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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 6000 Programmable Logic Device Family Data Sheet
Functional 
Description

The FLEX 6000 OptiFLEX architecture consists of logic elements (LEs). 
Each LE includes a 4-input look-up table (LUT), which can implement any 
4-input function, a register, and dedicated paths for carry and cascade 
chain functions. Because each LE contains a register, a design can be easily 
pipelined without consuming more LEs. The specified gate count for 
FLEX 6000 devices includes all LUTs and registers.

LEs are combined into groups called logic array blocks (LABs); each LAB 
contains 10 LEs. The Altera software automatically places related LEs into 
the same LAB, minimizing the number of required interconnects. Each 
LAB can implement a medium-sized block of logic, such as a counter or 
multiplexer.

Signal interconnections within FLEX 6000 devices—and to and from 
device pins—are provided via the routing structure of the FastTrack 
Interconnect. The routing structure is a series of fast, continuous row and 
column channels that run the entire length and width of the device. Any 
LE or pin can feed or be fed by any other LE or pin via the FastTrack 
Interconnect. See “FastTrack Interconnect” on page 17 of this data sheet 
for more information.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect. Each IOE contains a 
bidirectional I/O buffer. Each IOE is placed next to an LAB, where it can 
be driven by the local interconnect of that LAB. This feature allows fast 
clock-to-output times of less than 8 ns when a pin is driven by any of the 
10 LEs in the adjacent LAB. Also, any LE can drive any pin via the row and 
column interconnect. I/O pins can drive the LE registers via the row and 
column interconnect, providing setup times as low as 2 ns and hold times 
of 0 ns. IOEs provide a variety of features, such as JTAG BST support, 
slew-rate control, and tri-state buffers.

Figure 1 shows a block diagram of the FLEX 6000 OptiFLEX architecture. 
Each group of ten LEs is combined into an LAB, and the LABs are 
arranged into rows and columns. The LABs are interconnected by the 
FastTrack Interconnect. IOEs are located at the end of each FastTrack 
Interconnect row and column.
Altera Corporation  5



FLEX 6000 Programmable Logic Device Family Data Sheet
Figure 1. OptiFLEX Architecture Block Diagram

FLEX 6000 devices provide four dedicated, global inputs that drive the 
control inputs of the flipflops to ensure efficient distribution of high-
speed, low-skew control signals. These inputs use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect. These inputs can also be driven by internal logic, providing 
an ideal solution for a clock divider or an internally generated 
asynchronous clear signal that clears many registers in the device. The 
dedicated global routing structure is built into the device, eliminating the 
need to create a clock tree.

Logic Array Block
An LAB consists of ten LEs, their associated carry and cascade chains, the 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure of the FLEX 6000 architecture, and facilitates 
efficient routing with optimum device utilization and high performance. 
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FLEX 6000 Programmable Logic Device Family Data Sheet
Figure 3. LAB Control Signals

Logic Element 
An LE, the smallest unit of logic in the FLEX 6000 architecture, has a 
compact size that provides efficient logic usage. Each LE contains a four-
input LUT, which is a function generator that can quickly implement any 
function of four variables. An LE contains a programmable flipflop, carry 
and cascade chains. Additionally, each LE drives both the local and the 
FastTrack Interconnect. See Figure 4.
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Carry Chain 

The carry chain provides a very fast (0.1 ns) carry-forward function 
between LEs. The carry-in signal from a lower-order bit drives forward 
into the higher-order bit via the carry chain, and feeds into both the LUT 
and the next portion of the carry chain. This feature allows the FLEX 6000 
architecture to implement high-speed counters, adders, and comparators 
of arbitrary width. Carry chain logic can be created automatically by the 
Altera software during design processing, or manually by the designer 
during design entry. Parameterized functions such as LPM and 
DesignWare functions automatically take advantage of carry chains for 
the appropriate functions.

Because the first LE of each LAB can generate control signals for that LAB, 
the first LE in each LAB is not included in carry chains. In addition, the 
inputs of the first LE in each LAB may be used to generate synchronous 
clear and load enable signals for counters implemented with carry chains. 

