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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 6000 Programmable Logic Device Family Data Sheet
Table 4 shows FLEX 6000 performance for more complex designs. 

Note:
(1) The applications in this table were created using Altera MegaCoreTM functions.

FLEX 6000 devices are supported by Altera development systems; a 
single, integrated package that offers schematic, text (including AHDL), 
and waveform design entry, compilation and logic synthesis, full 
simulation and worst-case timing analysis, and device configuration. The 
Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, 
and other interfaces for additional design entry and simulation support 
from other industry-standard PC- and UNIX workstation-based EDA 
tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development systems include DesignWare 
functions that are optimized for the FLEX 6000 architecture.

The Altera development system runs on Windows-based PCs, Sun 
SPARCstations, and HP 9000 Series 700/800.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet and the Quartus Programmable Logic Development System & 
Software Data Sheet for more information.

Table 4. FLEX 6000 Device Performance for Complex Designs Note (1)

Application LEs Used Performance Units

-1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

8-bit, 16-tap parallel finite impulse response 
(FIR) filter

599 94 80 72 MSPS

8-bit, 512-point fast Fourier transform (FFT) 
function

1,182 75
63

89
53

109
43

µS
MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

487 36 30 25 MHz

PCI bus target with zero wait states 609 56 49 42 MHz
4 Altera Corporation
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FLEX 6000 Programmable Logic Device Family Data Sheet
The interleaved LAB structure—an innovative feature of the FLEX 6000 
architecture—allows each LAB to drive two local interconnects. This 
feature minimizes the use of the FastTrack Interconnect, providing higher 
performance. An LAB can drive 20 LEs in adjacent LABs via the local 
interconnect, which maximizes fitting flexibility while minimizing die 
size. See Figure 2.

Figure 2. Logic Array Block

In most designs, the registers only use global clock and clear signals. 
However, in some cases, other clock or asynchronous clear signals are 
needed. In addition, counters may also have synchronous clear or load 
signals. In a design that uses non-global clock and clear signals, inputs 
from the first LE in an LAB are re-routed to drive the control signals for 
that LAB. See Figure 3.

The 10 LEs in the LAB are driven by two
local interconnect areas. The LAB can drive
two local interconnect areas.

Row Interconnect
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The row interconnect is
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LEs can directly drive the row
and column interconnect.
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FLEX 6000 Programmable Logic Device Family Data Sheet
Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock and clear control signals on the flipflop can be driven 
by global signals, general-purpose I/O pins, or any internal logic. For 
combinatorial functions, the flipflop is bypassed and the output of the 
LUT drives the outputs of the LE. The LE output can drive both the local 
interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. A carry chain supports high-speed 
arithmetic functions such as counters and adders, while a cascade chain 
implements wide-input functions such as equivalent comparators with 
minimum delay. Carry and cascade chains connect LEs 2 through 10 in an 
LAB and all LABs in the same half of the row. Because extensive use of 
carry and cascade chains can reduce routing flexibility, these chains 
should be limited to speed-critical portions of a design. 
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Normal Mode 

The normal mode is suitable for general logic applications, combinatorial 
functions, or wide decoding functions that can take advantage of a 
cascade chain. In normal mode, four data inputs from the LAB local 
interconnect and the carry-in are inputs to a 4-input LUT. The Altera 
software automatically selects the carry-in or the DATA3 signal as one of 
the inputs to the LUT. The LUT output can be combined with the cascade-
in signal to form a cascade chain through the cascade-out signal. 

Arithmetic Mode 

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 7, the first LUT uses the carry-in signal and two data inputs from 
the LAB local interconnect to generate a combinatorial or registered 
output. For example, when implementing an adder, this output is the sum 
of three signals: DATA1, DATA2, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain. 

The Altera software implements logic functions to use the arithmetic 
mode automatically where appropriate; the designer does not have to 
decide how the carry chain will be used.

