
Intel - EPF6016AFC256-1 Datasheet

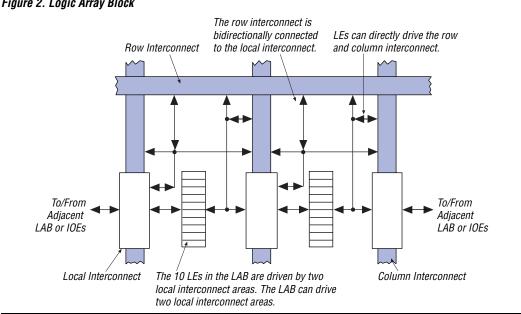
Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

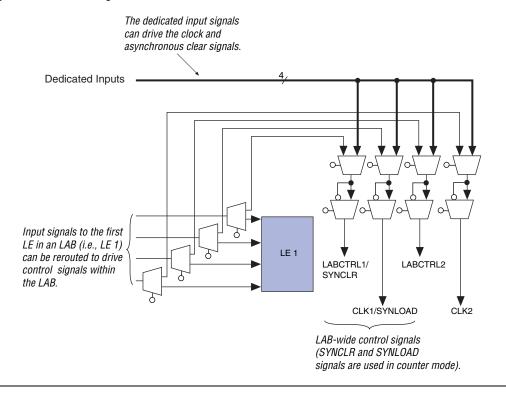
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	132
Number of Logic Elements/Cells	1320
Total RAM Bits	-
Number of I/O	171
Number of Gates	16000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf6016afc256-1

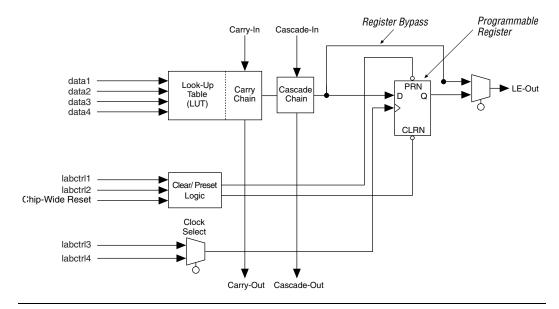
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


The interleaved LAB structure—an innovative feature of the FLEX 6000 architecture—allows each LAB to drive two local interconnects. This feature minimizes the use of the FastTrack Interconnect, providing higher performance. An LAB can drive 20 LEs in adjacent LABs via the local interconnect, which maximizes fitting flexibility while minimizing die size. See Figure 2.

In most designs, the registers only use global clock and clear signals. However, in some cases, other clock or asynchronous clear signals are needed. In addition, counters may also have synchronous clear or load signals. In a design that uses non-global clock and clear signals, inputs from the first LE in an LAB are re-routed to drive the control signals for that LAB. See Figure 3.

Figure 2. Logic Array Block


Figure 3. LAB Control Signals

Logic Element

An LE, the smallest unit of logic in the FLEX 6000 architecture, has a compact size that provides efficient logic usage. Each LE contains a fourinput LUT, which is a function generator that can quickly implement any function of four variables. An LE contains a programmable flipflop, carry and cascade chains. Additionally, each LE drives both the local and the FastTrack Interconnect. See Figure 4.

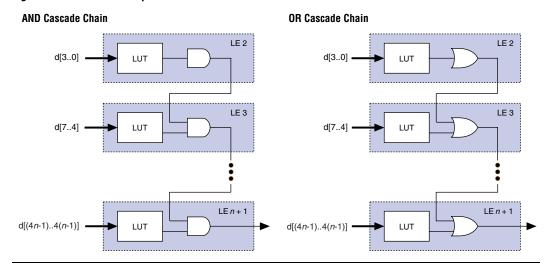

FLEX 6000 Programmable Logic Device Family Data Sheet

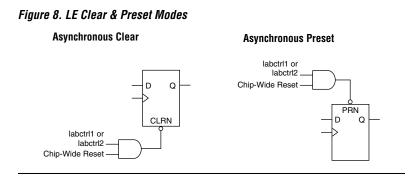
Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock and clear control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the outputs of the LE. The LE output can drive both the local interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equivalent comparators with minimum delay. Carry and cascade chains connect LEs 2 through 10 in an LAB and all LABs in the same half of the row. Because extensive use of carry and cascade chains can reduce routing flexibility, these chains should be limited to speed-critical portions of a design.

