Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 132 | | Number of Logic Elements/Cells | 1320 | | Total RAM Bits | - | | Number of I/O | 171 | | Number of Gates | 16000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf6016aqc208-3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # General Description The Altera® FLEX 6000 programmable logic device (PLD) family provides a low-cost alternative to high-volume gate array designs. FLEX 6000 devices are based on the OptiFLEX architecture, which minimizes die size while maintaining high performance and routability. The devices have reconfigurable SRAM elements, which give designers the flexibility to quickly change their designs during prototyping and design testing. Designers can also change functionality during operation via in-circuit reconfiguration. FLEX 6000 devices are reprogrammable, and they are 100% tested prior to shipment. As a result, designers are not required to generate test vectors for fault coverage purposes, allowing them to focus on simulation and design verification. In addition, the designer does not need to manage inventories of different gate array designs. FLEX 6000 devices are configured on the board for the specific functionality required. Table 3 shows FLEX 6000 performance for some common designs. All performance values shown were obtained using Synopsys DesignWare or LPM functions. Special design techniques are not required to implement the applications; the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file. | Application | LEs Used | | Performance | | | |--|----------|-------------------|-------------------|-------------------|-----| | | | -1 Speed
Grade | -2 Speed
Grade | -3 Speed
Grade | | | 16-bit loadable counter | 16 | 172 | 153 | 133 | MHz | | 16-bit accumulator | 16 | 172 | 153 | 133 | MHz | | 24-bit accumulator | 24 | 136 | 123 | 108 | MHz | | 16-to-1 multiplexer (pin-to-pin) (1) | 10 | 12.1 | 13.4 | 16.6 | ns | | 16 × 16 multiplier with a 4-stage pipeline | 592 | 84 | 67 | 58 | MHz | #### Note: (1) This performance value is measured as a pin-to-pin delay. Table 4 shows FLEX 6000 performance for more complex designs. | Application | LEs Used | LEs Used Performance | | | | | |--|----------|---------------------------------------|----------|-------------------|-----------|--| | | | -1 Speed -2 Speed - Grade Grade | | -3 Speed
Grade | | | | 8-bit, 16-tap parallel finite impulse response (FIR) filter | 599 | 94 | 80 | 72 | MSPS | | | 8-bit, 512-point fast Fourier transform (FFT) function | 1,182 | 75
63 | 89
53 | 109
43 | μS
MHz | | | a16450 universal asynchronous
receiver/transmitter (UART) | 487 | 36 | 30 | 25 | MHz | | | PCI bus target with zero wait states | 609 | 56 | 49 | 42 | MHz | | #### Note: FLEX 6000 devices are supported by Altera development systems; a single, integrated package that offers schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools. The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development systems include DesignWare functions that are optimized for the FLEX 6000 architecture. The Altera development system runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800. **f** See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet for more information. ⁽¹⁾ The applications in this table were created using Altera MegaCoreTM functions. Figure 1. OptiFLEX Architecture Block Diagram FLEX 6000 devices provide four dedicated, global inputs that drive the control inputs of the flipflops to ensure efficient distribution of high-speed, low-skew control signals. These inputs use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect. These inputs can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device. The dedicated global routing structure is built into the device, eliminating the need to create a clock tree. # **Logic Array Block** An LAB consists of ten LEs, their associated carry and cascade chains, the LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 6000 architecture, and facilitates efficient routing with optimum device utilization and high performance. Figure 3. LAB Control Signals # **Logic Element** An LE, the smallest unit of logic in the FLEX 6000 architecture, has a compact size that provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. An LE contains a programmable flipflop, carry and cascade chains. Additionally, each LE drives both the local