

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	88
Number of Logic Elements/Cells	880
Total RAM Bits	-
Number of I/O	71
Number of Gates	-
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf6010atc100-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

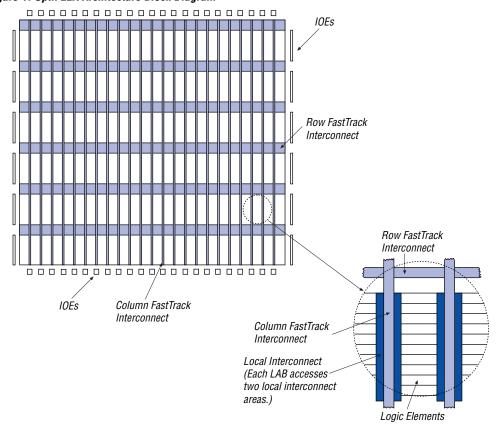


Figure 1. OptiFLEX Architecture Block Diagram

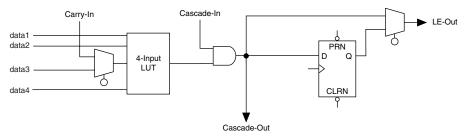
FLEX 6000 devices provide four dedicated, global inputs that drive the control inputs of the flipflops to ensure efficient distribution of high-speed, low-skew control signals. These inputs use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect. These inputs can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device. The dedicated global routing structure is built into the device, eliminating the need to create a clock tree.

Logic Array Block

An LAB consists of ten LEs, their associated carry and cascade chains, the LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 6000 architecture, and facilitates efficient routing with optimum device utilization and high performance.

Carry Chain

The carry chain provides a very fast (0.1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 6000 architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Altera software during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains for the appropriate functions.


Because the first LE of each LAB can generate control signals for that LAB, the first LE in each LAB is not included in carry chains. In addition, the inputs of the first LE in each LAB may be used to generate synchronous clear and load enable signals for counters implemented with carry chains.

Carry chains longer than nine LEs are implemented automatically by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from an even-numbered LAB to another even-numbered LAB, or from an odd-numbered LAB to another odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the second LE of the third LAB in the row. In addition, the carry chain does not cross the middle of the row. For instance, in the EPF6016 device, the carry chain stops at the 11th LAB in a row and a new carry chain begins at the 12th LAB.

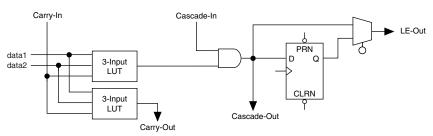

Figure 5 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. Although the register can be bypassed for simple adders, it can be used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the FastTrack Interconnect.

Figure 7. LE Operating Modes

Normal Mode

Arithmetic Mode

Notes:

- (1) The register feedback multiplexer is available on LE 2 of each LAB.
- (2) The data1 and data2 input signals can supply a clock enable, up or down control, or register feedback signals for all LEs other than the second LE in an LAB.
- 3) The LAB-wide synchronous clear and LAB-wide synchronous load affect all registers in an LAB.

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The Altera software automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 7, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

The Altera software implements logic functions to use the arithmetic mode automatically where appropriate; the designer does not have to decide how the carry chain will be used.

Counter Mode

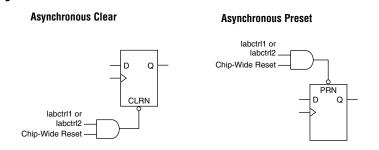
The counter mode offers counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in a LAB use counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. In addition, the Altera software automatically places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load will override any signal carried on the cascade chain. The synchronous clear overrides the synchronous load.

Either the counter enable or the up/down control may be used for a given counter. Moreover, the synchronous load can be used as a count enable by routing the register output into the data input automatically when requested by the designer.

The second LE of each LAB has a special function for counter mode; the carry-in of the LE can be driven by a fast feedback path from the register. This function gives a faster counter speed for counter carry chains starting in the second LE of an LAB.

