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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 6000 Programmable Logic Device Family Data Sheet
Figure 1. OptiFLEX Architecture Block Diagram

FLEX 6000 devices provide four dedicated, global inputs that drive the 
control inputs of the flipflops to ensure efficient distribution of high-
speed, low-skew control signals. These inputs use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect. These inputs can also be driven by internal logic, providing 
an ideal solution for a clock divider or an internally generated 
asynchronous clear signal that clears many registers in the device. The 
dedicated global routing structure is built into the device, eliminating the 
need to create a clock tree.

Logic Array Block
An LAB consists of ten LEs, their associated carry and cascade chains, the 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure of the FLEX 6000 architecture, and facilitates 
efficient routing with optimum device utilization and high performance. 
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The interleaved LAB structure—an innovative feature of the FLEX 6000 
architecture—allows each LAB to drive two local interconnects. This 
feature minimizes the use of the FastTrack Interconnect, providing higher 
performance. An LAB can drive 20 LEs in adjacent LABs via the local 
interconnect, which maximizes fitting flexibility while minimizing die 
size. See Figure 2.

Figure 2. Logic Array Block

In most designs, the registers only use global clock and clear signals. 
However, in some cases, other clock or asynchronous clear signals are 
needed. In addition, counters may also have synchronous clear or load 
signals. In a design that uses non-global clock and clear signals, inputs 
from the first LE in an LAB are re-routed to drive the control signals for 
that LAB. See Figure 3.
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Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock and clear control signals on the flipflop can be driven 
by global signals, general-purpose I/O pins, or any internal logic. For 
combinatorial functions, the flipflop is bypassed and the output of the 
LUT drives the outputs of the LE. The LE output can drive both the local 
interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. A carry chain supports high-speed 
arithmetic functions such as counters and adders, while a cascade chain 
implements wide-input functions such as equivalent comparators with 
minimum delay. Carry and cascade chains connect LEs 2 through 10 in an 
LAB and all LABs in the same half of the row. Because extensive use of 
carry and cascade chains can reduce routing flexibility, these chains 
should be limited to speed-critical portions of a design. 
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Figure 5. Carry Chain Operation
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Cascade Chain 

The cascade chain enables the FLEX 6000 architecture to implement very 
wide fan-in functions. Adjacent LUTs can be used to implement portions 
of the function in parallel; the cascade chain serially connects the 
intermediate values. The cascade chain can use a logical AND or logical 
OR gate (via De Morgan’s inversion) to connect the outputs of adjacent 
LEs. Each additional LE provides four more inputs to the effective width 
of a function, with a delay as low as 0.5 ns per LE. Cascade chain logic can 
be created automatically by the Altera software during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
cascade chains for the appropriate functions.

A cascade chain implementing an AND gate can use the register in the last 
LE; a cascade chain implementing an OR gate cannot use this register 
because of the inversion required to implement the OR gate.

Because the first LE of an LAB can generate control signals for that LAB, 
the first LE in each LAB is not included in cascade chains. Moreover, 
cascade chains longer than nine bits are automatically implemented by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from an even-numbered LAB to another even-numbered 
LAB, or from an odd-numbered LAB to another odd-numbered LAB. For 
example, the last LE of the first LAB in a row cascades to the second LE of 
the third LAB. The cascade chain does not cross the center of the row. For 
example, in an EPF6016 device, the cascade chain stops at the 11th LAB in 
a row and a new cascade chain begins at the 12th LAB.

Figure 6 shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in. In this example, functions of 4n variables are 
implemented with n LEs. The cascade chain requires 3.4 ns to decode a 
16-bit address.
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Normal Mode 

The normal mode is suitable for general logic applications, combinatorial 
functions, or wide decoding functions that can take advantage of a 
cascade chain. In normal mode, four data inputs from the LAB local 
interconnect and the carry-in are inputs to a 4-input LUT. The Altera 
software automatically selects the carry-in or the DATA3 signal as one of 
the inputs to the LUT. The LUT output can be combined with the cascade-
in signal to form a cascade chain through the cascade-out signal. 

Arithmetic Mode 

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 7, the first LUT uses the carry-in signal and two data inputs from 
the LAB local interconnect to generate a combinatorial or registered 
output. For example, when implementing an adder, this output is the sum 
of three signals: DATA1, DATA2, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain. 

The Altera software implements logic functions to use the arithmetic 
mode automatically where appropriate; the designer does not have to 
decide how the carry chain will be used.

