E·XFL

Intel - EPF6010ATC100-2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	88
Number of Logic Elements/Cells	880
Total RAM Bits	-
Number of I/O	71
Number of Gates	10000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf6010atc100-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4. FLEX 6000 Device Performance for Complex Designs Note (1)					
Application LEs Used Performance Units					Units
		-1 Speed Grade	-2 Speed Grade	-3 Speed Grade	
8-bit, 16-tap parallel finite impulse response (FIR) filter	599	94	80	72	MSPS
8-bit, 512-point fast Fourier transform (FFT) function	1,182	75 63	89 53	109 43	μS MHz
a16450 universal asynchronous receiver/transmitter (UART)	487	36	30	25	MHz
PCI bus target with zero wait states	609	56	49	42	MHz

Table 4 shows FLEX 6000 performance for more complex designs.

Note:

(1) The applications in this table were created using Altera MegaCoreTM functions.

FLEX 6000 devices are supported by Altera development systems; a single, integrated package that offers schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use devicespecific features such as carry chains which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development systems include DesignWare functions that are optimized for the FLEX 6000 architecture.

The Altera development system runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800.

f See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet for more information.

The interleaved LAB structure—an innovative feature of the FLEX 6000 architecture—allows each LAB to drive two local interconnects. This feature minimizes the use of the FastTrack Interconnect, providing higher performance. An LAB can drive 20 LEs in adjacent LABs via the local interconnect, which maximizes fitting flexibility while minimizing die size. See Figure 2.

In most designs, the registers only use global clock and clear signals. However, in some cases, other clock or asynchronous clear signals are needed. In addition, counters may also have synchronous clear or load signals. In a design that uses non-global clock and clear signals, inputs from the first LE in an LAB are re-routed to drive the control signals for that LAB. See Figure 3.

Figure 2. Logic Array Block

FLEX 6000 Programmable Logic Device Family Data Sheet

Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock and clear control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the outputs of the LE. The LE output can drive both the local interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equivalent comparators with minimum delay. Carry and cascade chains connect LEs 2 through 10 in an LAB and all LABs in the same half of the row. Because extensive use of carry and cascade chains can reduce routing flexibility, these chains should be limited to speed-critical portions of a design.

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The Altera software automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 7, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

The Altera software implements logic functions to use the arithmetic mode automatically where appropriate; the designer does not have to decide how the carry chain will be used.

Counter Mode

The counter mode offers counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in a LAB use counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. In addition, the Altera software automatically places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load will override any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. Either the counter enable or the up/down control may be used for a given counter. Moreover, the synchronous load can be used as a count enable by routing the register output into the data input automatically when requested by the designer.

The second LE of each LAB has a special function for counter mode; the carry-in of the LE can be driven by a fast feedback path from the register. This function gives a faster counter speed for counter carry chains starting in the second LE of an LAB.

The Altera software implements functions to use the counter mode automatically where appropriate. The designer does not have to decide how the carry chain will be used.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE register has an asynchronous clear that can implement an asynchronous preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear or preset. Because the clear and preset functions are active-low, the Altera software automatically assigns a logic high to an unused clear or preset signal. The clear and preset logic is implemented in either the asynchronous clear or asynchronous preset mode, which is chosen during design entry (see Figure 8).

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2.

Asynchronous Preset

An asynchronous preset is implemented with an asynchronous clear. The Altera software provides preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, this technique can be used when a register drives logic or drives a pin.

In addition to the two clear and preset modes, FLEX 6000 devices provide a chip-wide reset pin (DEV_CLRn) that can reset all registers in the device. The option to use this pin is set in the Altera software before compilation. The chip-wide reset overrides all other control signals. Any register with an asynchronous preset will be preset when the chip-wide reset is asserted because of the inversion technique used to implement the asynchronous preset.

The Altera software can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses an additional three LEs per register.

FastTrack Interconnect

In the FLEX 6000 OptiFLEX architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even for complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of column and row interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect, which routes signals between LABs in the same row, and also routes signals from I/O pins to LABs. Additionally, the local interconnect routes signals between LEs in the same LAB and in adjacent LABs. The column interconnect routes signals between rows and routes signals from I/O pins to rows.

LEs 1 through 5 of an LAB drive the local interconnect to the right, while LEs 6 through 10 drive the local interconnect to the left. The DATA1 and DATA3 inputs of each LE are driven by the local interconnect to the left; DATA2 and DATA4 are driven by the local interconnect to the right. The local interconnect also routes signals from LEs to I/O pins. Figure 9 shows an overview of the FLEX 6000 interconnect architecture. LEs in the first and last columns have drivers on both sides so that all LEs in the LAB can drive I/O pins via the local interconnect.