Figure 6. Cascade Chain Operation

LE Operating Modes


The FLEX 6000 LE can operate in one of the following three modes:

FLEX 6000 Programmable Logic Device Family Data Sheet

- Normal mode
- Arithmetic mode
- Counter mode

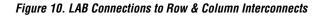
Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, synchronous clear, and synchronous load control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions to use an LE operating mode for optimal performance.

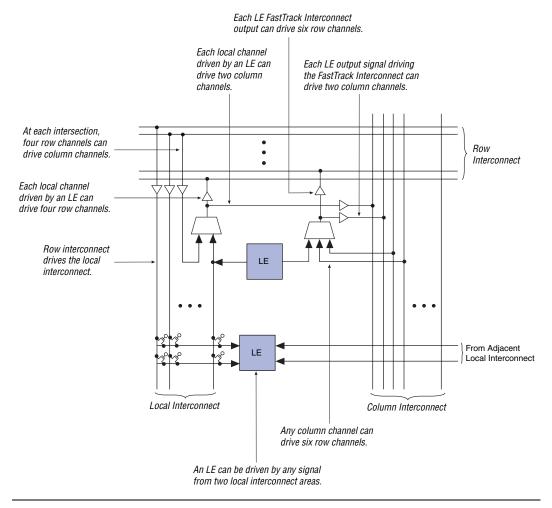
Figure 7 shows the LE operating modes.

Asynchronous Clear

The flipflop can be cleared by either LABCTRL1 or LABCTRL2.

Asynchronous Preset


An asynchronous preset is implemented with an asynchronous clear. The Altera software provides preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, this technique can be used when a register drives logic or drives a pin.


In addition to the two clear and preset modes, FLEX 6000 devices provide a chip-wide reset pin (DEV_CLRn) that can reset all registers in the device. The option to use this pin is set in the Altera software before compilation. The chip-wide reset overrides all other control signals. Any register with an asynchronous preset will be preset when the chip-wide reset is asserted because of the inversion technique used to implement the asynchronous preset.

The Altera software can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses an additional three LEs per register.

FastTrack Interconnect

In the FLEX 6000 OptiFLEX architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even for complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

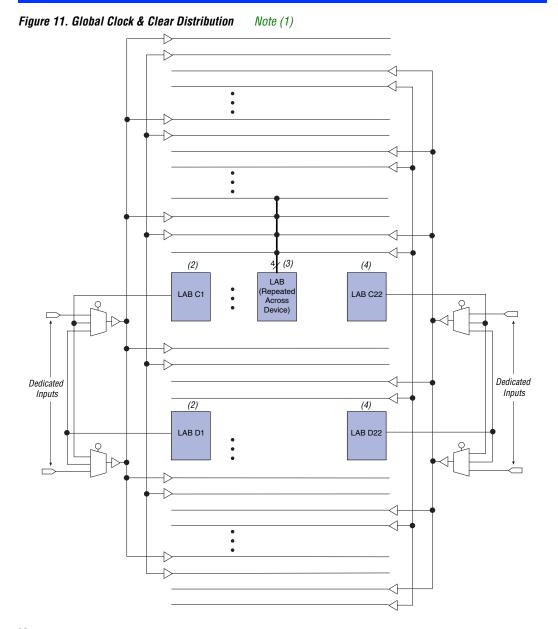

For improved routability, the row interconnect consists of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-length channel, which saves the other half of the channel for the other half of the row. One-third of the row channels are half-length channels.