The Altera software implements functions to use the counter mode automatically where appropriate. The designer does not have to decide how the carry chain will be used.


Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE register has an asynchronous clear that can implement an asynchronous preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear or preset. Because the clear and preset functions are active-low, the Altera software automatically assigns a logic high to an unused clear or preset signal. The clear and preset logic is implemented in either the asynchronous clear or asynchronous preset mode, which is chosen during design entry (see Figure 8).

Figure 8. LE Clear & Preset Modes

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2.

Asynchronous Preset

An asynchronous preset is implemented with an asynchronous clear. The Altera software provides preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, this technique can be used when a register drives logic or drives a pin.

In addition to the two clear and preset modes, FLEX 6000 devices provide a chip-wide reset pin (DEV_CLRn) that can reset all registers in the device. The option to use this pin is set in the Altera software before compilation. The chip-wide reset overrides all other control signals. Any register with an asynchronous preset will be preset when the chip-wide reset is asserted because of the inversion technique used to implement the asynchronous preset.

The Altera software can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses an additional three LEs per register.

FastTrack Interconnect

In the FLEX 6000 OptiFLEX architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even for complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

Each LE FastTrack Interconnect output can drive six row channels. Each local channel driven by an LE can Each LE output signal driving drive two column the FastTrack Interconnect can channels. drive two column channels. At each intersection, four row channels can Row drive column channels. Interconnect Each local channel driven by an LE can drive four row channels. Row interconnect drives the local interconnect. From Adjacent Local Interconnect Local Interconnect Column Interconnect Any column channel can drive six row channels.

Figure 10. LAB Connections to Row & Column Interconnects

For improved routability, the row interconnect consists of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-length channel, which saves the other half of the channel for the other half of the row. One-third of the row channels are half-length channels.

20 Altera Corporation

An LE can be driven by any signal from two local interconnect areas.

MultiVolt I/O Interface

The FLEX 6000 device architecture supports the MultiVolt I/O interface feature, which allows FLEX 6000 devices to interface with systems of differing supply voltages. The EPF6016 device can be set for 3.3-V or 5.0-V I/O pin operation. This device has one set of $V_{\rm CC}$ pins for internal operation and input buffers (VCCINT), and another set for output drivers (VCCIO).

The VCCINT pins on 5.0-V FLEX 6000 devices must always be connected to a 5.0-V power supply. With a 5.0-V V_{CCINT} level, input voltages are at TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs.

The VCCIO pins on 5.0-V FLEX 6000 devices can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels lower than 4.75 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} .

On 3.3-V FLEX 6000 devices, the VCCINT pins must be connected to a 3.3-V power supply. Additionally, 3.3-V FLEX 6000A devices can interface with 2.5-V, 3.3-V, or 5.0-V systems when the VCCIO pins are tied to 2.5 V. The output can drive 2.5-V systems, and the inputs can be driven by 2.5-V, 3.3-V, or 5.0-V systems. When the VCCIO pins are tied to 3.3 V, the output can drive 3.3-V or 5.0-V systems. MultiVolt I/Os are not supported on 100-pin TQFP or 100-pin FineLine BGA packages.

Table 7 d	lescribes	FLFX 600	MultiV	/olt I/	O suppoi	rt
Table / G	ICSCITUCS.		o widiu	OILI	O Subboi	ι.

Table 7. FLEX 6000 MultiVolt I/O Support							
V _{CCINT} V _{CCIO} Input Signal (V) Output Signal (V)					l (V)		
(V)	(V)	2.5	3.3	5.0	2.5	3.3	5.0
3.3	2.5	v	V	v	V		
3.3	3.3	v	v	v	v (1)	v	v
5.0	3.3		v	v		v	v
5.0	5.0		V	v			V

Note:

(1) When $V_{\rm CCIO} = 3.3~{\rm V}$, a FLEX 6000 device can drive a 2.5-V device that has 3.3-V tolerant inputs.

Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with V_{CCIO} = 3.3 V or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing

Because FLEX 6000 family devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $\rm V_{CCIO}$ and $\rm V_{CCINT}$ power planes can be powered in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during power up without damaging the device. Additionally, FLEX 6000 devices do not drive out during power up. Once operating conditions are reached, FLEX 6000 devices operate as specified by the user.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All FLEX 6000 devices provide JTAG BST circuitry that comply with the IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for FLEX 6000 devices. JTAG BST can be performed before or after configuration, but not during configuration (except when you disable JTAG support in user mode).

See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST circuitry.

Table 8. FLEX 6000 JTAG Instructions			
JTAG Instruction	Description		
SAMPLE/PRELOAD	Allows a snapshot of the signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.		
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test result at the input pins.		
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through the selected device to adjacent devices during normal device operation.		

Table 1	Table 13. FLEX 6000 5.0-V Device DC Operating Conditions Notes (5), (6)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IH}	High-level input voltage		2.0		V _{CCINT} + 0.5	٧		
V _{IL}	Low-level input voltage		-0.5		0.8	V		
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V } (7)$	2.4			٧		
	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	2.4			٧		
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	V _{CCIO} - 0.2			٧		
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 8 mA DC, V _{CCIO} = 4.75 V (8)			0.45	٧		
	3.3-V low-level TTL output voltage	I_{OL} = 8 mA DC, V_{CCIO} = 3.00 V (8)			0.45	٧		
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$			0.2	٧		
I _I	Input pin leakage current	V _I = V _{CC} or ground (8)	-10		10	μΑ		
I _{OZ}	Tri-stated I/O pin leakage current	V _O = V _{CC} or ground (8)	-40		40	μΑ		
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	5	mA		

Table 1	Table 14. FLEX 6000 5.0-V Device Capacitance Note (9)					
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance for I/O pin	V _{IN} = 0 V, f = 1.0 MHz		8	pF	
C _{INCLK}	Input capacitance for dedicated input	V _{IN} = 0 V, f = 1.0 MHz		12	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF	

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.

- (4) Maximum V_{CC} rise time to 100 ms. V_{CC} must rise monotonically.
 (5) Typical values are for T_A = 25° C and V_{CC} = 5.0 V.
 (6) These values are specified under the FLEX 6000 Recommended Operating Conditions shown in Table 12 on page 31. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (9) Capacitance is sample-tested only.

Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1)						
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V	
V _I	DC input voltage		-2.0	5.75	٧	
I _{OUT}	DC output current, per pin		-25	25	mA	
T _{STG}	Storage temperature	No bias	-65	150	° C	
T _{AMB}	Ambient temperature	Under bias	-65	135	° C	
T _J	Junction temperature	PQFP, PLCC, and BGA packages		135	° C	

Table 16. FLEX 6000 3.3-V Device Recommended Operating Conditions						
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	3.00 (3.00)	3.60 (3.60)	V	
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V	
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.30 (2.30)	2.70 (2.70)	V	
VI	Input voltage		-0.5	5.75	٧	
Vo	Output voltage		0	V _{CCIO}	V	
T_J	Operating temperature	For commercial use	0	85	° C	
		For industrial use	-40	100	°C	
t _R	Input rise time			40	ns	
t _F	Input fall time			40	ns	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		1.7		5.75	٧
V _{IL}	Low-level input voltage		-0.5		0.8	٧
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	V _{CCIO} - 0.2			V
	2.5-V high-level output voltage	$I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V (7)$	2.1			٧
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (7)	2.0			٧
		$I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V}$ (7)	1.7			٧
V _{OL}	3.3-V low-level TTL output voltage	I_{OL} = 8 mA DC, V_{CCIO} = 3.00 V (8)			0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$			0.2	V
	2.5-V low-level output voltage	$I_{OL} = 100 \mu A DC, V_{CCIO} = 2.30 V (8)$			0.2	٧
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8)			0.4	٧
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8)			0.7	٧
I _I	Input pin leakage current	V _I = 5.3 V to ground (8)	-10		10	μΑ
l _{OZ}	Tri-stated I/O pin leakage current	$V_O = 5.3 \text{ V to ground } (8)$	-10		10	μΑ
Icco	V _{CC} supply current (standby)	V _I = ground, no load		0.5	5	mA