Figure 9. FastTrack Interconnect Architecture

Note:

(1) For EPF6010A, EPF6016, and EPF6016A devices, n = 144 channels and m = 20 channels; for EPF6024A devices, n = 186 channels and m = 30 channels.

Table 5. FLEX 6000 FastTrack Interconnect Resources					
Device	Rows	Channels per Row	Columns	Channels per Column	
EPF6010A	4	144	22	20	
EPF6016 EPF6016A	6	144	22	20	
EPF6024A	7	186	28	30	

Table 5 summarizes the FastTrack Interconnect resources available in each FLEX 6000 device.

In addition to general-purpose I/O pins, FLEX 6000 devices have four dedicated input pins that provide low-skew signal distribution across the device. These four inputs can be used for global clock and asynchronous clear control signals. These signals are available as control signals for all LEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Using dedicated inputs to route data signals provides a fast path for high fan-out signals.

The local interconnect from LABs located at either end of two rows can drive a global control signal. For instance, in an EPF6016 device, LABs C1, D1, C22, and D22 can all drive global control signals. When an LE drives a global control signal, the dedicated input pin that drives that signal cannot be used. Any LE in the device can drive a global control signal by driving the FastTrack Interconnect into the appropriate LAB. To minimize delay, however, the Altera software places the driving LE in the appropriate LAB. The LE-driving-global signal feature is optimized for speed for control signals; regular data signals are better routed on the FastTrack Interconnect and do not receive any advantage from being routed on global signals. This LE-driving-global control signal feature is controlled by the designer and is not used automatically by the Altera software. See Figure 11.

Notes:

- The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, (1) LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals. The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
- (2)
- Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals. (3)
- (4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.

SameFrame Pin-Outs

3.3-V FLEX 6000 devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ballcount packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support an EPF6016A device in a 100-pin FineLine BGA package or an EPF6024A device in a 256-pin FineLine BGA package.

The Altera software packages provide support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software packages generate pin-outs describing how to lay out a board to take advantage of this migration (see Figure 15).

MultiVolt I/O Interface

The FLEX 6000 device architecture supports the MultiVolt I/O interface feature, which allows FLEX 6000 devices to interface with systems of differing supply voltages. The EPF6016 device can be set for 3.3-V or 5.0-V I/O pin operation. This device has one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for output drivers (VCCIO).

The VCCINT pins on 5.0-V FLEX 6000 devices must always be connected to a 5.0-V power supply. With a 5.0-V V_{CCINT} level, input voltages are at TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs.

The VCCIO pins on 5.0-V FLEX 6000 devices can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels lower than 4.75 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} .

On 3.3-V FLEX 6000 devices, the VCCINT pins must be connected to a 3.3-V power supply. Additionally, 3.3-V FLEX 6000A devices can interface with 2.5-V, 3.3-V, or 5.0-V systems when the VCCIO pins are tied to 2.5 V. The output can drive 2.5-V systems, and the inputs can be driven by 2.5-V, 3.3-V, or 5.0-V systems. When the VCCIO pins are tied to 3.3 V, the output can drive 3.3-V or 5.0-V systems. MultiVolt I/Os are not supported on 100-pin TQFP or 100-pin FineLine BGA packages.

Table 7. FLEX 6000 MultiVolt I/O Support							
V _{CCINT} V _{CCIO} Input Signal (V) Output Signal (V)						I (V)	
(V)	(V)	2.5	3.3	5.0	2.5	3.3	5.0
3.3	2.5	v	v	v	v		
3.3	3.3	v	v	v	v (1)	v	v
5.0	3.3		v	v		v	v
5.0	5.0		v	v			v

Table 7 describes FLEX 6000 MultiVolt I/O support.

Note:

 When V_{CCIO} = 3.3 V, a FLEX 6000 device can drive a 2.5-V device that has 3.3-V tolerant inputs.

FLEX 6000	Programmable	Logic Device	Family Data	a Sheet
-----------	--------------	--------------	-------------	---------

Table 10. JTAG Timing Parameters & Values						
Symbol	Parameter	Min	Max	Unit		
t _{JCP}	TCK clock period	100		ns		
t _{JCH}	TCK clock high time	50		ns		
t _{JCL}	TCK clock low time	50		ns		
t _{JPSU}	JTAG port setup time	20		ns		
t _{JPH}	JTAG port hold time	45		ns		
t _{JPCO}	JTAG port clock-to-output		25	ns		
t _{JPZX}	JTAG port high impedance to valid output		25	ns		
t _{JPXZ}	JTAG port valid output to high impedance		25	ns		
t _{JSSU}	Capture register setup time	20		ns		
t _{JSH}	Capture register hold time	45		ns		
t _{JSCO}	Update register clock-to-output		35	ns		
t _{JSZX}	Update register high impedance to valid output		35	ns		
t _{JSXZ}	Update register valid output to high impedance		35	ns		

Generic Testing

Each FLEX 6000 device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 6000 devices are made under conditions equivalent to those shown in Figure 17. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 17. AC Test Conditions

Operating Conditions

Г

Tables 11 through 18 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V and 3.3-V FLEX 6000 devices.