Counter Mode 

The counter mode offers counter enable, synchronous up/down control, 
synchronous clear, and synchronous load options. The counter enable and 
synchronous up/down control signals are generated from the data inputs 
of the LAB local interconnect. The synchronous clear and synchronous 
load options are LAB-wide signals that affect all registers in the LAB. 
Consequently, if any of the LEs in a LAB use counter mode, other LEs in 
that LAB must be used as part of the same counter or be used for a 
combinatorial function. In addition, the Altera software automatically 
places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data 
and the other generates the fast carry bit. A 2-to-1 multiplexer provides 
synchronous loading, and another AND gate provides synchronous 
clearing. If the cascade function is used by an LE in counter mode, the 
synchronous clear or load will override any signal carried on the cascade 
chain. The synchronous clear overrides the synchronous load.
Altera Corporation  15
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Either the counter enable or the up/down control may be used for a given 
counter. Moreover, the synchronous load can be used as a count enable by 
routing the register output into the data input automatically when 
requested by the designer.

The second LE of each LAB has a special function for counter mode; the 
carry-in of the LE can be driven by a fast feedback path from the register. 
This function gives a faster counter speed for counter carry chains starting 
in the second LE of an LAB. 

The Altera software implements functions to use the counter mode 
automatically where appropriate. The designer does not have to decide 
how the carry chain will be used.

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer.

Clear & Preset Logic Control 

Logic for the programmable register’s clear and preset functions is 
controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE 
register has an asynchronous clear that can implement an asynchronous 
preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear 
or preset. Because the clear and preset functions are active-low, the Altera 
software automatically assigns a logic high to an unused clear or preset 
signal. The clear and preset logic is implemented in either the 
asynchronous clear or asynchronous preset mode, which is chosen during 
design entry (see Figure 8). 
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A row channel can be driven by an LE or by one of two column channels. 
These three signals feed a 3-to-1 multiplexer that connects to six specific 
row channels. Row channels drive into the local interconnect via 
multiplexers. 

Each column of LABs is served by a dedicated column interconnect. The 
LEs in an LAB can drive the column interconnect. The LEs in an LAB, a 
column IOE, or a row interconnect can drive the column interconnect. The 
column interconnect can then drive another row’s interconnect to route 
the signals to other LABs in the device. A signal from the column 
interconnect must be routed to the row interconnect before it can enter an 
LAB. 

Each LE has a FastTrack Interconnect output and a local output. The 
FastTrack interconnect output can drive six row and two column lines 
directly; the local output drives the local interconnect. Each local 
interconnect channel driven by an LE can drive four row and two column 
channels. This feature provides additional flexibility, because each LE can 
drive any of ten row lines and four column lines.

In addition, LEs can drive global control signals. This feature is useful for 
distributing internally generated clock, asynchronous clear, and 
asynchronous preset signals. A pin-driven global signal can also drive 
data signals, which is useful for high-fan-out data signals. 

Each LAB drives two groups of local interconnects, which allows an LE to 
drive two LABs, or 20 LEs, via the local interconnect. The row-to-local 
multiplexers are used more efficiently, because the multiplexers can now 
drive two LABs. Figure 10 shows how an LAB connects to row and 
column interconnects.
Altera Corporation  19
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Figure 11. Global Clock & Clear Distribution       Note (1) 

Notes:
(1) The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, 

LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals.
(2) The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
(3) Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals.
(4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.
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I/O Elements 
An IOE contains a bidirectional I/O buffer and a tri-state buffer. IOEs can 
be used as input, output, or bidirectional pins. An IOE receives its data 
signals from the adjacent local interconnect, which can be driven by a row 
or column interconnect (allowing any LE in the device to drive the IOE) or 
by an adjacent LE (allowing fast clock-to-output delays). A FastFLEXTM 
I/O pin is a row or column output pin that receives its data signals from 
the adjacent local interconnect driven by an adjacent LE. The IOE receives 
its output enable signal through the same path, allowing individual 
output enables for every pin and permitting emulation of open-drain 
buffers. The Altera Compiler uses programmable inversion to invert the 
data or output enable signals automatically where appropriate. Open-
drain emulation is provided by driving the data input low and toggling 
the OE of each IOE. This emulation is possible because there is one OE per 
pin. 

A chip-wide output enable feature allows the designer to disable all pins 
of the device by asserting one pin (DEV_OE). This feature is useful during 
board debugging or testing.

Figure 12 shows the IOE block diagram. 

