

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

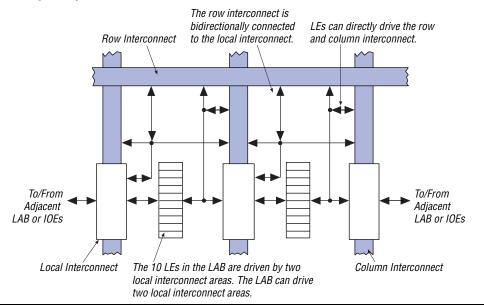
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	132
Number of Logic Elements/Cells	1320
Total RAM Bits	-
Number of I/O	81
Number of Gates	16000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf6016ati100-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


...and More Features

- Powerful I/O pins
 - Individual tri-state output enable control for each pin
 - Programmable output slew-rate control to reduce switching noise
 - Fast path from register to I/O pin for fast clock-to-output time
- Flexible interconnect
 - FastTrack[®] Interconnect continuous routing structure for fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fanin logic functions (automatically used by software tools and megafunctions)
 - Tri-state emulation that implements internal tri-state networks
 - Four low-skew global paths for clock, clear, preset, or logic signals
- Software design support and automatic place-and-route provided by Altera's development system for Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800
- Flexible package options
 - Available in a variety of packages with 100 to 256 pins, including the innovative FineLine BGATM packages (see Table 2)
 - SameFrameTM pin-compatibility (with other FLEX® 6000 devices) across device densities and pin counts
 - Thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and ball-grid array (BGA) packages (see Table 2)
 - Footprint- and pin-compatibility with other FLEX 6000 devices in the same package
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, the library of parameterized modules (LPM), Verilog HDL, VHDL, DesignWare components, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Table 2. F	Table 2. FLEX 6000 Package Options & I/O Pin Count								
Device	100-Pin TQFP	100-Pin FineLine BGA	144-Pin TQFP	208-Pin PQFP	240-Pin PQFP	256-Pin BGA	256-pin FineLine BGA		
EPF6010A	71		102						
EPF6016			117	171	199	204			
EPF6016A	81	81	117	171			171		
EPF6024A			117	171	199	218	219		

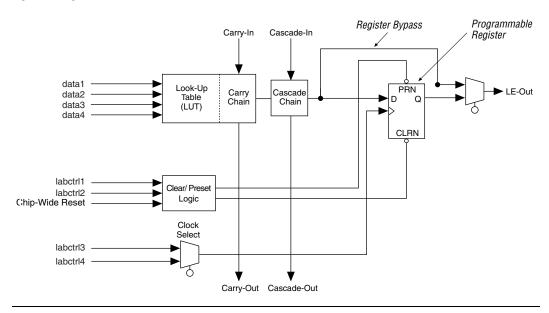

The interleaved LAB structure—an innovative feature of the FLEX 6000 architecture—allows each LAB to drive two local interconnects. This feature minimizes the use of the FastTrack Interconnect, providing higher performance. An LAB can drive 20 LEs in adjacent LABs via the local interconnect, which maximizes fitting flexibility while minimizing die size. See Figure 2.

Figure 2. Logic Array Block

In most designs, the registers only use global clock and clear signals. However, in some cases, other clock or asynchronous clear signals are needed. In addition, counters may also have synchronous clear or load signals. In a design that uses non-global clock and clear signals, inputs from the first LE in an LAB are re-routed to drive the control signals for that LAB. See Figure 3.

Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock and clear control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the outputs of the LE. The LE output can drive both the local interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equivalent comparators with minimum delay. Carry and cascade chains connect LEs 2 through 10 in an LAB and all LABs in the same half of the row. Because extensive use of carry and cascade chains can reduce routing flexibility, these chains should be limited to speed-critical portions of a design.

Carry Chain

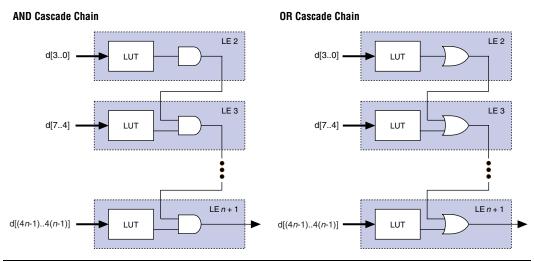
The carry chain provides a very fast (0.1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 6000 architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Altera software during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

Because the first LE of each LAB can generate control signals for that LAB, the first LE in each LAB is not included in carry chains. In addition, the inputs of the first LE in each LAB may be used to generate synchronous clear and load enable signals for counters implemented with carry chains.

Carry chains longer than nine LEs are implemented automatically by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from an even-numbered LAB to another even-numbered LAB, or from an odd-numbered LAB to another odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the second LE of the third LAB in the row. In addition, the carry chain does not cross the middle of the row. For instance, in the EPF6016 device, the carry chain stops at the 11th LAB in a row and a new carry chain begins at the 12th LAB.

Figure 5 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. Although the register can be bypassed for simple adders, it can be used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the FastTrack Interconnect.

Cascade Chain


The cascade chain enables the FLEX 6000 architecture to implement very wide fan-in functions. Adjacent LUTs can be used to implement portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR gate (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.5 ns per LE. Cascade chain logic can be created automatically by the Altera software during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of cascade chains for the appropriate functions.

A cascade chain implementing an AND gate can use the register in the last LE; a cascade chain implementing an OR gate cannot use this register because of the inversion required to implement the OR gate.