Table 1	Table 18. FLEX 6000 3.3-V Device CapacitanceNote (9)					
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance for I/O pin	V _{IN} = 0 V, f = 1.0 MHz		8	pF	
C _{INCLK}	Input capacitance for dedicated input	$V_{IN} = 0 V$, $f = 1.0 MHz$		12	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF	

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) The minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.

- (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
 (5) Typical values are for T_A = 25° C and V_{CC} = 3.3 V.
 (6) These values are specified under Table 16 on page 33.
 (7) The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (9) Capacitance is sample-tested only.

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay ($t_{CO} + t_{REG_TO_OUT}$)
- Routing delay $(t_{ROW} + t_{LOCAL})$
- LE LUT delay ($t_{DATA_TO_REG}$)
- LE register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Timing simulation and delay prediction are available with the Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 19 shows the overall timing model, which maps the possible routing paths to and from the various elements of the FLEX 6000 device.

Symbol	Parameter	Conditions
t _{OD1}	Output buffer and pad delay, slow slew rate = off, V _{CCIO} = V _{CCINT}	C1 = 35 pF (2)
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V _{CCIO} = low voltage	C1 = 35 pF (3)
t _{OD3}	Output buffer and pad delay, slow slew rate = on	C1 = 35 pF (4)
t_{XZ}	Output buffer disable delay	C1 = 5 pF
t _{ZX1}	Output buffer enable delay, slow slew rate = off, V _{CCIO} = V _{CCINT}	C1 = 35 pF (2)
t_{ZX2}	Output buffer enable delay, slow slew rate = off, V _{CCIO} = low voltage	C1 = 35 pF (3)
t _{ZX3}	IOE output buffer enable delay, slow slew rate = on	C1 = 35 pF (4)
t _{IOE}	Output enable control delay	
t _{IN}	Input pad and buffer to FastTrack Interconnect delay	
t _{IN_DELAY}	Input pad and buffer to FastTrack Interconnect delay with additional delay turned on	

Table 21. Interconnect Timing Microparameters Note (1)				
Symbol	Parameter	Conditions		
t _{LOCAL}	LAB local interconnect delay			
t _{ROW}	Row interconnect routing delay	(5)		
t _{COL}	Column interconnect routing delay	(5)		
t _{DIN_D}	Dedicated input to LE data delay	(5)		
t _{DIN_C}	Dedicated input to LE control delay			
t _{LEGLOBAL}	LE output to LE control via internally-generated global signal delay	(5)		
t _{LABCARRY}	Routing delay for the carry-out of an LE driving the carry-in signal of a different LE in a different LAB			
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB			

Table 22. External Reference Timing Parameters					
Symbol	Parameter	Conditions			
t ₁	Register-to-register test pattern	(6)			
t _{DRR}	Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects	(7)			

Table 23. External Timing Parameters						
Symbol	Parameter	Conditions				
t _{INSU}	Setup time with global clock at LE register	(8)				
t _{INH}	Hold time with global clock at LE register	(8)				
t _{оитсо}	Clock-to-output delay with global clock with LE register using FastFLEX I/O pin	(8)				

Notes to tables:

- Microparameters are timing delays contributed by individual architectural elements and cannot be measured explicitly.
- (2) Operating conditions:
 - $\hat{V_{CCIO}} = \widecheck{5}.0~V \pm 5\%$ for commercial use in 5.0-V FLEX 6000 devices.
 - $V_{CCIO} = 5.0 \text{ V} \pm 10\%$ for industrial use in 5.0-V FLEX 6000 devices.
 - $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in 3.3-V FLEX 6000 devices.
- (3) Operating conditions:
 - $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in 5.0-V FLEX 6000 devices.
 - V_{CCIO} = 2.5 V ±0.2 V for commercial or industrial use in 3.3-V FLEX 6000 devices.
- (4) Operating conditions:
 - $V_{\text{CCIO}} = 2.5 \text{ V}, 3.3 \text{ V}, \text{ or } 5.0 \text{ V}.$
- (5) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.
- (6) This timing parameter shows the delay of a register-to-register test pattern and is used to determine speed grades. There are 12 LEs, including source and destination registers. The row and column interconnects between the registers vary in length.
- 7) This timing parameter is shown for reference and is specified by characterization.
- (8) This timing parameter is specified by characterization.

Tables 24 through 28 show the timing information for EPF6010A and EPF6016A devices.

Parameter			Speed	Grade			Unit
	_	-1		-2		3	=
	Min	Max	Min	Max	Min	Max	
treg_to_reg		1.2		1.3		1.7	ns
t _{CASC_TO_REG}		0.9		1.0		1.2	ns
t _{CARRY_TO_REG}		0.9		1.0		1.2	ns
^t DATA_TO_REG		1.1		1.2		1.5	ns
tcasc_to_out		1.3		1.4		1.8	ns
t _{CARRY_TO_OUT}		1.6		1.8		2.3	ns
t _{DATA_TO_OUT}		1.7		2.0		2.5	ns
t _{REG_TO_OUT}		0.4		0.4		0.5	ns
t _{SU}	0.9		1.0		1.3		ns
t _H	1.4		1.7		2.1		ns

Parameter		Speed Grade					
	-	1	-2		-3		1
	Min	Max	Min	Max	Min	Max	
t _{co}		0.3		0.4		0.4	ns
t _{CLR}		0.4		0.4		0.5	ns
t _C		1.8		2.1		2.6	ns
t _{LD_CLR}		1.8		2.1		2.6	ns
tCARRY_TO_CARRY		0.1		0.1		0.1	ns
tREG_TO_CARRY		1.6		1.9		2.3	ns
tDATA_TO_CARRY		2.1		2.5		3.0	ns
tCARRY_TO_CASC		1.0		1.1		1.4	ns
t _{CASC_TO_CASC}		0.5		0.6		0.7	ns
tREG_TO_CASC		1.4		1.7		2.1	ns
t _{DATA_TO_CASC}		1.1		1.2		1.5	ns
^t ch	2.5		3.0		3.5		ns
^t CL	2.5		3.0		3.5		ns

Parameter		Speed Grade					
	-1		-2		-3		1
	Min	Max	Min	Max	Min	Max	
t _{OD1}		1.9		2.2		2.7	ns
t _{OD2}		4.1		4.8		5.8	ns
t _{OD3}		5.8		6.8		8.3	ns
t_{XZ}		1.4		1.7		2.1	ns
t _{XZ1}		1.4		1.7		2.1	ns
t _{XZ2}		3.6		4.3		5.2	ns
t _{XZ3}		5.3		6.3		7.7	ns
t _{IOE}		0.5		0.6		0.7	ns
t _{IN}		3.6		4.1		5.1	ns
^t IN DELAY		4.8		5.4		6.7	ns

Tables 29 through 33 show the timing information for EPF6016 devices.