Counter Mode 

The counter mode offers counter enable, synchronous up/down control, 
synchronous clear, and synchronous load options. The counter enable and 
synchronous up/down control signals are generated from the data inputs 
of the LAB local interconnect. The synchronous clear and synchronous 
load options are LAB-wide signals that affect all registers in the LAB. 
Consequently, if any of the LEs in a LAB use counter mode, other LEs in 
that LAB must be used as part of the same counter or be used for a 
combinatorial function. In addition, the Altera software automatically 
places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data 
and the other generates the fast carry bit. A 2-to-1 multiplexer provides 
synchronous loading, and another AND gate provides synchronous 
clearing. If the cascade function is used by an LE in counter mode, the 
synchronous clear or load will override any signal carried on the cascade 
chain. The synchronous clear overrides the synchronous load.
Altera Corporation  15



FLEX 6000 Programmable Logic Device Family Data Sheet
Either the counter enable or the up/down control may be used for a given 
counter. Moreover, the synchronous load can be used as a count enable by 
routing the register output into the data input automatically when 
requested by the designer.

The second LE of each LAB has a special function for counter mode; the 
carry-in of the LE can be driven by a fast feedback path from the register. 
This function gives a faster counter speed for counter carry chains starting 
in the second LE of an LAB. 

The Altera software implements functions to use the counter mode 
automatically where appropriate. The designer does not have to decide 
how the carry chain will be used.

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer.

Clear & Preset Logic Control 

Logic for the programmable register’s clear and preset functions is 
controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE 
register has an asynchronous clear that can implement an asynchronous 
preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear 
or preset. Because the clear and preset functions are active-low, the Altera 
software automatically assigns a logic high to an unused clear or preset 
signal. The clear and preset logic is implemented in either the 
asynchronous clear or asynchronous preset mode, which is chosen during 
design entry (see Figure 8). 
16 Altera Corporation



FLEX 6000 Programmable Logic Device Family Data Sheet
Figure 8. LE Clear & Preset Modes

Asynchronous Clear 

The flipflop can be cleared by either LABCTRL1 or LABCTRL2.

Asynchronous Preset 

An asynchronous preset is implemented with an asynchronous clear. The 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Inversion control is available for the 
inputs to both LEs and IOEs. Therefore, this technique can be used when 
a register drives logic or drives a pin.

In addition to the two clear and preset modes, FLEX 6000 devices provide 
a chip-wide reset pin (DEV_CLRn) that can reset all registers in the device. 
The option to use this pin is set in the Altera software before compilation. 
The chip-wide reset overrides all other control signals. Any register with 
an asynchronous preset will be preset when the chip-wide reset is asserted 
because of the inversion technique used to implement the asynchronous 
preset.

The Altera software can use a programmable NOT-gate push-back 
technique to emulate simultaneous preset and clear or asynchronous load. 
However, this technique uses an additional three LEs per register.

FastTrack Interconnect
In the FLEX 6000 OptiFLEX architecture, connections between LEs and 
device I/O pins are provided by the FastTrack Interconnect, a series of 
continuous horizontal and vertical routing channels that traverse the 
device. This global routing structure provides predictable performance, 
even for complex designs. In contrast, the segmented routing in FPGAs 
requires switch matrices to connect a variable number of routing paths, 
increasing the delays between logic resources and reducing performance.

PRN
D Q

labctrl1 or
labctrl2

Asynchronous Clear Asynchronous Preset

CLRN

D Q Chip-Wide Reset

labctrl1 or
labctrl2

Chip-Wide Reset
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The FastTrack Interconnect consists of column and row interconnect 
channels that span the entire device. Each row of LABs is served by a 
dedicated row interconnect, which routes signals between LABs in the 
same row, and also routes signals from I/O pins to LABs. Additionally, 
the local interconnect routes signals between LEs in the same LAB and in 
adjacent LABs. The column interconnect routes signals between rows and 
routes signals from I/O pins to rows.