Carry chains longer than nine LEs are implemented automatically by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from an even-numbered LAB to another even-numbered LAB, or from an 
odd-numbered LAB to another odd-numbered LAB. For example, the last 
LE of the first LAB in a row carries to the second LE of the third LAB in 
the row. In addition, the carry chain does not cross the middle of the row. 
For instance, in the EPF6016 device, the carry chain stops at the 11th LAB 
in a row and a new carry chain begins at the 12th LAB.

Figure 5 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. Although the register can be bypassed for simple adders, 
it can be used for an accumulator function. Another portion of the LUT 
and the carry chain logic generates the carry-out signal, which is routed 
directly to the carry-in signal of the next-higher-order bit. The final 
carry-out signal is routed to an LE, where it is driven onto the FastTrack 
Interconnect. 
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Figure 5. Carry Chain Operation
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Normal Mode 

The normal mode is suitable for general logic applications, combinatorial 
functions, or wide decoding functions that can take advantage of a 
cascade chain. In normal mode, four data inputs from the LAB local 
interconnect and the carry-in are inputs to a 4-input LUT. The Altera 
software automatically selects the carry-in or the DATA3 signal as one of 
the inputs to the LUT. The LUT output can be combined with the cascade-
in signal to form a cascade chain through the cascade-out signal. 

Arithmetic Mode 

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 7, the first LUT uses the carry-in signal and two data inputs from 
the LAB local interconnect to generate a combinatorial or registered 
output. For example, when implementing an adder, this output is the sum 
of three signals: DATA1, DATA2, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain. 

The Altera software implements logic functions to use the arithmetic 
mode automatically where appropriate; the designer does not have to 
decide how the carry chain will be used.

Counter Mode 

The counter mode offers counter enable, synchronous up/down control, 
synchronous clear, and synchronous load options. The counter enable and 
synchronous up/down control signals are generated from the data inputs 
of the LAB local interconnect. The synchronous clear and synchronous 
load options are LAB-wide signals that affect all registers in the LAB. 
Consequently, if any of the LEs in a LAB use counter mode, other LEs in 
that LAB must be used as part of the same counter or be used for a 
combinatorial function. In addition, the Altera software automatically 
places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data 
and the other generates the fast carry bit. A 2-to-1 multiplexer provides 
synchronous loading, and another AND gate provides synchronous 
clearing. If the cascade function is used by an LE in counter mode, the 
synchronous clear or load will override any signal carried on the cascade 
chain. The synchronous clear overrides the synchronous load.
Altera Corporation  15
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Either the counter enable or the up/down control may be used for a given 
counter. Moreover, the synchronous load can be used as a count enable by 
routing the register output into the data input automatically when 
requested by the designer.

The second LE of each LAB has a special function for counter mode; the 
carry-in of the LE can be driven by a fast feedback path from the register. 
This function gives a faster counter speed for counter carry chains starting 
in the second LE of an LAB. 

The Altera software implements functions to use the counter mode 
automatically where appropriate. The designer does not have to decide 
how the carry chain will be used.

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer.

Clear & Preset Logic Control 

Logic for the programmable register’s clear and preset functions is 
controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE 
register has an asynchronous clear that can implement an asynchronous 
preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear 
or preset. Because the clear and preset functions are active-low, the Altera 
software automatically assigns a logic high to an unused clear or preset 
signal. The clear and preset logic is implemented in either the 
asynchronous clear or asynchronous preset mode, which is chosen during 
design entry (see Figure 8). 
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Figure 8. LE Clear & Preset Modes

Asynchronous Clear 

The flipflop can be cleared by either LABCTRL1 or LABCTRL2.

Asynchronous Preset 

An asynchronous preset is implemented with an asynchronous clear. The 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Inversion control is available for the 
inputs to both LEs and IOEs. Therefore, this technique can be used when 
a register drives logic or drives a pin.

In addition to the two clear and preset modes, FLEX 6000 devices provide 
a chip-wide reset pin (DEV_CLRn) that can reset all registers in the device. 
The option to use this pin is set in the Altera software before compilation. 
The chip-wide reset overrides all other control signals. Any register with 
an asynchronous preset will be preset when the chip-wide reset is asserted 
because of the inversion technique used to implement the asynchronous 
preset.

