock Source of Frequency Divider
Figure 5.4-7 Block Diagram of Frequency Divider
Figure 5.9-1 Bus Timing
Figure 5.10-1 Application Circuit Diagram
Figure 5.14-1 Timing of Interrupt and Reset Signal
Figure 6.1-1 Functional Block Diagram
Figure 8.3-1 Typical Crystal Application Circuit

2 FEATURES

- Core
 - ◆ ARM[®] Cortex[™]-M0 core running up to 24 MHz
 - One 24-bit system timer
 - Supports low power Idle mode
 - A single-cycle 32-bit hardware multiplier
 - NVIC for 32 interrupt inputs, each with 4-level priority
 - Supports Serial Wire Debug (SWD) with 2 watchpoints/4 breakpoints
- Built-in LDO for Wide Operating Voltage Range: 2.5V to 5.5V
- Memory
 - 4KB/8KB/16KB flash memory for program memory (APROM)
 - Configurable flash memory for data memory (Data Flash)
 - 2KB flash memory for loader (LDROM)
 - 2KB SRAM for internal scratch-pad RAM (SRAM)
- In-System Programming (ISP) and In-Circuit Programming (ICP)
- Clock Control
 - Programmable system clock source
 - Switch clock sources on-the-fly
 - 4 ~ 24 MHz crystal oscillator (HXT)
 - 32.768K crystal oscillator (LXT) for idle wake-up and system operation clock
 - ◆ 22.1184 MHz internal oscillator (HIRC) (1% accuracy at 25⁰C, 5V)
 - Dynamically calibrating the HIRC OSC to 22.0 MHz ±1% from -40°C to 85°C by external 32.768K crystal oscillator (LXT)
 - 10 KHz internal low-power oscillator (LIRC) for watchdog and idle wake-up
- I/O Port
 - Up to 30 GPIO (General Purpose I/O) pins for LQFP-48 package
 - Software-configured I/O type
 - Quasi-bidirectional input/output
 - Push-pull output
 - Open-drain output
 - Input-only (high impendence)
 - Optional Schmitt trigger input
- Timer
 - Two 24-bit Timers with 8-bit prescaler
 - Supports Event Counter mode

Supports Toggle Output mode

NuMicroTM Mini51 Series Data Sheet

- Serial clock synchronization used as a handshake mechanism to suspend and resume serial transfer
- Programmable clocks allowing for versatile rate control
- Supports multiple address recognition (4 slave addresses with mask option)
- ADC (Analog-to-Digital Converter)
 - 10-bit SAR ADC with 150K SPS
 - Up to 8-ch single-end input and one internal input from band-gap
 - Conversion started by software or external pin
- Analog Comparator
 - Two analog comparators with programmable 16-level internal voltage reference
 - Built-in CRV (comparator reference voltage)
- BOD (Brown-Out Detection) Reset
 - Three programmable threshold levels: 3.8V/2.7V/2.0V (default as 2.0V)
 - Optional BOD interrupt or reset
- 96-bit unique ID
- Operating Temperature: -40°C ~85°C
- Packages:
 - Green package (RoHS)
 - LQFP 48-pin (7x7), QFN 33-pin (5x5), QFN 33-pin (4x4)