LEs 1 through 5 of an LAB drive the local interconnect to the right, while 
LEs 6 through 10 drive the local interconnect to the left. The DATA1 and 
DATA3 inputs of each LE are driven by the local interconnect to the left; 
DATA2 and DATA4 are driven by the local interconnect to the right. The 
local interconnect also routes signals from LEs to I/O pins. Figure 9 shows 
an overview of the FLEX 6000 interconnect architecture. LEs in the first 
and last columns have drivers on both sides so that all LEs in the LAB can 
drive I/O pins via the local interconnect.

Figure 9. FastTrack Interconnect Architecture

Note:
(1) For EPF6010A, EPF6016, and EPF6016A devices, n = 144 channels and m = 20 channels; for EPF6024A devices, 

n = 186 channels and m = 30 channels.
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Table 5 summarizes the FastTrack Interconnect resources available in 
each FLEX 6000 device.

In addition to general-purpose I/O pins, FLEX 6000 devices have four 
dedicated input pins that provide low-skew signal distribution across the 
device. These four inputs can be used for global clock and asynchronous 
clear control signals. These signals are available as control signals for all 
LEs in the device. The dedicated inputs can also be used as general-
purpose data inputs because they can feed the local interconnect of each 
LAB in the device. Using dedicated inputs to route data signals provides 
a fast path for high fan-out signals.

The local interconnect from LABs located at either end of two rows can 
drive a global control signal. For instance, in an EPF6016 device, LABs C1, 
D1, C22, and D22 can all drive global control signals. When an LE drives 
a global control signal, the dedicated input pin that drives that signal 
cannot be used. Any LE in the device can drive a global control signal by 
driving the FastTrack Interconnect into the appropriate LAB. To minimize 
delay, however, the Altera software places the driving LE in the 
appropriate LAB. The LE-driving-global signal feature is optimized for 
speed for control signals; regular data signals are better routed on the 
FastTrack Interconnect and do not receive any advantage from being 
routed on global signals. This LE-driving-global control signal feature is 
controlled by the designer and is not used automatically by the Altera 
software. See Figure 11.

Table 5. FLEX 6000 FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per 
Column

EPF6010A 4 144 22 20

EPF6016
EPF6016A

6 144 22 20

EPF6024A 7 186 28 30
Altera Corporation  21
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Figure 11. Global Clock & Clear Distribution       Note (1) 

Notes:
(1) The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, 

LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals.
(2) The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
(3) Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals.
(4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.
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Figure 14. IOE Connection to Column Interconnect

SameFrame 
Pin-Outs

3.3-V FLEX 6000 devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support an EPF6016A device in a 100-pin FineLine BGA package or an 
EPF6024A device in a 256-pin FineLine BGA package.

The Altera software packages provide support to design PCBs with 
SameFrame pin-out devices. Devices can be defined for present and future 
use. The Altera software packages generate pin-outs describing how to lay 
out a board to take advantage of this migration (see Figure 15).

Row Interconnect

Column Interconnect

Each IOE can drive two 
column interconnect channels. 
Each IOE data and OE signal is 
driven to a local interconnect.

Any LE can drive a 
pin through the row
and local interconnect.

IOE IOE

LAB

FastFLEX I/O: An 
LE can drive a 
pin through a local 
interconnect for faster 
clock-to-output times.
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MultiVolt I/O Interface
The FLEX 6000 device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 6000 devices to interface with systems of 
differing supply voltages. The EPF6016 device can be set for 3.3-V or 5.0-V 
I/O pin operation. This device has one set of VCC pins for internal 
operation and input buffers (VCCINT), and another set for output drivers 
(VCCIO). 

The VCCINT pins on 5.0-V FLEX 6000 devices must always be connected 
to a 5.0-V power supply. With a 5.0-V VCCINT level, input voltages are at 
TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs. 

The VCCIO pins on 5.0-V FLEX 6000 devices can be connected to either a 
3.3-V or 5.0-V power supply, depending on the output requirements. 
When the VCCIO pins are connected to a 5.0-V power supply, the output 
levels are compatible with 5.0-V systems. When the VCCIO pins are 
connected to a 3.3-V power supply, the output high is 3.3 V and is 
therefore compatible with 3.3-V or 5.0-V systems. Devices operating with 
VCCIO levels lower than 4.75 V incur a nominally greater timing delay of 
tOD2 instead of tOD1.

