Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|-------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 132 | | Number of Logic Elements/Cells | 1320 | | Total RAM Bits | - | | Number of I/O | 117 | | Number of Gates | 16000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf6016atc144-3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 1. OptiFLEX Architecture Block Diagram FLEX 6000 devices provide four dedicated, global inputs that drive the control inputs of the flipflops to ensure efficient distribution of high-speed, low-skew control signals. These inputs use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect. These inputs can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device. The dedicated global routing structure is built into the device, eliminating the need to create a clock tree. #### **Logic Array Block** An LAB consists of ten LEs, their associated carry and cascade chains, the LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 6000 architecture, and facilitates efficient routing with optimum device utilization and high performance. The interleaved LAB structure—an innovative feature of the FLEX 6000 architecture—allows each LAB to drive two local interconnects. This feature minimizes the use of the FastTrack Interconnect, providing higher performance. An LAB can drive 20 LEs in adjacent LABs via the local interconnect, which maximizes fitting flexibility while minimizing die size. See Figure 2. Figure 2. Logic Array Block In most designs, the registers only use global clock and clear signals. However, in some cases, other clock or asynchronous clear signals are needed. In addition, counters may also have synchronous clear or load signals. In a design that uses non-global clock and clear signals, inputs from the first LE in an LAB are re-routed to drive the control signals for that LAB. See Figure 3. Figure 4. Logic Element The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock and clear control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the outputs of the LE. The LE output can drive both the local interconnect and the FastTrack Interconnect. The FLEX 6000 architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equivalent comparators with minimum delay. Carry and cascade chains connect LEs 2 through 10 in an LAB and all LABs in the same half of the row. Because extensive use of carry and cascade chains can reduce routing flexibility, these chains should be limited to speed-critical portions of a design. Figure 5. Carry Chain Operation #### Cascade Chain The cascade chain enables the FLEX 6000 architecture to implement very wide fan-in functions. Adjacent LUTs can be used to implement portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR gate (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.5 ns per LE. Cascade chain logic can be created automatically by the Altera software during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of cascade chains for the appropriate functions. A cascade chain implementing an AND gate can use the register in the last LE; a cascade chain implementing an OR gate cannot use this register because of the inversion required to implement the OR gate. Because the first LE of an LAB can generate control signals for that LAB, the first LE in each LAB is not included in cascade chains. Moreover, cascade chains longer than nine bits are automatically implemented by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from an even-numbered LAB to another even-numbered LAB, or from an odd-numbered LAB to another odd-numbered LAB. For example, the last LE of the first LAB in a row cascades to the second LE of the third LAB. The cascade chain does not cross the center of the row. For example, in an EPF6016 device, the cascade chain stops at the 11th LAB in a row and a new cascade chain begins at the 12th LAB. Figure 6 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. In this example, functions of 4n variables are implemented with n LEs. The cascade chain requires 3.4 ns to decode a 16-bit address. #### **Normal Mode** The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The Altera software automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. #### Arithmetic Mode