Figure 12.  IOE Block Diagram

From LAB Local Interconnect

Slew-Rate
Control

From LAB Local Interconnect

To Row or Column Interconnect

Chip-Wide Output Enable

Delay
Altera Corporation  23



FLEX 6000 Programmable Logic Device Family Data Sheet
Each IOE drives a row or column interconnect when used as an input or 
bidirectional pin. A row IOE can drive up to six row lines; a column IOE 
can drive up to two column lines. The input path from the I/O pad to the 
FastTrack Interconnect has a programmable delay element that can be 
used to guarantee a zero hold time. Depending on the placement of the 
IOE relative to what it is driving, the designer may choose to turn on the 
programmable delay to ensure a zero hold time. Figure 13 shows how an 
IOE connects to a row interconnect, and Figure 14 shows how an IOE 
connects to a column interconnect.

Figure 13. IOE Connection to Row Interconnect
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time to 100 ms. VCC must rise monotonically.
(5) Typical values are for TA = 25°  C and VCC = 5.0 V.
(6) These values are specified under the FLEX 6000 Recommended Operating Conditions shown in Table 12 on 

page 31.
(7) The IOH parameter refers to high-level TTL or CMOS output current. 
(8) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(9) Capacitance is sample-tested only.

Table 13. FLEX 6000 5.0-V Device DC Operating Conditions Notes (5), (6)

Symbol Parameter Conditions Min Typ Max Unit
VIH High-level input voltage 2.0 VCCINT + 0.5 V

VIL Low-level input voltage –0.5 0.8 V

VOH 5.0-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 4.75 V (7) 2.4 V

3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 3.00 V (7) 2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, VCCIO = 3.00 V (7) VCCIO – 0.2 V

VOL 5.0-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 4.75 V (8) 0.45 V

3.3-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 3.00 V (8) 0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, VCCIO = 3.00 V (8) 0.2 V

II Input pin leakage current VI = VCC or ground (8) –10 10 µA

IOZ Tri-stated I/O pin leakage current VO = VCC or ground (8) –40 40 µA

ICC0 VCC supply current (standby) VI = ground, no load 0.5 5 mA

Table 14. FLEX 6000 5.0-V Device Capacitance Note (9)

Symbol Parameter Conditions Min Max Unit
CIN Input capacitance for I/O pin VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance for dedicated input VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
32 Altera Corporation
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Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, PLCC, and BGA packages 135 ° C

Table 16. FLEX 6000 3.3-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic and 

input buffers
(3), (4) 3.00 (3.00) 3.60 (3.60) V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage –0.5 5.75 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
Altera Corporation  33
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Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V 
FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V VCCIO. When 
VCCIO = 5.0 V on EPF6016 devices, the output driver is compliant with the 
PCI Local Bus Specification, Revision 2.2 for 5.0-V operation. When 
VCCIO = 3.3 V on the EPF6010A and EPF6016A devices, the output driver 
is compliant with the PCI Local Bus Specification, Revision 2.2 for 3.3-V 
operation.

Figure 18. Output Drive Characteristics 
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Tables 19 through 21 describe the FLEX 6000 internal timing 
microparameters, which are expressed as worst-case values. Using hand 
calculations, these parameters can be used to estimate design 
performance. However, before committing designs to silicon, actual 
worst-case performance should be modeled using timing simulation and 
timing analysis. Tables 22 and 23 describe FLEX 6000 external timing 
parameters.

Table 19. LE Timing Microparameters Note (1)

Symbol Parameter Conditions

tREG_TO_REG LUT delay for LE register feedback in carry chain

tCASC_TO_REG Cascade-in to register delay

tCARRY_TO_REG Carry-in to register delay

tDATA_TO_REG LE input to register delay

tCASC_TO_OUT Cascade-in to LE output delay

tCARRY_TO_OUT Carry-in to LE output delay

tDATA_TO_OUT LE input to LE output delay

tREG_TO_OUT Register output to LE output delay

tSU LE register setup time before clock; LE register recovery time after 
asynchronous clear

tH LE register hold time after clock

tCO LE register clock-to-output delay

tCLR LE register clear delay

tC LE register control signal delay

tLD_CLR Synchronous load or clear delay in counter mode

tCARRY_TO_CARRY Carry-in to carry-out delay

tREG_TO_CARRY Register output to carry-out delay

tDATA_TO_CARRY LE input to carry-out delay

tCARRY_TO_CASC Carry-in to cascade-out delay

tCASC_TO_CASC Cascade-in to cascade-out delay

tREG_TO_CASC Register-out to cascade-out delay

tDATA_TO_CASC LE input to cascade-out delay

tCH LE register clock high time

tCL LE register clock low time
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tCO 0.3 0.4 0.4 ns