and the FastTrack Interconnect. See Figure 4. Figure 4. Logic Element The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock and clear control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the outputs of the LE. The LE output can drive both the local interconnect and the FastTrack Interconnect. The FLEX 6000 architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equivalent comparators with minimum delay. Carry and cascade chains connect LEs 2 through 10 in an LAB and all LABs in the same half of the row. Because extensive use of carry and cascade chains can reduce routing flexibility, these chains should be limited to speed-critical portions of a design. Figure 7. LE Operating Modes # **Normal Mode** #### **Arithmetic Mode** # Notes: - (1) The register feedback multiplexer is available on LE 2 of each LAB. - (2) The data1 and data2 input signals can supply a clock enable, up or down control, or register feedback signals for all LEs other than the second LE in an LAB. - (3) The LAB-wide synchronous clear and LAB-wide synchronous load affect all registers in an LAB. A row channel can be driven by an LE or by one of two column channels. These three signals feed a 3-to-1 multiplexer that connects to six specific row channels. Row channels drive into the local interconnect via multiplexers. Each column of LABs is served by a dedicated column interconnect. The LEs in an LAB can drive the column interconnect. The LEs in an LAB, a column IOE, or a row interconnect can drive the column interconnect. The column interconnect can then drive another row's interconnect to route the signals to other LABs in the device. A signal from the column interconnect must be routed to the row interconnect before it can enter an LAB. Each LE has a FastTrack Interconnect output and a local output. The FastTrack interconnect output can drive six row and two column lines directly; the local output drives the local interconnect. Each local interconnect channel driven by an LE can drive four row and two column channels. This feature provides additional flexibility, because each LE can drive any of ten row lines and four column lines. In addition, LEs can drive global control signals. This feature is useful for distributing internally generated clock, asynchronous clear, and asynchronous preset signals. A pin-driven global signal can also drive data signals, which is useful for high-fan-out data signals. Each LAB drives two groups of local interconnects, which allows an LE to drive two LABs, or 20 LEs, via the local interconnect. The row-to-local multiplexers are used more efficiently, because the multiplexers can now drive two LABs. Figure 10 shows how an LAB connects to row and column interconnects. Figure 11. Global Clock & Clear Distribution Note (1) #### Notes: - The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals. The local interconnect from LABs C1 and D1 can drive two global control signals on the left side. - (2) - Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals. (3) - The local interconnect from LABs C22 and D22 can drive two global control signals on the right side. #### MultiVolt I/O Interface The FLEX 6000 device architecture supports the MultiVolt I/O interface feature, which allows FLEX 6000 devices to interface with systems of differing supply voltages. The EPF6016 device can be set for 3.3-V or 5.0-V I/O pin operation. This device has one set of $V_{\rm CC}$ pins for internal operation and input buffers (VCCINT), and another set for output drivers (VCCIO). The VCCINT pins on 5.0-V FLEX 6000 devices must always be connected to a 5.0-V power supply. With a 5.0-V V_{CCINT} level, input voltages are at TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs. The VCCIO pins on 5.0-V FLEX 6000 devices can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels lower than 4.75 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} . On 3.3-V FLEX 6000 devices, the VCCINT pins must be connected to a 3.3-V power supply. Additionally, 3.3-V FLEX 6000A devices can interface with 2.5-V, 3.3-V, or 5.0-V systems when the VCCIO pins are tied to 2.5 V. The output can drive 2.5-V systems, and the inputs can be driven by 2.5-V, 3.3-V, or 5.0-V systems. When the VCCIO pins are tied to 3.3 V, the output can drive 3.3-V or 5.0-V systems. MultiVolt I/Os are not supported on 100-pin TQFP or 100-pin FineLine BGA