The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 7, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. The Altera software implements logic functions to use the arithmetic mode automatically where appropriate; the designer does not have to decide how the carry chain will be used. #### **Counter Mode** The counter mode offers counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in a LAB use counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. In addition, the Altera software automatically places registers that are not in the counter into other LABs. The counter mode uses two 3-input LUTs: one generates the counter data and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load will override any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. Either the counter enable or the up/down control may be used for a given counter. Moreover, the synchronous load can be used as a count enable by routing the register output into the data input automatically when requested by the designer. The second LE of each LAB has a special function for counter mode; the carry-in of the LE can be driven by a fast feedback path from the register. This function gives a faster counter speed for counter carry chains starting in the second LE of an LAB. The Altera software implements functions to use the counter mode automatically where appropriate. The designer does not have to decide how the carry chain will be used. #### Internal Tri-State Emulation Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer. #### Clear & Preset Logic Control Logic for the programmable register's clear and preset functions is controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE register has an asynchronous clear that can implement an asynchronous preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear or preset. Because the clear and preset functions are active-low, the Altera software automatically assigns a logic high to an unused clear or preset signal. The clear and preset logic is implemented in either the asynchronous clear or asynchronous preset mode, which is chosen during design entry (see Figure 8). A row channel can be driven by an LE or by one of two column channels. These three signals feed a 3-to-1 multiplexer that connects to six specific row channels. Row channels drive into the local interconnect via multiplexers. Each column of LABs is served by a dedicated column interconnect. The LEs in an LAB can drive the column interconnect. The LEs in an LAB, a column IOE, or a row interconnect can drive the column interconnect. The column interconnect can then drive another row's interconnect to route the signals to other LABs in the device. A signal from the column interconnect must be routed to the row interconnect before it can enter an LAB. Each LE has a FastTrack Interconnect output and a local output. The FastTrack interconnect output can drive six row and two column lines directly; the local output drives the local interconnect. Each local interconnect channel driven by an LE can drive four row and two column channels. This feature provides additional flexibility, because each LE can drive any of ten row lines and four column lines. In addition, LEs can drive global control signals. This feature is useful for distributing internally generated clock, asynchronous clear, and asynchronous preset signals. A pin-driven global signal can also drive data signals, which is useful for high-fan-out data signals. Each LAB drives two groups of local interconnects, which allows an LE to drive two LABs, or 20 LEs, via the local interconnect. The row-to-local multiplexers are used more efficiently, because the multiplexers can now drive two LABs. Figure 10 shows how an LAB connects to row and column interconnects. Figure 11. Global Clock & Clear Distribution Note (1) #### Notes: - The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals. The local interconnect from LABs C1 and D1 can drive two global control signals on the left side. - (2) - Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals. (3) - The local interconnect from LABs C22 and D22 can drive two global control signals on the right side. #### I/O Elements An IOE contains a bidirectional I/O buffer and a tri-state buffer. IOEs can be used as