NuMicroTM Mini51 Series Data Sheet

Pin N	umber			
LQFP 48-pin	QFN 33-pin	Pin Name	Pin Type	Description
		P3.6	I/O	Digital GPIO pin
11	0	CPO0	0	Analog comparator output pin
14	9	СКО	0	Frequency divider output pin
		T1EX	I	Timer 1 external capture/reset trigger input pin
		P5.1	I/O	Digital GPIO pin
15	10	XTAL2	ο	The output pin from the internal inverting amplifier. It emits the inverted signal of XTAL1.
		P5.0	I/O	Digital GPIO pin
16	11	XTAL1	I	The input pin to the internal inverting amplifier. The system clock could be from external crystal or resonator.
17	12	VSS	Р	Ground oin for digital circuit
	33	100	•	
18		LDO_CA P	Р	LDO output pin
				Digital GPIO pin
19		P5.5	I/O	User program must enable pull-up resistor in the QFN-33 package.
20	13	P5.2	I/O	Digital GPIO pin
20		INT1	I	External interrupt 1 input pin
21		NC		Not connected
22	14	P2.2	I/O	Digital GPIO pin
		PWM0	0	PWM0 output of PWM unit
23	15	P2.3	I/O	Digital GPIO pin
20	10	PWM1	0	PWM1 output of PWM unit
24	16	P2.4	I/O	Digital GPIO pin
21	10	PWM2	0	PWM2 output of PWM unit
25	17	P2.5	I/O	Digital GPIO pin
20		PWM3	0	PWM3 output of PWM unit
		P2.6	I/O	Digital GPIO pin
26	18	PWM4	0	PWM4 output of PWM unit
		CPO1	0	Analog comparator output pin
27		NC		Not connected

NuMicro[™] Mini51 Series Data Sheet

Pin Nu	umber			
LQFP 48-pin	QFN 33-pin	Pin Name	Pin Type	Description
28		NC		Not connected
20	10	P4.6	I/O	Digital GPIO pin
29	19	ICE_CLK	I	Serial wired debugger clock pin
20	20	P4.7	I/O	Digital GPIO pin
30	20	ICE_DAT	I/O	Serial wired debugger data pin
31		NC		Not connected
22	21	P0.7	I/O	Digital GPIO pin
32	21	SPICLK	I/O	SPI serial clock pin
22	22	P0.6	I/O	Digital GPIO pin
55	22	MISO	I/O	SPI MISO (master in/slave out) pin
34	23	P0.5	I/O	Digital GPIO pin
54	23	MOSI	0	SPI MOSI (master out/slave in) pin
		P0.4	I/O	Digital GPIO pin
35	24	SPISS	I/O	SPI slave select pin
		PWM5	0	PWM5 output of PWM unit
36		NC		Not connected
		P0.1	I/O	Digital GPIO pin
37	25	RTSn	0	UART RTS pin
57	20	RX	I	UART data receiver input pin
		SPISS	I/O	SPI slave select pin
		P0.0	I/O	Digital GPIO pin
38	26	CTSn	I	UART CTS pin
		тх	0	UART transmitter output pin
39		NC		Not connected
40		NC		Not connected
4 1	27	P5.3	I/O	Digital GPIO pin
וד	21	AIN0	AI	ADC analog input pin
42	28	VDD	Ρ	Power supply for digital circuit
43		AVDD	Р	Power supply for analog circuit
44	29	P1.0	I/O	Digital GPIO pin

NuMicroTM Mini51 Series Data Sheet

nuvoTon

Pin N	umber			
LQFP 48-pin	QFN 33-pin	Pin Name	Pin Type	Description
		AIN1	AI	ADC analog input pin
		P1.2	I/O	Digital GPIO pin
45	30	AIN2	AI	ADC analog input pin
		RX	I	UART data receiver input pin
		P1.3	I/O	Digital GPIO pin
46	31	AIN3	AI	ADC analog input pin
		тх	0	UART transmitter output pin
		P1.4	I/O	Digital GPIO pin
47	32	AIN4	I/O	PWM5: PWM output/Capture input
		CPN0	AI	Analog comparator negative input pin
48		NC		Not connected

Table 3.3-1 NuMicro Mini51™ Series Pin Description

[1] I/O type description: I: input, O: output, I/O: quasi bi-direction, D: open-drain, P: power pin, ST: Schmitt trigger, A: Analog input.

5 FUNCTIONAL DESCRIPTION

5.1 Memory Organization

5.1.1 Overview

The NuMicro Mini51[™] series provides a 4G-byte address space for programmers. The memory locations assigned to each on-chip modules are shown in 錯誤! 找不到參照來源。. The detailed register and memory addressing and programming will be described in the following sections for individual on-chip modules. The NuMicro Mini51[™] series only supports little-endian data format.