packages. | Table 7 | describes | FLFX 6000 | MultiVolt I | /O support. | |---------|-----------|-----------|-------------|--------------| | Table / | describes | TLLA UUUU | munu v On i | / O subboit. | | Table 7. | Table 7. FLEX 6000 MultiVolt I/O Support | | | | | | | | |--------------------|------------------------------------------|--------------------------------|-----|-----|-------|-------|-----|--| | V _{CCINT} | V _{CCIO} | Input Signal (V) Output Signal | | | | l (V) | | | | (V) | (V) | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | 3.3 | 2.5 | v | V | v | V | | | | | 3.3 | 3.3 | v | v | v | v (1) | v | v | | | 5.0 | 3.3 | | v | v | | v | v | | | 5.0 | 5.0 | | V | v | | | V | | #### Note: (1) When $V_{\rm CCIO} = 3.3~{\rm V}$, a FLEX 6000 device can drive a 2.5-V device that has 3.3-V tolerant inputs. Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. Output pins on 5.0-V FLEX 6000 devices with V_{CCIO} = 3.3 V or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain. # **Power Sequencing & Hot-Socketing** Because FLEX 6000 family devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $\rm V_{CCIO}$ and $\rm V_{CCINT}$ power planes can be powered in any order. Signals can be driven into 3.3-V FLEX 6000 devices before and during power up without damaging the device. Additionally, FLEX 6000 devices do not drive out during power up. Once operating conditions are reached, FLEX 6000 devices operate as specified by the user. # IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 6000 devices provide JTAG BST circuitry that comply with the IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for FLEX 6000 devices. JTAG BST can be performed before or after configuration, but not during configuration (except when you disable JTAG support in user mode). See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST circuitry. | Table 8. FLEX 6000 | Table 8. FLEX 6000 JTAG Instructions | | | | |--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | JTAG Instruction | Description | | | | | SAMPLE/PRELOAD | Allows a snapshot of the signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. | | | | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test result at the input pins. | | | | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through the selected device to adjacent devices during normal device operation. | | | | | Symbol | Parameter | Min | Max | Unit | |-------------------|------------------------------------------------|-----|-----|------| | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock-to-output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock-to-output | | 35 | ns | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | # **Generic Testing** Each FLEX 6000 device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 6000 devices are made under conditions equivalent to those shown in Figure 17. Multiple test patterns can be used to configure devices during all stages of the production flow. #### Figure 17. AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers without parentheses are for 5.0-V devices or outputs. Numbers in parentheses are for 3.3-V devices or outputs. Numbers in brackets are for 2.5-V devices or outputs. | Table 1 | 3. FLEX 6000 5.0-V Device D | C Operating Conditions Notes (5 |), (6) | | | | |------------------|------------------------------------------|--------------------------------------------------------------|-------------------------|-----|--------------------------|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | V _{IH} | High-level input voltage | | 2.0 | | V _{CCINT} + 0.5 | ٧ | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V } (7)$ | 2.4 | | | ٧ | | | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | | ٧ | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} - 0.2 | | | ٧ | | V _{OL} | 5.0-V low-level TTL output voltage | I _{OL} = 8 mA DC, V _{CCIO} = 4.75 V (8) | | | 0.45 | ٧ | | | 3.3-V low-level TTL output voltage | I_{OL} = 8 mA DC, V_{CCIO} = 3.00 V (8) | | | 0.45 | ٧ | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | | 0.2 | ٧ | | I _I | Input pin leakage current | V _I = V _{CC} or ground (8) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | V _O = V _{CC} or ground (8) | -40 | | 40 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.5 | 5 | mA | | Table 1 | 4. FLEX 6000 5.0-V Device Capa | citance Note (9) | | | | |--------------------|---------------------------------------|-------------------------------------|-----|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input capacitance for I/O pin | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | C _{INCLK} | Input capacitance for dedicated input | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | ## Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time to 100 ms. V_{CC} must rise monotonically. (5) Typical values are for T_A = 25° C and V_{CC} = 5.0 V. (6) These values are specified under the FLEX 6000 Recommended Operating Conditions shown in Table 12 on page 31. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (9) Capacitance is sample-tested only. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|------------------------------------------|--------------------------------------------------------------|-------------------------|-----|------|------| | V _{IH} | High-level input voltage | | 1.7 | | 5.75 | ٧ | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | ٧ | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} - 0.2 | | | V | | | 2.5-V high-level output voltage | $I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V (7)$ | 2.1 | | | ٧ | | | | I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (7) | 2.0 | | | ٧ | | | | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V}$ (7) | 1.7 | | | ٧ | | V _{OL} | 3.3-V low-level TTL output voltage | $I_{OL} = 8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | | 0.2 | V | | | 2.5-V low-level output voltage | I _{OL} = 100 μA DC, V _{CCIO} = 2.30 V (8) | | | 0.2 | ٧ | | | | I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8) | | | 0.4 | ٧ | | | | I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8) | | | 0.7 | ٧ | | I _I | Input pin leakage current | V _I = 5.3 V to ground (8) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = 5.3 \text{ V to ground } (8)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.5 | 5 | mA | | Table 1 | 8. FLEX 6000 3.3-V Device Capa | citance Note (9) | | | | |--------------------|---------------------------------------|-------------------------------------|-----|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input capacitance for I/O pin | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | C _{INCLK} | Input capacitance for dedicated input | $V_{IN} = 0 V$, $f = 1.0 MHz$ | | 12 | pF | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | ## Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) The minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically. (5) Typical values are for T_A = 25° C and V_{CC} = 3.3 V. (6) These values are specified under Table 16 on page 33. (7) The I_{OH} parameter refers to high-level TTL or CMOS output current. - (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (9) Capacitance is sample-tested only. Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V $V_{\rm CCIO}$. When $V_{\rm CCIO}=5.0$ V on EPF6016 devices, the output driver is compliant with the *PCI Local Bus Specification, Revision* 2.2 for 5.0-V operation. When $V_{\rm CCIO}=3.3$ V on the EPF6010A and EPF6016A devices, the output driver is compliant with the *PCI Local Bus Specification, Revision* 2.2 for 3.3-V operation. Figure 18. Output Drive Characteristics Tables 19 through 21 describe the FLEX 6000 internal timing microparameters, which are expressed as worst-case values. Using hand calculations, these parameters can be used to estimate design performance. However, before committing designs to silicon, actual worst-case performance should be modeled using timing simulation and timing analysis. Tables 22 and 23 describe FLEX 6000 external timing parameters. | Symbol | Parameter | Conditions | |-----------------------------|-----------------------------------------------------------------------------------------|------------| | t _{REG_TO_REG} | LUT delay for LE register feedback in carry chain | | | t _{CASC_TO_REG} | Cascade-in to register delay | | | t _{CARRY_TO_REG} | Carry-in to register delay | | | t _{DATA_TO_REG} | LE input to register delay | | | t _{CASC_TO_OUT} | Cascade-in to LE output delay | | | t _{CARRY_TO_OUT} | Carry-in to LE output delay | | | t _{DATA_TO_OUT} | LE input to LE output delay | | | t _{REG_TO_OUT} | Register output to LE output delay | | | t _{SU} | LE register setup time