The Altera software can use a programmable NOT-gate push-back 
technique to emulate simultaneous preset and clear or asynchronous load. 
However, this technique uses an additional three LEs per register.

FastTrack Interconnect
In the FLEX 6000 OptiFLEX architecture, connections between LEs and 
device I/O pins are provided by the FastTrack Interconnect, a series of 
continuous horizontal and vertical routing channels that traverse the 
device. This global routing structure provides predictable performance, 
even for complex designs. In contrast, the segmented routing in FPGAs 
requires switch matrices to connect a variable number of routing paths, 
increasing the delays between logic resources and reducing performance.

PRN
D Q

labctrl1 or
labctrl2
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CLRN

D Q Chip-Wide Reset

labctrl1 or
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Chip-Wide Reset
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Table 5 summarizes the FastTrack Interconnect resources available in 
each FLEX 6000 device.

In addition to general-purpose I/O pins, FLEX 6000 devices have four 
dedicated input pins that provide low-skew signal distribution across the 
device. These four inputs can be used for global clock and asynchronous 
clear control signals. These signals are available as control signals for all 
LEs in the device. The dedicated inputs can also be used as general-
purpose data inputs because they can feed the local interconnect of each 
LAB in the device. Using dedicated inputs to route data signals provides 
a fast path for high fan-out signals.

The local interconnect from LABs located at either end of two rows can 
drive a global control signal. For instance, in an EPF6016 device, LABs C1, 
D1, C22, and D22 can all drive global control signals. When an LE drives 
a global control signal, the dedicated input pin that drives that signal 
cannot be used. Any LE in the device can drive a global control signal by 
driving the FastTrack Interconnect into the appropriate LAB. To minimize 
delay, however, the Altera software places the driving LE in the 
appropriate LAB. The LE-driving-global signal feature is optimized for 
speed for control signals; regular data signals are better routed on the 
FastTrack Interconnect and do not receive any advantage from being 
routed on global signals. This LE-driving-global control signal feature is 
controlled by the designer and is not used automatically by the Altera 
software. See Figure 11.

Table 5. FLEX 6000 FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per 
Column

EPF6010A 4 144 22 20

EPF6016
EPF6016A

6 144 22 20

EPF6024A 7 186 28 30
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Figure 11. Global Clock & Clear Distribution       Note (1) 

Notes:
(1) The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, 

LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals.
(2) The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
(3) Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals.
(4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.

Dedicated 
Inputs

LAB C1

LAB
(Repeated

Across
Device)

4

Dedicated 
Inputs

(3)(2)

(2) (4)

(4)

LAB D1 LAB D22

LAB C22
22 Altera Corporation



FLEX 6000 Programmable Logic Device Family Data Sheet
MultiVolt I/O Interface
The FLEX 6000 device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 6000 devices to interface with systems of 
differing supply voltages. The EPF6016 device can be set for 3.3-V or 5.0-V 
I/O pin operation. This device has one set of VCC pins for internal 
operation and input buffers (VCCINT), and another set for output drivers 
(VCCIO). 

The VCCINT pins on 5.0-V FLEX 6000 devices must always be connected 
to a 5.0-V power supply. With a 5.0-V VCCINT level, input voltages are at 
TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs. 

The VCCIO pins on 5.0-V FLEX 6000 devices can be connected to either a 
3.3-V or 5.0-V power supply, depending on the output requirements. 
When the VCCIO pins are connected to a 5.0-V power supply, the output 
levels are compatible with 5.0-V systems. When the VCCIO pins are 
connected to a 3.3-V power supply, the output high is 3.3 V and is 
therefore compatible with 3.3-V or 5.0-V systems. Devices operating with 
VCCIO levels lower than 4.75 V incur a nominally greater timing delay of 
tOD2 instead of tOD1.