Fault".

Exception Name	Exception Number	Priority
Reset	1	-3
NMI	2	-2
Hard Fault	3	-1
Reserved	4 ~ 10	Reserved
SVCall	11	Configurable
Reserved	12 ~ 13	Reserved
PendSV	14	Configurable
SysTick	15	Configurable
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable

Table 5.2-1 Exception Model

Exception Number	IRQ Number (Bit in Interrupt Registers)	Exception Name	Source IP	Exception Description	Power-down Wake-up
1 ~ 15	-	-	-	System exceptions	-
16	0	BOD_OUT	Brown-out	Brown-out low voltage detected interrupt	Yes
17	1	WDT_INT	WDT	Watchdog Timer interrupt	Yes
18	2	EINT0	GPIO	External signal interrupt from P3.2 pin	Yes
19	3	EINT1	GPIO	External signal interrupt from P5.2 pin	Yes
20	4	GP0/1_INT	GPIO	External signal interrupt from GPIO group P0~P1	Yes
21	5	GP2/3/4_INT	GPIO	External signal interrupt from GPIO group P2~P4 except P3.2	Yes
22	6	PWM_INT	PWM	PWM interrupt	No
23	7	BRAKE_INT	PWM	PWM interrupt	No
24	8	TMR0_INT	TMR0	Timer 0 interrupt	Yes
25	9	TMR1_INT	TMR1	Timer 1 interrupt	Yes
26 ~ 27	10 ~ 11	-	-	-	
28	12	UART_INT	UART	UART interrupt	Yes
29	13	-	-	-	

Exception Number	IRQ Number (Bit in Interrupt Registers)	Exception Name	Source IP	Exception Description	Power-down Wake-up
30	14	SPI_INT	SPI	SPI interrupt	No
31	15	-	-	-	
32	16	GP5_INT	GPIO	External signal interrupt from GPIO group P5 except P5.2	Yes
33	17	HFIRC_TRIM _INT	HFIRC	HFIRC trim interrupt	No
34	18	I2C_INT	I ² C	I ² C interrupt	No
35 ~ 40	19 ~ 24	-	-	-	
41	25	ACMP_INT	ACMP	Analog Comparator 0 or 1 interrupt	Yes
42 ~ 43	26 ~ 27	-	-	-	
44	28	PWRWU_INT	CLKC	Clock controller interrupt for chip wake-up from Power-down state	Yes
45	29	ADC_INT	ADC	ADC interrupt	No
46 ~ 47	30 ~ 31	-	-	-	

Table 5.2-2 System	Interrupt I	Иар
--------------------	-------------	-----

5.2.4 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table based address is fixed at 0x0000_0000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with the exception handler entry as illustrated in the previous section.

Vector Table Word Offset (Bytes)	Description
0x00	Initial Stack Pointer Value
Exception Number × 0x04	Exception Entry Pointer using that Exception Number

Table 5.2-3 Vector Table Format

5.2.5 NVIC Operation

NVIC interrupts can be enabled or disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-toclear policy, and both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending; however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in the next section.

5.3 System Manager

5.3.1 Overview

The following functions are included in the system manager section:

- System Memory Map
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System management registers for product ID
- System management registers for chip and module functional reset and multi-function pin control
- Brown-out and chip miscellaneous Control Register
- Combined peripheral interrupt source identify

5.3.2 System Reset

The system reset includes one of the following as the event occurs. For these reset events flags can be read by RSTSRC register.

- Power-On Reset (POR)
- Low level on the /RESET pin
- Watchdog Time-out Reset (WDT)
- Brown-out Detected Reset (BOD)
- Cortex[™]-M0 CPU Reset
- Software one shot Reset

5.3.3 System Power Distribution

In this device, the power distribution is divided into three segments.