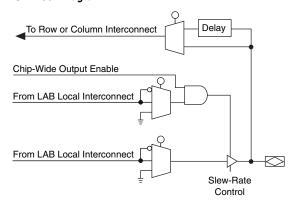
Table 5. FLEX 6000 FastTrack Interconnect Resources								
Device	Rows	Channels per Row	Columns	Channels per Column				
EPF6010A	4	144	22	20				
EPF6016 EPF6016A	6	144	22	20				
EPF6024A	7	186	28	30				

Table 5 summarizes the FastTrack Interconnect resources available in each FLEX 6000 device.

In addition to general-purpose I/O pins, FLEX 6000 devices have four dedicated input pins that provide low-skew signal distribution across the device. These four inputs can be used for global clock and asynchronous clear control signals. These signals are available as control signals for all LEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Using dedicated inputs to route data signals provides a fast path for high fan-out signals.

The local interconnect from LABs located at either end of two rows can drive a global control signal. For instance, in an EPF6016 device, LABs C1, D1, C22, and D22 can all drive global control signals. When an LE drives a global control signal, the dedicated input pin that drives that signal cannot be used. Any LE in the device can drive a global control signal by driving the FastTrack Interconnect into the appropriate LAB. To minimize delay, however, the Altera software places the driving LE in the appropriate LAB. The LE-driving-global signal feature is optimized for speed for control signals; regular data signals are better routed on the FastTrack Interconnect and do not receive any advantage from being routed on global signals. This LE-driving-global control signal feature is controlled by the designer and is not used automatically by the Altera software. See Figure 11.

Notes:


- The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, (1) LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals. The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
- (2)
- Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals. (3)
- (4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.

I/O Elements

An IOE contains a bidirectional I/O buffer and a tri-state buffer. IOEs can be used as input, output, or bidirectional pins. An IOE receives its data signals from the adjacent local interconnect, which can be driven by a row or column interconnect (allowing any LE in the device to drive the IOE) or by an adjacent LE (allowing fast clock-to-output delays). A FastFLEXTM I/O pin is a row or column output pin that receives its data signals from the adjacent local interconnect driven by an adjacent LE. The IOE receives its output enable signal through the same path, allowing individual output enables for every pin and permitting emulation of open-drain buffers. The Altera Compiler uses programmable inversion to invert the data or output enable signals automatically where appropriate. Opendrain emulation is provided by driving the data input low and toggling the OE of each IOE. This emulation is possible because there is one OE per pin.

A chip-wide output enable feature allows the designer to disable all pins of the device by asserting one pin (DEV_OE). This feature is useful during board debugging or testing.

Figure 12 shows the IOE block diagram.

Figure 12. IOE Block Diagram

Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pullup resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with $V_{CCIO} = 3.3$ V or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing

Because FLEX 6000 family devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power planes can be powered in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during power up without damaging the device. Additionally, FLEX 6000 devices do not drive out during power up. Once operating conditions are reached, FLEX 6000 devices operate as specified by the user.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

1

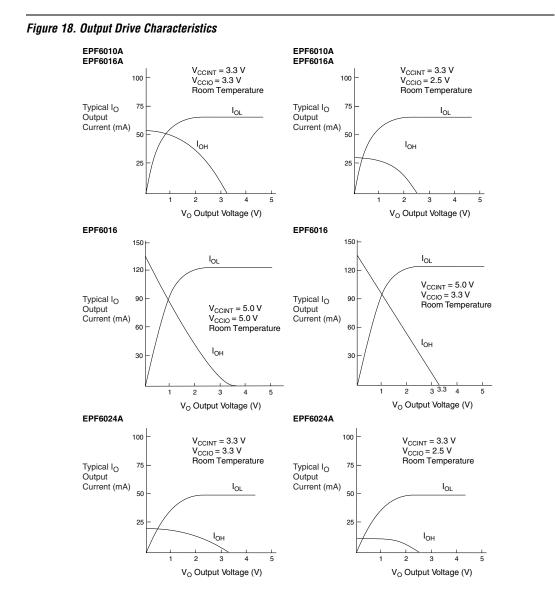
All FLEX 6000 devices provide JTAG BST circuitry that comply with the IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for FLEX 6000 devices. JTAG BST can be performed before or after configuration, but not during configuration (except when you disable JTAG support in user mode).