On 3.3-V FLEX 6000 devices, the VCCINT pins must be connected to a 
3.3-V power supply. Additionally, 3.3-V FLEX 6000A devices can interface 
with 2.5-V, 3.3-V, or 5.0-V systems when the VCCIO pins are tied to 2.5 V. 
The output can drive 2.5-V systems, and the inputs can be driven by 2.5-
V, 3.3-V, or 5.0-V systems. When the VCCIO pins are tied to 3.3 V, the 
output can drive 3.3-V or 5.0-V systems. MultiVolt I/Os are not supported 
on 100-pin TQFP or 100-pin FineLine BGA packages.

Table 7 describes FLEX 6000 MultiVolt I/O support.

Note:
(1) When VCCIO = 3.3 V, a FLEX 6000 device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Table 7. FLEX 6000 MultiVolt I/O Support

VCCINT 
(V)

VCCIO 
(V)

Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

3.3 2.5 v v v v
3.3 3.3 v v v v (1) v v
5.0 3.3 v v v v
5.0 5.0 v v v
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The instruction register length for FLEX 6000 devices is three bits. Table 9 
shows the boundary-scan register length for FLEX 6000 devices.

FLEX 6000 devices include a weak pull-up on JTAG pins.

f See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera 
Devices) for more information.

Figure 16 shows the timing requirements for the JTAG signals.

Figure 16. JTAG Waveforms

Table 10 shows the JTAG timing parameters and values for FLEX 6000 
devices.

Table 9. FLEX 6000 Device Boundary-Scan Register Length

Device Boundary-Scan Register Length

EPF6010A 522

EPF6016 621

EPF6016A 522

EPF6024A 666

TDO

TCK

tJPZX tJPCO

tJPH

t JPXZ

 tJCP

 tJPSU t JCL tJCH

TDI

TMS

Signal
to Be

Captured

Signal
to Be

Driven

tJSZX

tJSSU tJSH

tJSCO tJSXZ
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Operating 
Conditions

Tables 11 through 18 provide information on absolute maximum ratings, 
recommended operating conditions, operating conditions, and 
capacitance for 5.0-V and 3.3-V FLEX 6000 devices.

Table 11. FLEX 6000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –2.0 7.0 V

VI DC input voltage –2.0 7.0 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, and BGA packages 135 ° C

Table 12. FLEX 6000 5.0-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic 

and input buffers
(3), (4) 4.75 (4.50) 5.25 (5.50) V

VCCIO Supply voltage for output buffers, 
5.0-V operation

(3), (4) 4.75 (4.50) 5.25 (5.50) V

Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

VI Input voltage –0.5 VCCINT + 0.5 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
Altera Corporation  31



FLEX 6000 Programmable Logic Device Family Data Sheet
Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time to 100 ms. VCC must rise monotonically.
(5) Typical values are for TA = 25°  C and VCC = 5.0 V.
(6) These values are specified under the FLEX 6000 Recommended Operating Conditions shown in Table 12 on 

page 31.
(7) The IOH parameter refers to high-level TTL or CMOS output current. 
(8) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(9) Capacitance is sample-tested only.

Table 13. FLEX 6000 5.0-V Device DC Operating Conditions Notes (5), (6)

Symbol Parameter Conditions Min Typ Max Unit
VIH High-level input voltage 2.0 VCCINT + 0.5 V

VIL Low-level input voltage –0.5 0.8 V

VOH 5.0-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 4.75 V (7) 2.4 V

3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 3.00 V (7) 2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, VCCIO = 3.00 V (7) VCCIO – 0.2 V

VOL 5.0-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 4.75 V (8) 0.45 V

3.3-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 3.00 V (8) 0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, VCCIO = 3.00 V (8) 0.2 V

II Input pin leakage current VI = VCC or ground (8) –10 10 µA

IOZ Tri-stated I/O pin leakage current VO = VCC or ground (8) –40 40 µA

ICC0 VCC supply current (standby) VI = ground, no load 0.5 5 mA

Table 14. FLEX 6000 5.0-V Device Capacitance Note (9)

Symbol Parameter Conditions Min Max Unit
CIN Input capacitance for I/O pin VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance for dedicated input VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
32 Altera Corporation
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Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, PLCC, and BGA packages 135 ° C

Table 16. FLEX 6000 3.3-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic and 

input buffers
(3), (4) 3.00 (3.00) 3.60 (3.60) V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage –0.5 5.75 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) The minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 

5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms. VCC must rise monotonically.
(5) Typical values are for TA = 25°  C and VCC = 3.3 V.
(6) These values are specified under Table 16 on page 33.
(7) The IOH parameter refers to high-level TTL or CMOS output current. 
(8) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(9) Capacitance is sample-tested only.