- Analog power from AVDD and AVSS supplies power for analog module operation
- Digital power from VDD and VSS supplies power to the internal regulator which provides a fixed 1.8V power for digital operation and I/O pins
- Built-in capacitor for internal voltage regulator

The output of internal voltage regulator, LDO_CAP, requires an external capacitor which should be located close to the corresponding pin. 錯誤! 找不到參照來源。 shows the power architecture of this device.

5.6 Analog-to-Digital Converter (ADC)

5.6.1 Overview

The NuMicro Mini51[™] series contains one 10-bit successive approximation analog-to-digital converters (SAR A/D converter) with 8 input channels. The A/D converters can be started by software and external STADC/P3.2 pin.

Note that the analog input pins must be configured as input type before ADC function is enabled.

5.6.2 Features

- Analog input voltage range: 0 ~ Vref (Max to 5.0 V)
- 10-bit resolution and 8-bit accuracy is guaranteed
- Up to 8 single-end analog input channels
- Maximum ADC clock frequency is 6 MHz
- Up to 150K SPS conversion rate
- An A/D conversion is performed one time on a specified channel
- An A/D conversion can be started by:
 - Software write "1" to ADST bit
 - External pin STADC
- Conversion results are held in data register with valid and overrun indicators
- Conversion results can be compared with specified value and user can select whether to generate an interrupt when conversion results are equal to the compare register settings
- Channel 7 supports 2 input sources: External analog voltage and internal fixed bandgap voltage

Figure 5.10-1 Application Circuit Diagram

5.11 Serial Peripheral Interface (SPI) Controller

5.11.1 Overview

The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol which operates in full duplex mode. Devices communicate in Master/Slave mode with 4-wire bi-direction interface. NuMicro Mini51[™] series contain one set of SPI controller performing a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. SPI controller can be set as a master; it also can be set as a slave controlled by an off-chip master device.

5.11.2 Features

- Supports Master or Slave mode operation
- MSB or LSB first transfer
- Byte or word Suspend mode
- Variable output serial clock frequency in Master mode
- Supports two programmable serial clock frequencies in Master mode

5.13 UART Interface Controller

The NuMicro Mini51[™] series provides one channel of Universal Asynchronous Receiver/Transmitters (UART). UART performs Normal Speed UART, and support flow control function.

5.13.1 Overview

The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the CPU. The UART controller also supports IrDA SIR function, and RS-485 mode functions. Each UART channel supports six types of interrupts, including transmitter FIFO empty interrupt (INT_THRE), receiver threshold level reaching interrupt (INT_RDA), line status interrupt (parity error or framing error or break interrupt) (INT_RLS), receiver buffer time-out interrupt (INT_TOUT), MODEM/Wake-up status interrupt (INT_MODEM), and Buffer error interrupt (INT_BUF_ERR). Interrupt number 12 (vector number is 28) supports UART interrupt. Refer to Nested Vectored Interrupt Controller chapter for System Interrupt Map.

The UART is built-in with a 16-byte transmitter FIFO (TX_FIFO) and a 16-byte receiver FIFO (RX_FIFO) that reduces the number of interrupts presented to the CPU and the CPU can read the status of the UART at any time during the operation. The reported status information includes the type and condition of the transfer operations being performed by the UART, as well as 4 error conditions (parity error, framing error, break interrupt and buffer error) probably occur while receiving data. The UART includes a programmable baud rate generator that is capable of dividing crystal clock input by divisors to produce the clock that transmitter and receiver need. The baud rate equation is Baud Rate = UART_CLK / M * [BRD + 2], where M and BRD are defined in Baud Rate Divider Register (UA_BAUD). The following table lists the equations in the various conditions and the UART baud rate setting table.