On 3.3-V FLEX 6000 devices, the VCCINT pins must be connected to a 
3.3-V power supply. Additionally, 3.3-V FLEX 6000A devices can interface 
with 2.5-V, 3.3-V, or 5.0-V systems when the VCCIO pins are tied to 2.5 V. 
The output can drive 2.5-V systems, and the inputs can be driven by 2.5-
V, 3.3-V, or 5.0-V systems. When the VCCIO pins are tied to 3.3 V, the 
output can drive 3.3-V or 5.0-V systems. MultiVolt I/Os are not supported 
on 100-pin TQFP or 100-pin FineLine BGA packages.

Table 7 describes FLEX 6000 MultiVolt I/O support.

Note:
(1) When VCCIO = 3.3 V, a FLEX 6000 device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Table 7. FLEX 6000 MultiVolt I/O Support

VCCINT 
(V)

VCCIO 
(V)

Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

3.3 2.5 v v v v
3.3 3.3 v v v v (1) v v
5.0 3.3 v v v v
5.0 5.0 v v v
Altera Corporation  27
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Generic Testing Each FLEX 6000 device is functionally tested. Complete testing of each 
configurable SRAM bit and all logic functionality ensures 100% 
configuration yield. AC test measurements for FLEX 6000 devices are 
made under conditions equivalent to those shown in Figure 17. Multiple 
test patterns can be used to configure devices during all stages of the 
production flow.

Figure 17. AC Test Conditions

Table 10. JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock-to-output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock-to-output 35 ns

tJSZX Update register high impedance to valid 
output

35 ns

tJSXZ Update register valid output to high 
impedance

35 ns

VCC

To Test
System

C1 (includes
JIG capacitance)

Device input
rise and fall
times < 3 ns

464 Ω
(703 Ω)

Device
Output

(8.06 kΩ)

[521 Ω]

[481 Ω]

250 Ω

Power supply transients can affect 
AC measurements. Simultaneous 
transitions of multiple outputs 
should be avoided for accurate 
measurement. Threshold tests must 
not be performed under AC conditions. 
Large-amplitude, fast-ground-current 
transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients 
flow through the parasitic 
inductance between the device 
ground pin and the test system ground, 
significant reductions in observable 
noise immunity can result. Numbers 
without parentheses are for 5.0-V 
devices or outputs. Numbers in 
parentheses are for 3.3-V devices or 
outputs. Numbers in brackets are for 
2.5-V devices or outputs.
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Operating 
Conditions

Tables 11 through 18 provide information on absolute maximum ratings, 
recommended operating conditions, operating conditions, and 
capacitance for 5.0-V and 3.3-V FLEX 6000 devices.

Table 11. FLEX 6000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –2.0 7.0 V

VI DC input voltage –2.0 7.0 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, and BGA packages 135 ° C

Table 12. FLEX 6000 5.0-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic 

and input buffers
(3), (4) 4.75 (4.50) 5.25 (5.50) V

VCCIO Supply voltage for output buffers, 
5.0-V operation

(3), (4) 4.75 (4.50) 5.25 (5.50) V

Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

VI Input voltage –0.5 VCCINT + 0.5 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, PLCC, and BGA packages 135 ° C

Table 16. FLEX 6000 3.3-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic and 

input buffers
(3), (4) 3.00 (3.00) 3.60 (3.60) V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage –0.5 5.75 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V 
FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V VCCIO. When 
VCCIO = 5.0 V on EPF6016 devices, the output driver is compliant with the 
PCI Local Bus Specification, Revision 2.2 for 5.0-V operation. When 
VCCIO = 3.3 V on the EPF6010A and EPF6016A devices, the output driver 
is compliant with the PCI Local Bus Specification, Revision 2.2 for 3.3-V 
operation.