See *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)* for more information on JTAG BST circuitry.

Table 8. FLEX 6000	Table 8. FLEX 6000 JTAG Instructions					
JTAG Instruction	Description					
SAMPLE/PRELOAD	Allows a snapshot of the signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.					
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test result at the input pins.					
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through the selected device to adjacent devices during normal device operation.					

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IH}	High-level input voltage		1.7		5.75	V
V _{IL}	Low-level input voltage		-0.5		0.8	V
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (7)$	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	V _{CCIO} – 0.2			V
	2.5-V high-level output voltage	$I_{OH} = -100 \ \mu A \ DC, \ V_{CCIO} = 2.30 \ V \ (7)$	2.1			V
		$I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V}$ (7)	2.0			V
		$I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V}$ (7)	1.7			V
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC, V _{CCIO} = 3.00 V <i>(8)</i>			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V <i>(8)</i>			0.2	V
	2.5-V low-level output voltage	I _{OL} = 100 μA DC, V _{CCIO} = 2.30 V <i>(8)</i>			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8)			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8)			0.7	V
I _I	Input pin leakage current	$V_1 = 5.3 V$ to ground (8)	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = 5.3 V$ to ground (8)	-10		10	μA
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	5	mA

Table 18. FLEX 6000 3.3-V Device Capacitance Note (9)					
Symbol	Parameter	Conditions	Min	Max	Unit
CIN	Input capacitance for I/O pin	V _{IN} = 0 V, f = 1.0 MHz		8	pF
CINCLK	Input capacitance for dedicated input	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF


Notes to tables:

- 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
 (3) Numbers in parentheses are for industrial-temperature-range devices.
 (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
 (5) Typical values are for T_A = 25° C and V_{CC} = 3.3 V.
 (6) These values are specified under Table 16 on page 33.
 (7) The I_{OH} parameter refers to high-level TTL or CMOS output current.
 (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
 (9) Capacitance is cample-tested only.

(9) Capacitance is sample-tested only.

See the Operating Requirements for Altera Devices Data Sheet.
 The minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.

Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V V_{CCIO}. When V_{CCIO} = 5.0 V on EPF6016 devices, the output driver is compliant with the **PCI Local Bus Specification, Revision 2.2** for 5.0-V operation. When V_{CCIO} = 3.3 V on the EPF6010A and EPF6016A devices, the output driver is compliant with the **PCI Local Bus Specification, Revision 2.2** for 3.3-V operation.

Timing Model The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay ($t_{CO+} t_{REG_TO_OUT}$)
- Routing delay $(t_{ROW} + t_{LOCAL})$
- LE LUT delay ($t_{DATA_TO_REG}$)
- LE register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Timing simulation and delay prediction are available with the Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 19 shows the overall timing model, which maps the possible routing paths to and from the various elements of the FLEX 6000 device.

Parameter			Speed	Grade			Unit	
	-1		-	-2		3		
	Min	Мах	Min	Max	Min	Max		
tco		0.3		0.4		0.4	ns	
^t CLR		0.4		0.4		0.5	ns	
^t c		1.8		2.1		2.6	ns	
^t LD_CLR		1.8		2.1		2.6	ns	
t _{CARRY_TO_CARRY}		0.1		0.1		0.1	ns	
REG_TO_CARRY		1.6		1.9		2.3	ns	
DATA_TO_CARRY		2.1		2.5		3.0	ns	
tCARRY_TO_CASC		1.0		1.1		1.4	ns	
CASC_TO_CASC		0.5		0.6		0.7	ns	
TREG_TO_CASC		1.4		1.7		2.1	ns	
DATA_TO_CASC		1.1		1.2		1.5	ns	
<u>-</u>	2.5		3.0		3.5		ns	
t _{CL}	2.5		3.0		3.5		ns	