input, output, or bidirectional pins. An IOE receives its data signals from the adjacent local interconnect, which can be driven by a row or column interconnect (allowing any LE in the device to drive the IOE) or by an adjacent LE (allowing fast clock-to-output delays). A FastFLEXTM I/O pin is a row or column output pin that receives its data signals from the adjacent local interconnect driven by an adjacent LE. The IOE receives its output enable signal through the same path, allowing individual output enables for every pin and permitting emulation of open-drain buffers. The Altera Compiler uses programmable inversion to invert the data or output enable signals automatically where appropriate. Open-drain emulation is provided by driving the data input low and toggling the OE of each IOE. This emulation is possible because there is one OE per pin. A chip-wide output enable feature allows the designer to disable all pins of the device by asserting one pin (DEV_OE). This feature is useful during board debugging or testing. Figure 12 shows the IOE block diagram. To Row or Column Interconnect Chip-Wide Output Enable From LAB Local Interconnect Slew-Rate Control Figure 12. IOE Block Diagram Each IOE drives a row or column interconnect when used as an input or bidirectional pin. A row IOE can drive up to six row lines; a column IOE can drive up to two column lines. The input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time. Figure 13 shows how an IOE connects to a row interconnect, and Figure 14 shows how an IOE connects to a column interconnect. Figure 13. IOE Connection to Row Interconnect | Table 1 | 3. FLEX 6000 5.0-V Device D | C Operating Conditions Notes (5 |), (6) | | | | |------------------|------------------------------------------|--------------------------------------------------------------|-------------------------|-----|--------------------------|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | V _{IH} | High-level input voltage | | 2.0 | | V _{CCINT} + 0.5 | ٧ | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V } (7)$ | 2.4 | | | ٧ | | | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | | ٧ | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} - 0.2 | | | ٧ | | V _{OL} | 5.0-V low-level TTL output voltage | I _{OL} = 8 mA DC, V _{CCIO} = 4.75 V (8) | | | 0.45 | ٧ | | | 3.3-V low-level TTL output voltage | I_{OL} = 8 mA DC, V_{CCIO} = 3.00 V (8) | | | 0.45 | ٧ | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | | 0.2 | ٧ | | I _I | Input pin leakage current | V _I = V _{CC} or ground (8) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | V _O = V _{CC} or ground (8) | -40 | | 40 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.5 | 5 | mA | | Table 1 | Table 14. FLEX 6000 5.0-V Device Capacitance Note (9) | | | | | | | | |---------------------------------------|-------------------------------------------------------|-------------------------------------|--|----|----|--|--|--| | Symbol Parameter Conditions Min Max I | | | | | | | | | | C _{IN} | Input capacitance for I/O pin | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{INCLK} | Input capacitance for dedicated input | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time to 100 ms. V_{CC} must rise monotonically. (5) Typical values are for T_A = 25° C and V_{CC} = 5.0 V. (6) These values are specified under the FLEX 6000 Recommended Operating Conditions shown in Table 12 on page 31. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (9) Capacitance is sample-tested only. | Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1) | | | | | | | | | | |-----------------------------------------------------------------------|----------------------------|------------------------------|------|------|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -0.5 | 4.6 | V | | | | | | V _I | DC input voltage | | -2.0 | 5.75 | ٧ | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | | T _J | Junction temperature | PQFP, PLCC, and BGA packages | | 135 | ° C | | | | | | Table 1 | 6. FLEX 6000 3.3-V Device Rec | ommended Operating Condition | ons | | | |--------------------|-----------------------------------------------------|------------------------------|-------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | V | | VI | Input voltage | | -0.5 | 5.75 | ٧ | | Vo | Output voltage | | 0 | V _{CCIO} | ٧ | | T_J | Operating temperature | For commercial use | 0 | 85 | ° C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V $V_{\rm CCIO}$. When $V_{\rm CCIO}=5.0$ V on EPF6016 devices, the output driver is compliant with the *PCI Local Bus Specification, Revision* 2.2 for 5.0-V operation. When $V_{\rm CCIO}=3.3$ V on the EPF6010A and EPF6016A devices, the output driver is compliant with the *PCI Local Bus Specification, Revision* 2.2 for 3.3-V operation. Figure 18. Output Drive Characteristics Tables 19 through 21 describe the FLEX 6000 internal timing microparameters, which are expressed as worst-case values. Using hand calculations, these parameters can be used to estimate design performance. However, before committing designs to silicon, actual worst-case performance should be modeled using timing simulation and timing analysis. Tables 22 and 23 describe FLEX 6000 external timing parameters. | Symbol | Parameter | Conditions | |-----------------------------|-----------------------------------------------------------------------------------------|------------| | t _{REG_TO_REG} | LUT delay for LE register feedback in carry chain | | | t _{CASC_TO_REG} | Cascade-in to register delay | | | t _{CARRY_TO_REG} | Carry-in to register delay | | | t _{DATA_TO_REG} | LE input to register delay | | | t _{CASC_TO_OUT} | Cascade-in to LE output delay | | | t _{CARRY_TO_OUT} | Carry-in to LE output delay | | | t _{DATA_TO_OUT} | LE input to LE output delay | | | t _{REG_TO_OUT} | Register output to LE output delay | | | t _{SU} | LE register setup time before clock; LE register recovery time after asynchronous clear | | | t _H | LE register hold time after clock | | | t_{CO} | LE register clock-to-output delay | | | t _{CLR} | LE register clear delay | | | t_C | LE register control signal delay | | | t _{LD_CLR} | Synchronous load or clear delay in counter mode | | | t _{CARRY_TO_CARRY} | Carry-in to carry-out delay | | | t _{REG_TO_CARRY} | Register output to carry-out delay | | | t _{DATA_TO_CARRY} | LE input to carry-out delay | | | t _{CARRY_TO_CASC} | Carry-in to cascade-out delay | | | t _{CASC_TO_CASC} | Cascade-in to cascade-out delay | | | t _{REG_TO_CASC} | Register-out to cascade-out delay | | | t _{DATA_TO_CASC} | LE input to cascade-out delay | | | t _{CH} | LE register clock high time | | | t_{CL} | LE register clock low time | | | | + | - | | Parameter | | | Speed | Grade | | | Unit | |---------------------------|-----|-----|-------|-------|-----|-----|------| | | - | 1 | - | 2 | - | 3 | | | | Min | Max | Min | Max | Min | Max | | | t _{co} | | 0.3 | | 0.4 | | 0.4 | ns | | t _{CLR} | | 0.4 | | 0.4 | | 0.5 | ns | | t _C | | 1.8 | | 2.1 | | 2.6 | ns | | t _{LD_CLR} | | 1.8 | | 2.1 | | 2.6 | ns | | tCARRY_TO_CARRY | | 0.1 | | 0.1 | | 0.1 | ns | | tREG_TO_CARRY | | 1.6 | | 1.9 | | 2.3 | ns | | tDATA_TO_CARRY | | 2.1 | | 2.5 | | 3.0 | ns | | tCARRY_TO_CASC | | 1.0 | | 1.1 | | 1.4 | ns | | t _{CASC_TO_CASC} | | 0.5 | | 0.6 | | 0.7 | ns | | tREG_TO_CASC | | 1.4 | | 1.7 | | 2.1 | ns | | t _{DATA_TO_CASC} | | 1.1 | | 1.2 | | 1.5 | ns | | ^t ch | 2.5 | | 3.0 | | 3.5 | | ns | | ^t CL | 2.5 | | 3.0 | | 3.5 | | ns | | Parameter | Speed Grade | | | | | | | | | |------------------|-------------|-----|-----|-----|-----|-----|----|--|--| | | - | 1 | - | -2 | | 3 | 1 | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{OD1} | | 1.9 | | 2.2 | | 2.7 | ns | | | | t _{OD2} | | 4.1 | | 4.8 | | 5.8 | ns | | | | t _{OD3} | | 5.8 | | 6.8 | | 8.3 | ns | | | | t_{XZ} | | 1.4 | | 1.7 | | 2.1 | ns | | | | t _{XZ1} | | 1.4 | | 1.7 | | 2.1 | ns | | | | t _{XZ2} | | 3.6 | | 4.3 | | 5.2 | ns | | | | t _{XZ3} | | 5.3 | | 6.3 | | 7.7 | ns | | | | t _{IOE} | | 0.5 | | 0.6 | | 0.7 | ns | | | | t _{IN} | | 3.6 | | 4.1 | | 5.1 | ns | | | | tin delay | | 4.8 | | 5.4 | | 6.7 | ns | | | | Parameter | | | Speed | Grade | | | Unit | |-----------------------|-----|-----|-------|-------|-----|------|------| | | - | 1 | - | 2 | _ | 3 | | | | Min | Max | Min | Max | Min | Max | | | t _{OD1} | | 1.9 | | 2.1 | | 2.5 | ns | | t _{OD2} | | 4.0 | | 4.4 | | 5.3 | ns | | t _{OD3} | | 7.0 | | 7.8 | | 9.3 | ns | | t_{XZ} | | 