Figure 18. Output Drive Characteristics 

VO Output Voltage (V)

1 2 3 4 5

75 IOL

IOH

VCCINT = 3.3 V
VCCIO = 3.3 V
Room Temperature

EPF6010A
EPF6016A

50

25

100

EPF6010A
EPF6016A

VO Output Voltage (V)

1 2 3 4 5

75 IOL

IOH

VCCINT = 3.3 V
VCCIO = 2.5 V
Room Temperature

50

25

100

VO Output Voltage (V)

1 2 3 4 5

75

IOL

IOH

VCCINT = 3.3 V
VCCIO = 3.3 V
Room Temperature

EPF6024A

50

25

100

VO Output Voltage (V)

1 2 3 4 5

75

IOL

IOH

VCCINT = 3.3 V
VCCIO = 2.5 V
Room Temperature

EPF6024A

50

25

100

VO Output Voltage (V)

1 2 3 4 5

150

120

90

IOL

IOH

VCCINT = 5.0 V
VCCIO = 5.0 V
Room Temperature

VO Output Voltage (V)

1 2 3 4 5

30

60

90

150

120

IOL

IOH

3.3

VCCINT = 5.0 V
VCCIO = 3.3 V
Room Temperature

EPF6016 EPF6016

60

30

Typical IO 
Output 
Current (mA)

Typical IO 
Output 
Current (mA)

Typical IO 
Output 
Current (mA)

Typical IO 
Output 
Current (mA)

Typical IO 
Output 
Current (mA)

Typical IO 
Output 
Current (mA)
Altera Corporation  35



FLEX 6000 Programmable Logic Device Family Data Sheet
Tables 19 through 21 describe the FLEX 6000 internal timing 
microparameters, which are expressed as worst-case values. Using hand 
calculations, these parameters can be used to estimate design 
performance. However, before committing designs to silicon, actual 
worst-case performance should be modeled using timing simulation and 
timing analysis. Tables 22 and 23 describe FLEX 6000 external timing 
parameters.

Table 19. LE Timing Microparameters Note (1)

Symbol Parameter Conditions

tREG_TO_REG LUT delay for LE register feedback in carry chain

tCASC_TO_REG Cascade-in to register delay

tCARRY_TO_REG Carry-in to register delay

tDATA_TO_REG LE input to register delay

tCASC_TO_OUT Cascade-in to LE output delay

tCARRY_TO_OUT Carry-in to LE output delay

tDATA_TO_OUT LE input to LE output delay

tREG_TO_OUT Register output to LE output delay

tSU LE register setup time before clock; LE register recovery time after 
asynchronous clear

tH LE register hold time after clock

tCO LE register clock-to-output delay

tCLR LE register clear delay

tC LE register control signal delay

tLD_CLR Synchronous load or clear delay in counter mode

tCARRY_TO_CARRY Carry-in to carry-out delay

tREG_TO_CARRY Register output to carry-out delay

tDATA_TO_CARRY LE input to carry-out delay

tCARRY_TO_CASC Carry-in to cascade-out delay

tCASC_TO_CASC Cascade-in to cascade-out delay

tREG_TO_CASC Register-out to cascade-out delay

tDATA_TO_CASC LE input to cascade-out delay

tCH LE register clock high time

tCL LE register clock low time
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Table 20. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ Output buffer disable delay C1 = 5 pF

tZX1 Output buffer enable delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tZX2 Output buffer enable delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tIOE Output enable control delay

tIN Input pad and buffer to FastTrack Interconnect delay

tIN_DELAY Input pad and buffer to FastTrack Interconnect delay with additional delay 
turned on

Table 21. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tLOCAL LAB local interconnect delay

tROW Row interconnect routing delay (5)

tCOL Column interconnect routing delay (5)

tDIN_D Dedicated input to LE data delay (5)

tDIN_C Dedicated input to LE control delay

tLEGLOBAL LE output to LE control via internally-generated global signal delay (5)

tLABCARRY Routing delay for the carry-out of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 22. External Reference Timing Parameters

Symbol Parameter Conditions

t1 Register-to-register test pattern (6)

tDRR Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local 
interconnects

(7)
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Tables 34 through 38 show the timing information for EPF6024A devices.