Parameter			Speed	Grade			Unit
	-	1	-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{OD1}		1.9		2.2		2.7	ns
t _{OD2}		4.1		4.8		5.8	ns
¹ ОD3		5.8		6.8		8.3	ns
txz		1.4		1.7		2.1	ns
t _{XZ1}		1.4		1.7		2.1	ns
t _{xz2}		3.6		4.3		5.2	ns
t _{XZ3}		5.3		6.3		7.7	ns
IOE		0.5		0.6		0.7	ns
ÎN		3.6		4.1		5.1	ns
tin delay		4.8		5.4		6.7	ns

Parameter			Speed	Grade			Unit
	-	1	-	-2		-3	
	Min	Max	Min	Max	Min	Мах	
t _{LOCAL}		0.7		0.7		1.0	ns
t _{ROW}		2.9		3.2		3.2	ns
t _{COL}		1.2		1.3		1.4	ns
t _{DIN_D}		5.4		5.7		6.4	ns
 tс		4.3		5.0		6.1	ns
t LEGLOBAL		2.6		3.0		3.7	ns
t _{LABCARRY}		0.7		0.8		0.9	ns
t _{LABCASC}		1.3		1.4		1.8	ns

Table 27. External Reference Timing Parameters for EPF6010A & EPF6016A Devices								
Parameter	Device			Speed	Grade			Unit
		-	1	-2	2	-3		
		Min	Max	Min	Мах	Min	Max	
t ₁	EPF6010A		37.6		43.6		53.7	ns
	EPF6016A		38.0		44.0		54.1	ns

Parameter		Speed Grade					
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.1 (1)		2.4 (1)		3.3 (1)		ns
t _{INH}	0.2 <i>(2)</i>		0.3 <i>(2)</i>		0.1 <i>(2)</i>		ns
tоитсо	2.0	7.1	2.0	8.2	2.0	10.1	ns

Notes:

Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off.
 Hold time is zero when the *Increase Input Delay* option is turned on.

Table 33. External Timing Parameters for EPF6016 Devices					
Parameter		Unit			
		-2	-3		
	Min	Max	Min	Мах	
t _{INSU}	3.2		4.1		ns
t _{INH}	0.0		0.0		ns
t _{оитсо}	2.0	7.9	2.0	9.9	ns

Tables 34 through 38 show the timing information for EPF6024A devices.

Parameter	Speed Grade						
	-1		-2		-3		1
	Min	Мах	Min	Мах	Min	Max	-
t _{REG_TO_REG}		1.2		1.3		1.6	ns
t _{CASC_TO_REG}		0.7		0.8		1.0	ns
t _{CARRY_TO_REG}		1.6		1.8		2.2	ns
t _{DATA_TO_REG}		1.3		1.4		1.7	ns
t _{CASC_TO_OUT}		1.2		1.3		1.6	ns
t _{CARRY_TO_OUT}		2.0		2.2		2.6	ns
t _{DATA_TO_OUT}		1.8		2.1		2.6	ns
t _{REG_TO_OUT}		0.3		0.3		0.4	ns
t _{SU}	0.9		1.0		1.2		ns
t _H	1.3		1.4		1.7		ns
t _{CO}		0.2		0.3		0.3	ns
t _{CLR}		0.3		0.3		0.4	ns
t _C		1.9		2.1		2.5	ns
t _{LD_CLR}		1.9		2.1		2.5	ns
t _{CARRY_TO_CARRY}		0.2		0.2		0.3	ns
t _{REG_TO_CARRY}		1.4		1.6		1.9	ns
t _{DATA_TO_CARRY}		1.3		1.4		1.7	ns
t _{CARRY_TO_CASC}		1.1		1.2		1.4	ns
t _{CASC_TO_CASC}		0.7		0.8		1.0	ns
t _{REG_TO_CASC}		1.4		1.6		1.9	ns
t _{DATA_TO_CASC}		1.0		1.1		1.3	ns
t _{CH}	2.5		3.0		3.5		ns
t _{CL}	2.5		3.0		3.5		ns

Table 38. External Timing Parameters for EPF6024A Devices							
Parameter	Speed Grade						Unit
	-1	-1		-2		-3	
	Min	Мах	Min	Max	Min	Max	
t _{INSU}	2.0 (1)		2.2 (1)		2.6 (1)		ns
t _{INH}	0.2 <i>(2)</i>		0.2 <i>(2)</i>		0.3 <i>(2)</i>		ns
t _{оитсо}	2.0	7.4	2.0	8.2	2.0	9.9	ns

Notes:

(1) Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off.