Table 17. FLEX 6000 3.3-V Device DC Operating Conditions Notes (5), (6)

Symbol Parameter Conditions Min Typ Max Unit
VIH High-level input voltage 1.7 5.75 V

VIL Low-level input voltage –0.5 0.8 V

VOH 3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 3.00 V (7) 2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, VCCIO = 3.00 V (7) VCCIO – 0.2 V

2.5-V high-level output voltage IOH = –100 µA DC, VCCIO = 2.30 V (7) 2.1 V

IOH = –1 mA DC, VCCIO = 2.30 V (7) 2.0 V

IOH = –2 mA DC, VCCIO = 2.30 V (7) 1.7 V

VOL 3.3-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 3.00 V (8) 0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, VCCIO = 3.00 V (8) 0.2 V

2.5-V low-level output voltage IOL = 100 µA DC, VCCIO = 2.30 V (8) 0.2 V

IOL = 1 mA DC, VCCIO = 2.30 V (8) 0.4 V

IOL = 2 mA DC, VCCIO = 2.30 V (8) 0.7 V

II Input pin leakage current VI = 5.3 V to ground (8) –10 10 µA

IOZ Tri-stated I/O pin leakage current VO = 5.3 V to ground (8) –10 10 µA

ICC0 VCC supply current (standby) VI = ground, no load 0.5 5 mA

Table 18. FLEX 6000 3.3-V Device Capacitance Note (9)

Symbol Parameter Conditions Min Max Unit
CIN Input capacitance for I/O pin VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance for dedicated input VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
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tCO 0.3 0.4 0.4 ns

tCLR 0.4 0.4 0.5 ns

tC 1.8 2.1 2.6 ns

tLD_CLR 1.8 2.1 2.6 ns

tCARRY_TO_CARRY 0.1 0.1 0.1 ns

tREG_TO_CARRY 1.6 1.9 2.3 ns

tDATA_TO_CARRY 2.1 2.5 3.0 ns

tCARRY_TO_CASC 1.0 1.1 1.4 ns

tCASC_TO_CASC 0.5 0.6 0.7 ns

tREG_TO_CASC 1.4 1.7 2.1 ns

tDATA_TO_CASC 1.1 1.2 1.5 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns

Table 25. IOE Timing Microparameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tOD1 1.9 2.2 2.7 ns

tOD2 4.1 4.8 5.8 ns

tOD3 5.8 6.8 8.3 ns

tXZ 1.4 1.7 2.1 ns

tXZ1 1.4 1.7 2.1 ns

tXZ2 3.6 4.3 5.2 ns

tXZ3 5.3 6.3 7.7 ns

tIOE 0.5 0.6 0.7 ns

tIN 3.6 4.1 5.1 ns

tIN_DELAY 4.8 5.4 6.7 ns

Table 24. LE Timing Microparameters for EPF6010A & EPF6016A Devices  (Part 2 of 2)

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
Altera Corporation  41



FLEX 6000 Programmable Logic Device Family Data Sheet
Tables 29 through 33 show the timing information for EPF6016 devices. 