Table 1	Table 11. FLEX 6000 5.0-V Device Absolute Maximum Ratings Note (1)						
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V		
VI	DC input voltage		-2.0	7.0	V		
IOUT	DC output current, per pin		-25	25	mA		
T _{STG}	Storage temperature	No bias	-65	150	°C		
T _{AMB}	Ambient temperature	Under bias	-65	135	°C		
TJ	Junction temperature	PQFP, TQFP, and BGA packages		135	°C		

Table 12. FLEX 6000 5.0-V Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V		
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V		
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V		
VI	Input voltage		-0.5	V _{CCINT} + 0.5	V		
Vo	Output voltage		0	V _{CCIO}	V		
TJ	Operating temperature	For commercial use	0	85	°C		
		For industrial use	-40	100	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

Table 1	Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1)					
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V	
VI	DC input voltage		-2.0	5.75	V	
IOUT	DC output current, per pin		-25	25	mA	
T _{STG}	Storage temperature	No bias	-65	150	°C	
T _{AMB}	Ambient temperature	Under bias	-65	135	°C	
TJ	Junction temperature	PQFP, PLCC, and BGA packages		135	°C	

Table 16. FLEX 6000 3.3-V Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	3.00 (3.00)	3.60 (3.60)	V		
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V		
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.30 (2.30)	2.70 (2.70)	V		
VI	Input voltage		-0.5	5.75	V		
Vo	Output voltage		0	V _{CCIO}	V		
ТJ	Operating temperature	For commercial use	0	85	°C		
		For industrial use	-40	100	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V V_{CCIO}. When V_{CCIO} = 5.0 V on EPF6016 devices, the output driver is compliant with the **PCI Local Bus Specification, Revision 2.2** for 5.0-V operation. When V_{CCIO} = 3.3 V on the EPF6010A and EPF6016A devices, the output driver is compliant with the **PCI Local Bus Specification, Revision 2.2** for 3.3-V operation.

Tables 19 through 21 describe the FLEX 6000 internal timing microparameters, which are expressed as worst-case values. Using hand calculations, these parameters can be used to estimate design performance. However, before committing designs to silicon, actual worst-case performance should be modeled using timing simulation and timing analysis. Tables 22 and 23 describe FLEX 6000 external timing parameters.

Symbol	Parameter	Conditions
t _{REG_TO_REG}	LUT delay for LE register feedback in carry chain	
t _{CASC_TO_REG}	Cascade-in to register delay	
t _{CARRY_} TO_REG	Carry-in to register delay	
t _{DATA_TO_REG}	LE input to register delay	
t _{CASC_TO_OUT}	Cascade-in to LE output delay	
t _{CARRY_} TO_OUT	Carry-in to LE output delay	
t _{DATA_TO_OUT}	LE input to LE output delay	
t _{REG_TO_OUT}	Register output to LE output delay	
t _{SU}	LE register setup time before clock; LE register recovery time after asynchronous clear	
t _H	LE register hold time after clock	
t _{CO}	LE register clock-to-output delay	
t _{CLR}	LE register clear delay	
t _C	LE register control signal delay	
t _{LD_CLR}	Synchronous load or clear delay in counter mode	
t _{CARRY_TO_CARRY}	Carry-in to carry-out delay	
t _{REG_TO_CARRY}	Register output to carry-out delay	
t _{DATA_TO_CARRY}	LE input to carry-out delay	
t _{CARRY_TO_CASC}	Carry-in to cascade-out delay	
t _{CASC_TO_CASC}	Cascade-in to cascade-out delay	
t _{REG_TO_CASC}	Register-out to cascade-out delay	
t _{DATA_TO_CASC}	LE input to cascade-out delay	
t _{CH}	LE register clock high time	
t _{CL}	LE register clock low time	

FLEX 6000	Programmable	Logic Device	Family Da	ata Sheet
------------------	--------------	--------------	-----------	-----------