(2) Hold time is zero when the Increase Input Delay option is turned on.

Power Consumption

The supply power (P) for FLEX 6000 devices can be calculated with the following equations:

 $P = P_{INT} + P_{IO}$ $P = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$

Typical I_{CCSTANDBY} values are shown as I_{CC0} in the "FLEX 6000 Device DC Operating Conditions" table on pages 31 and 33 of this data sheet. The I_{CCACTIVE} value depends on the switching frequency and the application logic. This value is based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCACTIVE} value can be calculated with the following equation:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$

Where:

f _{MAX}	=	Maximum operating frequency in MHz
Ν	=	Total number of LEs used in a FLEX 6000 device
tog _{LC}	=	Average percentage of LEs toggling at each clock
		(typically 12.5%)
Κ	=	Constant, shown in Table 39

Table 39. K Constant Values				
Device	K Value			
EPF6010A	14			
EPF6016	88			
EPF6016A	14			
EPF6024A	14			

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in the power calculation equations shown above) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results, compared to measured power consumption for an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.

Operating Modes

The FLEX 6000 architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. This process of physically loading the SRAM data into a FLEX 6000 device is known as configuration. During initialization—a process that occurs immediately after configuration—the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes of a device are referred to as *command mode*; normal device operation is called *user mode*.

SRAM configuration elements allow FLEX 6000 devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 100 ms and is used to dynamically reconfigure an entire system. Also, in-field system upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for a FLEX 6000 device can be loaded with one of three configuration schemes, which is chosen on the basis of the target application. An EPC1 or EPC1441 configuration device or intelligent controller can be used to control the configuration of a FLEX 6000 device, allowing automatic configuration on system power-up.

Multiple FLEX 6000 devices can be configured in any of the three configuration schemes by connecting the configuration enable input (nCE) and configuration enable output (nCEO) pins on each device.

Table 40 shows the data sources for each configuration scheme.

Table 40. Configuration Schemes			
Configuration Scheme	Data Source		
Configuration device	EPC1 or EPC1441 configuration device		
Passive serial (PS)	BitBlaster [™] , ByteBlasterMV [™] , or MasterBlaster [™] download cables, or serial data source		
Passive serial asynchronous (PSA)	BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source		

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: (888) 3-ALTERA lit_req@altera.com Altera, BitBlaster, ByteBlasterMV, FastFlex, FastTrack, FineLine BGA, FLEX, MasterBlaster, MAX+PLUS II, MegaCore, MultiVolt, OptiFLEX, Quartus, SameFrame, and specific device designations are trademarks and/or service marks of Altera Corporation in the United States and other countries. Altera acknowledges the trademarks of other organizations for their respective products or services mentioned in this document, specifically: Verilog is a registered trademark of and Verilog-XL is a trademarks of Cadence Design Systems, Inc. DATA I/O is a registered trademark of Data I/O Corporation. HP is a registered trademark of Faemplar Logic, Inc. Pentium is a registered trademark of Intel Corporation. Mentor Graphics is a registered trademark of Mentor Graphics Corporation. OrCAD is a registered trademark of OrCAD Systems, Corporation. SPARCstation is a registered trademark of SPARC International, Inc. and is licensed exclusively to Sun Microsystems, Inc. Sun Workstation is a registered trademark of SPARC International, Inc. and is licensed exclusively to Sun Microsystems, Inc. Sun Workstation is a registered trademark of Viewlogic Systems, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the amplications.

of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Copyright $\ensuremath{\textcircled{O}}$ 2001 Altera Corporation. All rights reserved.

Altera Corporation

Printed on Recycled Paper.

52