Table 29. LE Timing Microparameters for EPF6016 Devices  

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tREG_TO_REG 2.2 2.8 ns

tCASC_TO_REG 0.9 1.2 ns

tCARRY_TO_REG 1.6 2.1 ns

tDATA_TO_REG 2.4 3.0 ns

tCASC_TO_OUT 1.3 1.7 ns

tCARRY_TO_OUT 2.4 3.0 ns

tDATA_TO_OUT 2.7 3.4 ns

tREG_TO_OUT 0.3 0.5 ns

tSU 1.1 1.6 ns

tH 1.8 2.3 ns

tCO 0.3 0.4 ns

tCLR 0.5 0.6 ns

tC 1.2 1.5 ns

tLD_CLR 1.2 1.5 ns

tCARRY_TO_CARRY 0.2 0.4 ns

tREG_TO_CARRY 0.8 1.1 ns

tDATA_TO_CARRY 1.7 2.2 ns

tCARRY_TO_CASC 1.7 2.2 ns

tCASC_TO_CASC 0.9 1.2 ns

tREG_TO_CASC 1.6 2.0 ns

tDATA_TO_CASC 1.7 2.1 ns

tCH 4.0 4.0 ns

tCL 4.0 4.0 ns

Table 30. IOE Timing Microparameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tOD1 2.3 2.8 ns

tOD2 4.6 5.1 ns
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Tables 34 through 38 show the timing information for EPF6024A devices.

Table 33. External Timing Parameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tINSU 3.2 4.1 ns

tINH 0.0 0.0 ns

tOUTCO 2.0 7.9 2.0 9.9 ns

Table 34. LE Timing Microparameters for EPF6024A Devices 

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tREG_TO_REG 1.2 1.3 1.6 ns

tCASC_TO_REG 0.7 0.8 1.0 ns

tCARRY_TO_REG 1.6 1.8 2.2 ns

tDATA_TO_REG 1.3 1.4 1.7 ns

tCASC_TO_OUT 1.2 1.3 1.6 ns

tCARRY_TO_OUT 2.0 2.2 2.6 ns

tDATA_TO_OUT 1.8 2.1 2.6 ns

tREG_TO_OUT 0.3 0.3 0.4 ns

tSU 0.9 1.0 1.2 ns

tH 1.3 1.4 1.7 ns

tCO 0.2 0.3 0.3 ns

tCLR 0.3 0.3 0.4 ns

tC 1.9 2.1 2.5 ns

tLD_CLR 1.9 2.1 2.5 ns

tCARRY_TO_CARRY 0.2 0.2 0.3 ns

tREG_TO_CARRY 1.4 1.6 1.9 ns

tDATA_TO_CARRY 1.3 1.4 1.7 ns

tCARRY_TO_CASC 1.1 1.2 1.4 ns

tCASC_TO_CASC 0.7 0.8 1.0 ns

tREG_TO_CASC 1.4 1.6 1.9 ns

tDATA_TO_CASC 1.0 1.1 1.3 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns
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Notes:
(1) Setup times are longer when the Increase Input Delay option is turned on. The setup time values are shown with the 

Increase Input Delay option turned off.
(2) Hold time is zero when the Increase Input Delay option is turned on.

Power 
Consumption

The supply power (P) for FLEX 6000 devices can be calculated with the 
following equations:

P =  PINT + PIO
P =  (ICCSTANDBY + ICCACTIVE) ×  VCC + PIO

Typical ICCSTANDBY values are shown as ICC0 in the “FLEX 6000 Device 
DC Operating Conditions” table on pages 31 and 33 of this data sheet. The 
ICCACTIVE value depends on the switching frequency and the application 
logic. This value is based on the amount of current that each LE typically 
consumes. The PIO value, which depends on the device output load 
characteristics and switching frequency, can be calculated using the 
guidelines given in Application Note 74 (Evaluating Power for Altera Devices).

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K ×  fMAX ×  N ×  togLC ×  

Where: 
fMAX = Maximum operating frequency in MHz 
N = Total number of LEs used in a FLEX 6000 device
togLC = Average percentage of LEs toggling at each clock 

(typically 12.5%)
K = Constant, shown in Table 39 

Table 38. External Timing Parameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSU 2.0 (1) 2.2 (1) 2.6 (1) ns

tINH 0.2 (2) 0.2 (2) 0.3 (2) ns

tOUTCO 2.0 7.4 2.0 8.2 2.0 9.9 ns

µA
MHz LE×
-----------------------------

Table 39. K Constant Values

Device K Value

EPF6010A 14

EPF6016 88

EPF6016A 14

EPF6024A 14
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