Table 20. IOE Timing Microparameters Note (1)				
Symbol	Parameter	Conditions		
t _{OD1}	Output buffer and pad delay, slow slew rate = off, $V_{CCIO} = V_{CCINT}$	C1 = 35 pF (2)		
t _{OD2}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = low voltage	C1 = 35 pF (3)		
t _{OD3}	Output buffer and pad delay, slow slew rate = on	C1 = 35 pF (4)		
t _{XZ}	Output buffer disable delay	C1 = 5 pF		
t _{ZX1}	Output buffer enable delay, slow slew rate = off, $V_{CCIO} = V_{CCINT}$	C1 = 35 pF (2)		
t _{ZX2}	Output buffer enable delay, slow slew rate = off, V_{CCIO} = low voltage	C1 = 35 pF (3)		
t _{ZX3}	IOE output buffer enable delay, slow slew rate = on	C1 = 35 pF (4)		
t _{IOE}	Output enable control delay			
t _{IN}	Input pad and buffer to FastTrack Interconnect delay			
t _{IN_DELAY}	Input pad and buffer to FastTrack Interconnect delay with additional delay turned on			

Symbol	Parameter	Conditions			
t _{LOCAL}	LAB local interconnect delay				
t _{ROW}	Row interconnect routing delay (5)				
t _{COL}	Column interconnect routing delay	(5)			
t _{DIN_D}	Dedicated input to LE data delay	(5)			
t _{DIN_C}	Dedicated input to LE control delay				
t _{LEGLOBAL}	LE output to LE control via internally-generated global signal delay	(5)			
t _{LABCARRY}	Routing delay for the carry-out of an LE driving the carry-in signal of a different LE in a different LAB				
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB				

Table 22. External Reference Timing Parameters				
Symbol	Parameter	Conditions		
t ₁	Register-to-register test pattern	(6)		
t _{DRR}	Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local interconnects	(7)		

Table 33. External Timing Parameters for EPF6016 Devices					
Parameter		Unit			
	-2		-3		
	Min	Max	Min	Max	
t _{INSU}	3.2		4.1		ns
t _{INH}	0.0		0.0		ns
t _{оитсо}	2.0	7.9	2.0	9.9	ns

Tables 34 through 38 show the timing information for EPF6024A devices.

Table 34. LE Timing Microparameters for EPF6024A Devices							
Parameter		Speed Grade					Unit
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{REG_TO_REG}		1.2		1.3		1.6	ns
t _{CASC_TO_REG}		0.7		0.8		1.0	ns
t _{CARRY_TO_REG}		1.6		1.8		2.2	ns
t _{DATA_TO_REG}		1.3		1.4		1.7	ns
t _{CASC_TO_OUT}		1.2		1.3		1.6	ns
t _{CARRY_TO_OUT}		2.0		2.2		2.6	ns
t _{DATA_TO_OUT}		1.8		2.1		2.6	ns
t _{REG_TO_OUT}		0.3		0.3		0.4	ns
t _{SU}	0.9		1.0		1.2		ns
t _H	1.3		1.4		1.7		ns
t _{CO}		0.2		0.3		0.3	ns
t _{CLR}		0.3		0.3		0.4	ns
t _C		1.9		2.1		2.5	ns
t _{LD_CLR}		1.9		2.1		2.5	ns
t _{CARRY_TO_CARRY}		0.2		0.2		0.3	ns
t _{REG_TO_CARRY}		1.4		1.6		1.9	ns
t _{DATA_TO_CARRY}		1.3		1.4		1.7	ns
t _{CARRY_TO_CASC}		1.1		1.2		1.4	ns
t _{CASC_TO_CASC}		0.7		0.8		1.0	ns
t _{REG_TO_CASC}		1.4		1.6		1.9	ns
t _{DATA_TO_CASC}		1.0		1.1		1.3	ns
t _{CH}	2.5		3.0		3.5		ns
t _{CL}	2.5		3.0		3.5		ns

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in the power calculation equations shown above) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results, compared to measured power consumption for an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.

Operating Modes

The FLEX 6000 architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. This process of physically loading the SRAM data into a FLEX 6000 device is known as configuration. During initialization—a process that occurs immediately after configuration—the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes of a device are referred to as *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow FLEX 6000 devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and is used to dynamically reconfigure an entire system. Also, in-field system upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 6000 device can be loaded with one of three configuration schemes, which is chosen on the basis of the target application. An EPC1 or EPC1441 configuration device or intelligent controller can be used to control the configuration of a FLEX 6000 device, allowing automatic configuration on system power-up.

Multiple FLEX 6000 devices can be configured in any of the three configuration schemes by connecting the configuration enable input (nCE) and configuration enable output (nCEO) pins on each device.

Table 40 shows the data sources for each configuration scheme.

Table 40. Configuration Schemes				
Configuration Scheme	Data Source			
Configuration device	EPC1 or EPC1441 configuration device			
Passive serial (PS)	BitBlaster [™] , ByteBlasterMV [™] , or MasterBlaster [™] download cables, or serial data source			
Passive serial asynchronous (PSA)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source			