before clock; LE register recovery time after asynchronous clear | | | t _H | LE register hold time after clock | | | t_{CO} | LE register clock-to-output delay | | | t _{CLR} | LE register clear delay | | | t_C | LE register control signal delay | | | t _{LD_CLR} | Synchronous load or clear delay in counter mode | | | t _{CARRY_TO_CARRY} | Carry-in to carry-out delay | | | t _{REG_TO_CARRY} | Register output to carry-out delay | | | t _{DATA_TO_CARRY} | LE input to carry-out delay | | | t _{CARRY_TO_CASC} | Carry-in to cascade-out delay | | | t _{CASC_TO_CASC} | Cascade-in to cascade-out delay | | | t _{REG_TO_CASC} | Register-out to cascade-out delay | | | t _{DATA_TO_CASC} | LE input to cascade-out delay | | | t _{CH} | LE register clock high time | | | t_{CL} | LE register clock low time | | | | + | - | | Table 23. External Timing Parameters | | | | | | |--------------------------------------|---------------------------------------------------------------------------------|------------|--|--|--| | Symbol | Parameter | Conditions | | | | | t _{INSU} | Setup time with global clock at LE register | (8) | | | | | t _{INH} | Hold time with global clock at LE register (8) | | | | | | t _{оитсо} | Clock-to-output delay with global clock with LE register using FastFLEX I/O pin | (8) | | | | #### *Notes to tables:* - Microparameters are timing delays contributed by individual architectural elements and cannot be measured explicitly. - (2) Operating conditions: - $\hat{V_{CCIO}} = \widecheck{5}.0~V \pm 5\%$ for commercial use in 5.0-V FLEX 6000 devices. - $V_{CCIO} = 5.0 \text{ V} \pm 10\%$ for industrial use in 5.0-V FLEX 6000 devices. - $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in 3.3-V FLEX 6000 devices. - (3) Operating conditions: - $\hat{V_{CCIO}} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in 5.0-V FLEX 6000 devices. - V_{CCIO} = 2.5 V ±0.2 V for commercial or industrial use in 3.3-V FLEX 6000 devices. - (4) Operating conditions: - $V_{\text{CCIO}} = 2.5 \text{ V}, 3.3 \text{ V}, \text{ or } 5.0 \text{ V}.$ - (5) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (6) This timing parameter shows the delay of a register-to-register test pattern and is used to determine speed grades. There are 12 LEs, including source and destination registers. The row and column interconnects between the registers vary in length. - 7) This timing parameter is shown for reference and is specified by characterization. - (8) This timing parameter is specified by characterization. Tables 24 through 28 show the timing information for EPF6010A and EPF6016A devices. | Parameter | Speed Grade | | | | | | | |---------------------------|-------------|-----|-----|-----|-----|-----|----| | | - | 1 | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | • | | treg_to_reg | | 1.2 | | 1.3 | | 1.7 | ns | | t _{CASC_TO_REG} | | 0.9 | | 1.0 | | 1.2 | ns | | t _{CARRY_TO_REG} | | 0.9 | | 1.0 | | 1.2 | ns | | t _{DATA_TO_REG} | | 1.1 | | 1.2 | | 1.5 | ns | | t _{CASC_TO_OUT} | | 1.3 | | 1.4 | | 1.8 | ns | | t _{CARRY_TO_OUT} | | 1.6 | | 1.8 | | 2.3 | ns | | ^t DATA_TO_OUT | | 1.7 | | 2.0 | | 2.5 | ns | | t _{REG_TO_OUT} | | 0.4 | | 0.4 | | 0.5 | ns | | t _{su} | 0.9 | | 1.0 | | 1.3 | | ns | | t _H | 1.4 | | 1.7 | | 2.1 | | ns | Tables 29 through 33 show the timing information for EPF6016 devices. | Parameter | Speed Grade | | | | | | |-----------------------------|-------------|-----|-----|-----|----|--| | | -2 | | -3 | | 1 | | | | Min | Max | Min | Max | | | | t _{REG_TO_REG} | | 2.2 | | 2.8 | ns | | | t _{CASC_TO_REG} | | 0.9 | | 1.2 | ns | | | t _{CARRY_TO_REG} | | 1.6 | | 2.1 | ns | | | t _{DATA_TO_REG} | | 2.4 | | 3.0 | ns | | | t _{CASC_TO_OUT} | | 1.3 | | 1.7 | ns | | | t _{CARRY_TO_OUT} | | 2.4 | | 3.0 | ns | | | t _{DATA_TO_OUT} | | 2.7 | | 3.4 | ns | | | t _{REG_TO_OUT} | | 0.3 | | 0.5 | ns | | | t _{SU} | 1.1 | | 1.6 | | ns | | | t _H | 1.8 | | 2.3 | | ns | | | t_{CO} | | 0.3 | | 0.4 | ns | | | t _{CLR} | | 0.5 | | 0.6 | ns | | | t_C | | 1.2 | | 1.5 | ns | | | t _{LD_CLR} | | 1.2 | | 1.5 | ns | | | t _{CARRY_TO_CARRY} | | 0.2 | | 0.4 | ns | | | t _{REG_TO_CARRY} | | 0.8 | | 1.1 | ns | | | t _{DATA_TO_CARRY} | | 1.7 | | 2.2 | ns | | | t _{CARRY_TO_CASC} | | 1.7 | | 2.2 | ns | | | t _{CASC_TO_CASC} | | 0.9 | | 1.2 | ns | | | t _{REG_TO_CASC} | | 1.6 | | 2.0 | ns | | | t _{DATA_TO_CASC} | | 1.7 | | 2.1 | ns | | | t _{CH} | 4.0 | | 4.0 | | ns | | | t _{CL} | 4.0 | | 4.0 | | ns | | | Parameter | Speed Grade | | | | | | |------------------|-------------|-----|-----|-----|----|--| | | -2 | | -3 | | | | | | Min | Max | Min | Max | | | | t _{OD1} | | 2.3 | | 2.8 | ns | | | t _{OD2} | | 4.6 | | 5.1 | ns | | | Table 33. External Timing Parameters for EPF6016 Devices | | | | | | | | |----------------------------------------------------------|-----|------|-----|-----|----|--|--| | Parameter | | Unit | | | | | | | | -2 | | -3 | | | | | | | Min | Max | Min | Max | | | | | t _{INSU} | 3.2 | | 4.1 | | ns | | | | t _{INH} | 0.0 | | 0.0 | | ns | | | | t _{оитсо} | 2.0 | 7.9 | 2.0 | 9.9 | ns | | | Tables 34 through 38 show the timing information for EPF6024A devices. | Parameter | Speed Grade | | | | | | | |-----------------------------|-------------|-----|-----|-----|-----|-----|----| | | -1 | | -2 | | -3 | | 1 | | | Min | Max | Min | Max | Min | Max | | | t _{REG_TO_REG} | | 1.2 | | 1.3 | | 1.6 | ns | | t _{CASC_TO_REG} | | 0.7 | | 0.8 | | 1.0 | ns | | t _{CARRY_TO_REG} | | 1.6 | | 1.8 | | 2.2 | ns | | t _{DATA_TO_REG} | | 1.3 | | 1.4 | | 1.7 | ns | | t _{CASC_TO_OUT} | | 1.2 | | 1.3 | | 1.6 | ns | | t _{CARRY_TO_OUT} | | 2.0 | | 2.2 | | 2.6 | ns | | t _{DATA_TO_OUT} | | 1.8 | | 2.1 | | 2.6 | ns | | t _{REG_TO_OUT} | | 0.3 | | 0.3 | | 0.4 | ns | | t _{SU} | 0.9 | | 1.0 | | 1.2 | | ns | | t _H | 1.3 | | 1.4 | | 1.7 | | ns | | t_{CO} | | 0.2 | | 0.3 | | 0.3 | ns | | t _{CLR} | | 0.3 | | 0.3 | | 0.4 | ns | | t_C | | 1.9 | | 2.1 | | 2.5 | ns | | t _{LD_CLR} | | 1.9 | | 2.1 | | 2.5 | ns | | t _{CARRY_TO_CARRY} | | 0.2 | | 0.2 | | 0.3 | ns | | t _{REG_TO_CARRY} | | 1.4 | | 1.6 | | 1.9 | ns | | t _{DATA_TO_CARRY} | | 1.3 | _ | 1.4 | _ | 1.7 | ns | | t _{CARRY_TO_CASC} | | 1.1 | | 1.2 | | 1.4 | ns | | t _{CASC_TO_CASC} | | 0.7 | | 0.8 | | 1.0 | ns | | t _{REG_TO_CASC} | | 1.4 | | 1.6 | | 1.9 | ns | | t _{DATA_TO_CASC} | | 1.0 | | 1.1 | | 1.3 | ns | | t _{CH} | 2.5 | | 3.0 | | 3.5 | | ns | | t _{CL} | 2.5 | | 3.0 | | 3.5 | | ns | This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. To better reflect actual designs, the power model (and the constant K in the power calculation equations shown above) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results, compared to measured power consumption for an actual design in a segmented interconnect FPGA. Figure 20 shows the relationship between the current and operating frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices. ## **Operating Modes** The FLEX 6000 architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. This process of physically loading the SRAM data into a FLEX 6000 device is known as configuration. During initialization—a process that occurs immediately after configuration—the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. The configuration and initialization processes of a device are referred to as *command mode*; normal device operation is called *user mode*. SRAM configuration elements allow FLEX 6000 devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. The entire reconfiguration process requires less than 100 ms and is used to dynamically reconfigure an entire system. Also, in-field system upgrades can be performed by distributing new configuration files. # **Configuration Schemes** The configuration data for a FLEX 6000 device can be loaded with one of three configuration schemes, which is chosen on the basis of the target application. An EPC1 or EPC1441 configuration device or intelligent controller can be used to control the configuration of a FLEX 6000 device, allowing automatic configuration on system power-up. Multiple FLEX 6000 devices can be configured in any of the three configuration schemes by connecting the configuration enable input (nCE) and configuration enable output (nCEO) pins on each device. Table 40 shows the data sources for each configuration scheme. | Table 40. Configuration Schemes | | | | | | |-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Configuration Scheme | Data Source | | | | | | Configuration device | EPC1 or EPC1441 configuration device | | | | | | Passive serial (PS) | BitBlaster TM , ByteBlasterMV TM , or MasterBlaster TM download cables, or serial data source | | | | | | Passive serial asynchronous (PSA) | BitBlaster, ByteBlasterMV, or MasterBlaster download cables, or serial data source | | | | |