Parameter	Speed Grade					
	-2		-3			
	Min	Max	Min	Max		
t _{REG_TO_REG}		2.2		2.8	ns	
t _{CASC_TO_REG}		0.9		1.2	ns	
t _{CARRY_TO_REG}		1.6		2.1	ns	
t _{DATA_TO_REG}		2.4		3.0	ns	
t _{CASC_TO_OUT}		1.3		1.7	ns	
t _{CARRY_TO_OUT}		2.4		3.0	ns	
t _{DATA_TO_OUT}		2.7		3.4	ns	
t _{REG_TO_OUT}		0.3		0.5	ns	
t_{SU}	1.1		1.6		ns	
t _H	1.8		2.3		ns	
t_{CO}		0.3		0.4	ns	
t _{CLR}		0.5		0.6	ns	
t_C		1.2		1.5	ns	
t _{LD_CLR}		1.2		1.5	ns	
t _{CARRY_TO_CARRY}		0.2		0.4	ns	
t _{REG_TO_CARRY}		0.8		1.1	ns	
t _{DATA_TO_CARRY}		1.7		2.2	ns	
t _{CARRY_TO_CASC}		1.7		2.2	ns	
t _{CASC_TO_CASC}		0.9		1.2	ns	
t _{REG_TO_CASC}		1.6		2.0	ns	
t _{DATA_TO_CASC}		1.7		2.1	ns	
t _{CH}	4.0		4.0		ns	
t_{CL}	4.0		4.0		ns	

Parameter	Speed Grade					
	-2		-3			
	Min	Max	Min	Max		
t _{OD1}		2.3		2.8	ns	
t _{OD2}		4.6		5.1	ns	

Table 38. Externa	l Timing Paran	neters for E	PF6024A Devi	es			
Parameter			Speed 0	irade			Unit
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.0 (1)		2.2 (1)		2.6 (1)		ns
t _{INH}	0.2 (2)		0.2 (2)		0.3 (2)		ns
t _{outco}	2.0	7.4	2.0	8.2	2.0	9.9	ns

Notes:

- (1) Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off.
- (2) Hold time is zero when the *Increase Input Delay* option is turned on.

Power Consumption

The supply power (P) for FLEX 6000 devices can be calculated with the following equations:

$$\begin{array}{ll} P &=& P_{INT} + P_{IO} \\ P &=& (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO} \end{array}$$

Typical $I_{CCSTANDBY}$ values are shown as I_{CC0} in the "FLEX 6000 Device DC Operating Conditions" table on pages 31 and 33 of this data sheet. The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.

The I_{CCACTIVE} value can be calculated with the following equation:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$

Where:

 f_{MAX} = Maximum operating frequency in MHz

N = Total number of LEs used in a FLEX 6000 device tog_{LC} = Average percentage of LEs toggling at each clock

(typically 12.5%)

K = Constant, shown in Table 39

Table 39. K Constant Values				
Device	K Value			
EPF6010A	14			
EPF6016	88			
EPF6016A	14			
EPF6024A	14			

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in the power calculation equations shown above) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results, compared to measured power consumption for an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: (888) 3-ALTERA lit_req@altera.com Altera, BitBlaster, ByteBlasterMV, FastFlex, FastTrack, FineLine BGA, FLEX, MasterBlaster, MAX+PLUS II, MegaCore, MultiVolt, OptiFLEX, Quartus, SameFrame, and specific device designations are trademarks and/or service marks of Altera Corporation in the United States and other countries. Altera acknowledges the trademarks of other organizations for their respective products or services mentioned in this document, specifically: Verilog is a registered trademark of and Verilog-XL is a trademarks of Cadence Design Systems, Inc. DATA I/O is a registered trademark of Data I/O Corporation. HP is a registered trademark of Hewlett-Packard Company. Exemplar Logic is a registered trademark of Exemplar Logic, Inc. Pentium is a registered trademark of Intel Corporation. Mentor Graphics is a registered trademark of Mentor Graphics Corporation. OrCAD is a registered trademark of OrCAD Systems, Corporation. SPARCstation is a registered trademark of SPARC International, Inc. and is licensed exclusively to Sun Microsystems, Inc. Sun Workstation is a registered trademark of Orcademark of Synopsys is a registered trademark and DesignTime, HDL Compiler, and DesignWare are trademarks of Synopsys, Inc. VeriBest is a registered trademark of Viewlogic Systems, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out

services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Copyright © 2001 Altera Corporation. All rights reserved.

52 Altera Corporation

Printed on Recycled Paper.