Mode	DIV_X_EN	DIV_X_ONE	Divider X	BRD	Baud Rate Equation
0	0	0	В	А	UART_CLK / [16 * (A+2)]
1	1	0	В	А	UART_CLK / [(B+1) * (A+2)] , B must >= 8
2	1	1	Don't care	A	UART_CLK / (A+2), A must >=3

Table 5.13-1 UART Baud Rate Setting Tabl
--

Table 5.13-2 UART Baud Rate Setting Table

System clock = 22.1184 MHz								
Baud rate	Mode0	Mode1	Mode2					
921600	Not Support	A=0, B=11	A=22					
460800	A=1	A=1, B=15 A=2, B=11	A=46					
230400	A=4	A=4, B=15 A=6, B=11	A=94					
115200	A=10	A=10, B=15	A=190					

DADAMETED	Sym.	Specification				
PARAMETER		Min.	TYP.	Max.	Unit	
	I _{IDLE16}		1.2		mA	V _{DD} = 3.3V at 22.1184 MHz, all IP Disabled
	I _{IDLE17}		110		μA	V _{DD} = 5.5V at 32.768 KHz, all IP Enabled
Operating current Idle mode	I _{IDLE18}		107		μΑ	V _{DD} = 5.5V at 32.768 KHz, all IP Disabled
at 32.768 KHz crystal oscillator	I _{IDLE19}		105		μΑ	V _{DD} = 3.3V at 32.768 KHz, all IP Enabled
	I _{IDLE20}		102		μΑ	V _{DD} = 3.3V at 32.768 KHz, all IP Disabled
	I _{IDLE21}		103		μA	V_{DD} = 5.5V at 10 KHz, all IP Enabled
Operating current	I _{IDLE22}		102		μΑ	V_{DD} = 5.5V at 10 KHz, all IP Disabled
at 10 KHz IRC	I _{IDLE23}		96		μA	V _{DD} = 3.3V at 10 KHz, all IP Enabled
	I _{IDLE24}		95		μA	V _{DD} = 3.3V at 10 KHz, all IP Disabled
Standby current	I _{PWD1}		10		μA	V _{DD} = 5.0V, CPU STOP All IP and Clock OFF
Power-down mode	I _{PWD2}		5		μA	V _{DD} = 3.3V, CPU STOP All IP and Clock OFF
Standby current Power-down mode with	I _{PWD3}		12		μΑ	V _{DD} = 5.0V, CPU STOP All IP and Clock OFF except 32.768KHz crystal oscillator
32.768 KHz crystal enabled	I _{PWD4}		7		μΑ	V _{DD} = 3.3V, CPU STOP All IP and Clock OFF except 32.768KHz crystal oscillator
Input current P0~P5 (Quasi-bidirectional mode)	I _{IN1}		-50	-60	μΑ	$V_{DD} = 5.5 \text{ V}, \text{ V}_{IN} = 0 \text{ V or } \text{V}_{IN} = \text{V}_{DD}$
Input current at /RESET ^[1]	I _{IN2}	-55	-45	-30	μΑ	$V_{DD} = 3.3 \text{ V}, V_{IN} = 0.45 \text{ V}$
Input leakage current PA, PB, PC, PD, PE	I _{LK}	-0.1	-	+0.1	μA	$V_{DD} = 5.5 \text{ V}, 0 < V_{IN} < V_{DD}$
Logic 1 to 0 transition current PA~PE (Quasi- bidirectional mode)	I _{TL} ^[3]	-650	-	-200	μΑ	$V_{DD} = 5.5 \text{ V}, \text{ V}_{IN} < 2.0 \text{ V}$
Input low voltage	V _{IL1}	-0.3	-	0.8	V	V _{DD} = 4.5 V

nuvoton

8.4.6 Flash Memory Characteristics

DADAMETED	Sym.	Specification				
		Min.	TYP.	Max.	Unit	TEST CONDITIONS
Cycling (erase/write)		100			K cycle	
Program memory	N _{CYC}					
Data retention	T _{RET}	10			years	$T_A = +85^{\circ}C$
Erase time of ISP mode	T _{ERASE}	2.3	2.5	2.7	mS	Erase time for one page
Program time of ISP mode	T _{PROG}	57	62	67	μS	Programming time for one word
Program current	I _{PROG}		3.3		mA	$V_{DD} = 5.5 V$

9.2 33-pin QFN (4mm x 4mm)

9.3 33-pin QFN (5mm x 5mm)