4.3 | | 4.8 | | 5.8 | ns | | t_{XZ1} | | 4.3 | | 4.8 | | 5.8 | ns | | t_{XZ2} | | 6.4 | | 7.1 | | 8.6 | ns | | t _{XZ3} | | 9.4 | | 10.5 | | 12.6 | ns | | IOE | | 0.5 | | 0.6 | | 0.7 | ns | | İN | | 3.3 | | 3.7 | | 4.4 | ns | | t _{IN DELAY} | | 5.3 | | 5.9 | | 7.0 | ns | | Parameter | | | Speed | l Grade | | | Unit | |-----------------------|-----|-----|-------|---------|-----|-----|------| | | - | 1 | - | -2 | - | 3 | | | | Min | Max | Min | Max | Min | Max | | | t _{LOCAL} | | 0.8 | | 0.8 | | 1.1 | ns | | t _{ROW} | | 3.0 | | 3.1 | | 3.3 | ns | | t _{COL} | | 3.0 | | 3.2 | | 3.4 | ns | | t _{DIN_D} | | 5.4 | | 5.6 | | 6.2 | ns | | t _{DIN_C} | | 4.6 | | 5.1 | | 6.1 | ns | | t _{LEGLOBAL} | | 3.1 | | 3.5 | | 4.3 | ns | | t _{LABCARRY} | | 0.6 | | 0.7 | | 0.8 | ns | | t _{LABCASC} | | 0.3 | | 0.3 | | 0.4 | ns | | Table 37. External Reference Timing Parameters for EPF6024A Devices | | | | | | | | | | |---------------------------------------------------------------------|---------|------------------|-----|------|-----|------|----|--|--| | Parameter | | Speed Grade Unit | | | | | | | | | | - | 1 | -2 | | -3 | | | | | | | Min Max | | Min | Max | Min | Max | | | | | t ₁ | | 45.0 | | 50.0 | | 60.0 | ns | | | | Table 38. External Timing Parameters for EPF6024A Devices | | | | | | | | | |-----------------------------------------------------------|---------|-----|---------|-------|---------|-----|------|--| | Parameter | | | Speed 0 | irade | | | Unit | | | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.0 (1) | | 2.2 (1) | | 2.6 (1) | | ns | | | t _{INH} | 0.2 (2) | | 0.2 (2) | | 0.3 (2) | | ns | | | t _{outco} | 2.0 | 7.4 | 2.0 | 8.2 | 2.0 | 9.9 | ns | | #### Notes: - (1) Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off. - (2) Hold time is zero when the *Increase Input Delay* option is turned on. # Power Consumption The supply power (P) for FLEX 6000 devices can be calculated with the following equations: $$\begin{array}{ll} P &=& P_{INT} + P_{IO} \\ P &=& (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO} \end{array}$$ Typical $I_{CCSTANDBY}$ values are shown as I_{CC0} in the "FLEX 6000 Device DC Operating Conditions" table on pages 31 and 33 of this data sheet. The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. The I_{CCACTIVE} value can be calculated with the following equation: $$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$ Where: f_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in a FLEX 6000 device tog_{LC} = Average percentage of LEs toggling at each clock (typically 12.5%) K = Constant, shown in Table 39 | Table 39. K Constant Values | | |-----------------------------|---------| | Device | K Value | | EPF6010A | 14 | | EPF6016 | 88 | | EPF6016A | 14 | | EPF6024A | 14 | ### Device Pin-Outs See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: (888) 3-ALTERA lit_req@altera.com Altera, BitBlaster, ByteBlasterMV, FastFlex, FastTrack, FineLine BGA, FLEX, MasterBlaster, MAX+PLUS II, MegaCore, MultiVolt, OptiFLEX, Quartus, SameFrame, and specific device designations are trademarks and/or service marks of Altera Corporation in the United States and other countries. Altera acknowledges the trademarks of other organizations for their respective products or services mentioned in this document, specifically: Verilog is a registered trademark of and Verilog-XL is a trademarks of Cadence Design Systems, Inc. DATA I/O is a registered trademark of Data I/O Corporation. HP is a registered trademark of Hewlett-Packard Company. Exemplar Logic is a registered trademark of Exemplar Logic, Inc. Pentium is a registered trademark of Intel Corporation. Mentor Graphics is a registered trademark of Mentor Graphics Corporation. OrCAD is a registered trademark of OrCAD Systems, Corporation. SPARCstation is a registered trademark of SPARC International, Inc. and is licensed exclusively to Sun Microsystems, Inc. Sun Workstation is a registered trademark of Orcademark of Synopsys is a registered trademark and DesignTime, HDL Compiler, and DesignWare are trademarks of Synopsys, Inc. VeriBest is a registered trademark of Viewlogic Systems, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. Copyright © 2001 Altera Corporation. All rights reserved. Altera Corporation 52