tCLR 0.4 0.4 0.5 ns

tC 1.8 2.1 2.6 ns

tLD_CLR 1.8 2.1 2.6 ns

tCARRY_TO_CARRY 0.1 0.1 0.1 ns

tREG_TO_CARRY 1.6 1.9 2.3 ns

tDATA_TO_CARRY 2.1 2.5 3.0 ns

tCARRY_TO_CASC 1.0 1.1 1.4 ns

tCASC_TO_CASC 0.5 0.6 0.7 ns

tREG_TO_CASC 1.4 1.7 2.1 ns

tDATA_TO_CASC 1.1 1.2 1.5 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns

Table 25. IOE Timing Microparameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tOD1 1.9 2.2 2.7 ns

tOD2 4.1 4.8 5.8 ns

tOD3 5.8 6.8 8.3 ns

tXZ 1.4 1.7 2.1 ns

tXZ1 1.4 1.7 2.1 ns

tXZ2 3.6 4.3 5.2 ns

tXZ3 5.3 6.3 7.7 ns

tIOE 0.5 0.6 0.7 ns

tIN 3.6 4.1 5.1 ns

tIN_DELAY 4.8 5.4 6.7 ns

Table 24. LE Timing Microparameters for EPF6010A & EPF6016A Devices  (Part 2 of 2)

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
Altera Corporation  41
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Table 35. IOE Timing Microparameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tOD1 1.9 2.1 2.5 ns

tOD2 4.0 4.4 5.3 ns

tOD3 7.0 7.8 9.3 ns

tXZ 4.3 4.8 5.8 ns

tXZ1 4.3 4.8 5.8 ns

tXZ2 6.4 7.1 8.6 ns

tXZ3 9.4 10.5 12.6 ns

tIOE 0.5 0.6 0.7 ns

tIN 3.3 3.7 4.4 ns

tIN_DELAY 5.3 5.9 7.0 ns

Table 36. Interconnect Timing Microparameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLOCAL 0.8 0.8 1.1 ns

tROW 3.0 3.1 3.3 ns

tCOL 3.0 3.2 3.4 ns

tDIN_D 5.4 5.6 6.2 ns

tDIN_C 4.6 5.1 6.1 ns

tLEGLOBAL 3.1 3.5 4.3 ns

tLABCARRY 0.6 0.7 0.8 ns

tLABCASC 0.3 0.3 0.4 ns

Table 37. External Reference Timing Parameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

t1 45.0 50.0 60.0 ns
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Notes:
(1) Setup times are longer when the Increase Input Delay option is turned on. The setup time values are shown with the 

Increase Input Delay option turned off.
(2) Hold time is zero when the Increase Input Delay option is turned on.

Power 
Consumption

The supply power (P) for FLEX 6000 devices can be calculated with the 
following equations:

P =  PINT + PIO
P =  (ICCSTANDBY + ICCACTIVE) ×  VCC + PIO

Typical ICCSTANDBY values are shown as ICC0 in the “FLEX 6000 Device 
DC Operating Conditions” table on pages 31 and 33 of this data sheet. The 
ICCACTIVE value depends on the switching frequency and the application 
logic. This value is based on the amount of current that each LE typically 
consumes. The PIO value, which depends on the device output load 
characteristics and switching frequency, can be calculated using the 
guidelines given in Application Note 74 (Evaluating Power for Altera Devices).

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K ×  fMAX ×  N ×  togLC ×  

Where: 
fMAX = Maximum operating frequency in MHz 
N = Total number of LEs used in a FLEX 6000 device
togLC = Average percentage of LEs toggling at each clock 

(typically 12.5%)
K = Constant, shown in Table 39 

Table 38. External Timing Parameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSU 2.0 (1) 2.2 (1) 2.6 (1) ns

tINH 0.2 (2) 0.2 (2) 0.3 (2) ns

tOUTCO 2.0 7.4 2.0 8.2 2.0 9.9 ns

µA
MHz LE×
-----------------------------

Table 39. K Constant Values

Device K Value

EPF6010A 14

EPF6016 88

EPF6016A 14

EPF6024A 14
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Device Pin-
Outs

See the Altera web site (http://www.altera.com) or the Altera Digital 
Library for pin-out information.
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