Table 33. External Timing Parameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tINSU 3.2 4.1 ns

tINH 0.0 0.0 ns

tOUTCO 2.0 7.9 2.0 9.9 ns

Table 34. LE Timing Microparameters for EPF6024A Devices 

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tREG_TO_REG 1.2 1.3 1.6 ns

tCASC_TO_REG 0.7 0.8 1.0 ns

tCARRY_TO_REG 1.6 1.8 2.2 ns

tDATA_TO_REG 1.3 1.4 1.7 ns

tCASC_TO_OUT 1.2 1.3 1.6 ns

tCARRY_TO_OUT 2.0 2.2 2.6 ns

tDATA_TO_OUT 1.8 2.1 2.6 ns

tREG_TO_OUT 0.3 0.3 0.4 ns

tSU 0.9 1.0 1.2 ns

tH 1.3 1.4 1.7 ns

tCO 0.2 0.3 0.3 ns

tCLR 0.3 0.3 0.4 ns

tC 1.9 2.1 2.5 ns

tLD_CLR 1.9 2.1 2.5 ns

tCARRY_TO_CARRY 0.2 0.2 0.3 ns

tREG_TO_CARRY 1.4 1.6 1.9 ns

tDATA_TO_CARRY 1.3 1.4 1.7 ns

tCARRY_TO_CASC 1.1 1.2 1.4 ns

tCASC_TO_CASC 0.7 0.8 1.0 ns

tREG_TO_CASC 1.4 1.6 1.9 ns

tDATA_TO_CASC 1.0 1.1 1.3 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns
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This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions. 

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations shown above) for continuous 
interconnect FLEX devices assumes that LEs drive FastTrack Interconnect 
channels. In contrast, the power model of segmented FPGAs assumes that 
all LEs drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating 
frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.
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Operating Modes 
The FLEX 6000 architecture uses SRAM configuration elements that 
require configuration data to be loaded every time the circuit powers 
up. This process of physically loading the SRAM data into a FLEX 
6000 device is known as configuration. During initialization—a 
process that occurs immediately after configuration—the device 
resets registers, enables I/O pins, and begins to operate as a logic 
device. The I/O pins are tri-stated during power-up, and before and 
during configuration. The configuration and initialization processes 
of a device are referred to as command mode; normal device operation 
is called user mode.

SRAM configuration elements allow FLEX 6000 devices to be 
reconfigured in-circuit by loading new configuration data into the 
device. Real-time reconfiguration is performed by forcing the device 
into command mode with a device pin, loading different 
configuration data, reinitializing the device, and resuming user-
mode operation. The entire reconfiguration process requires less 
than 100 ms and is used to dynamically reconfigure an entire system. 
Also, in-field system upgrades can be performed by distributing new 
configuration files. 

Configuration Schemes 
The configuration data for a FLEX 6000 device can be loaded with 
one of three configuration schemes, which is chosen on the basis of 
the target application. An EPC1 or EPC1441 configuration device or 
intelligent controller can be used to control the configuration of a 
FLEX 6000 device, allowing automatic configuration on system 
power-up.

Multiple FLEX 6000 devices can be configured in any of the three 
configuration schemes by connecting the configuration enable input 
(nCE) and configuration enable output (nCEO) pins on each device.

Table 40 shows the data sources for each configuration scheme. 

Table 40. Configuration Schemes 

Configuration Scheme Data Source

Configuration device EPC1 or EPC1441 configuration device

Passive serial (PS) BitBlasterTM, ByteBlasterMVTM, or MasterBlasterTM 
download cables, or serial data source

Passive serial asynchronous 
(PSA)

BitBlaster, ByteBlasterMV, or MasterBlaster 
download cables, or serial data source
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