Because the first LE of an LAB can generate control signals for that LAB, the first LE in each LAB is not included in cascade chains. Moreover, cascade chains longer than nine bits are automatically implemented by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from an even-numbered LAB to another even-numbered LAB, or from an odd-numbered LAB to another odd-numbered LAB. For example, the last LE of the first LAB in a row cascades to the second LE of the third LAB. The cascade chain does not cross the center of the row. For example, in an EPF6016 device, the cascade chain stops at the 11th LAB in a row and a new cascade chain begins at the 12th LAB.

Figure 6 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. In this example, functions of 4n variables are implemented with n LEs. The cascade chain requires 3.4 ns to decode a 16-bit address.

Figure 6. Cascade Chain Operation

LE Operating Modes

The FLEX 6000 LE can operate in one of the following three modes:

- Normal mode
- Arithmetic mode
- Counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, synchronous clear, and synchronous load control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions to use an LE operating mode for optimal performance.

Figure 7 shows the LE operating modes.

The FastTrack Interconnect consists of column and row interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect, which routes signals between LABs in the same row, and also routes signals from I/O pins to LABs. Additionally, the local interconnect routes signals between LEs in the same LAB and in adjacent LABs. The column interconnect routes signals between rows and routes signals from I/O pins to rows.

LEs 1 through 5 of an LAB drive the local interconnect to the right, while LEs 6 through 10 drive the local interconnect to the left. The DATA1 and DATA3 inputs of each LE are driven by the local interconnect to the left; DATA2 and DATA4 are driven by the local interconnect to the right. The local interconnect also routes signals from LEs to I/O pins. Figure 9 shows an overview of the FLEX 6000 interconnect architecture. LEs in the first and last columns have drivers on both sides so that all LEs in the LAB can drive I/O pins via the local interconnect.

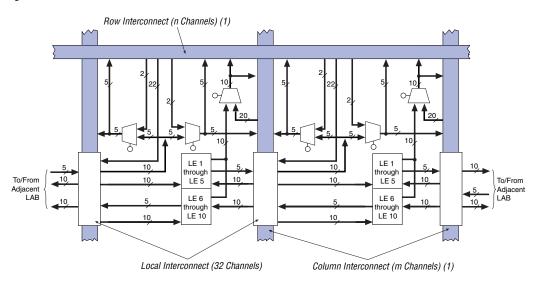


Figure 9. FastTrack Interconnect Architecture

Note:

(1) For EPF6010A, EPF6016, and EPF6016A devices, *n* = 144 channels and *m* = 20 channels; for EPF6024A devices, *n* = 186 channels and *m* = 30 channels.

Table 5 summarizes the FastTrack Interconnect resources available in each FLEX 6000 device.

Table 5. FLEX 600	Table 5. FLEX 6000 FastTrack Interconnect Resources						
Device	Rows	Channels per Row	Columns	Channels per Column			
EPF6010A	4	144	22	20			
EPF6016 EPF6016A	6	144	22	20			
EPF6024A	7	186	28	30			

In addition to general-purpose I/O pins, FLEX 6000 devices have four dedicated input pins that provide low-skew signal distribution across the device. These four inputs can be used for global clock and asynchronous clear control signals. These signals are available as control signals for all LEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Using dedicated inputs to route data signals provides a fast path for high fan-out signals.

The local interconnect from LABs located at either end of two rows can drive a global control signal. For instance, in an EPF6016 device, LABs C1, D1, C22, and D22 can all drive global control signals. When an LE drives a global control signal, the dedicated input pin that drives that signal cannot be used. Any LE in the device can drive a global control signal by driving the FastTrack Interconnect into the appropriate LAB. To minimize delay, however, the Altera software places the driving LE in the appropriate LAB. The LE-driving-global signal feature is optimized for speed for control signals; regular data signals are better routed on the FastTrack Interconnect and do not receive any advantage from being routed on global signals. This LE-driving-global control signal feature is controlled by the designer and is not used automatically by the Altera software. See Figure 11.

I/O Elements

An IOE contains a bidirectional I/O buffer and a tri-state buffer. IOEs can be used as input, output, or bidirectional pins. An IOE receives its data signals from the adjacent local interconnect, which can be driven by a row or column interconnect (allowing any LE in the device to drive the IOE) or by an adjacent LE (allowing fast clock-to-output delays). A FastFLEXTM I/O pin is a row or column output pin that receives its data signals from the adjacent local interconnect driven by an adjacent LE. The IOE receives its output enable signal through the same path, allowing individual output enables for every pin and permitting emulation of open-drain buffers. The Altera Compiler uses programmable inversion to invert the data or output enable signals automatically where appropriate. Open-drain emulation is provided by driving the data input low and toggling the OE of each IOE. This emulation is possible because there is one OE per pin.

A chip-wide output enable feature allows the designer to disable all pins of the device by asserting one pin (DEV_OE). This feature is useful during board debugging or testing.

Figure 12 shows the IOE block diagram.

To Row or Column Interconnect

Chip-Wide Output Enable

From LAB Local Interconnect

Slew-Rate
Control

Figure 12. IOE Block Diagram

Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with V_{CCIO} = 3.3 V or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing

Because FLEX 6000 family devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $\rm V_{CCIO}$ and $\rm V_{CCINT}$ power planes can be powered in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during power up without damaging the device. Additionally, FLEX 6000 devices do not drive out during power up. Once operating conditions are reached, FLEX 6000 devices operate as specified by the user.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All FLEX 6000 devices provide JTAG BST circuitry that comply with the IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for FLEX 6000 devices. JTAG BST can be performed before or after configuration, but not during configuration (except when you disable JTAG support in user mode).

See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST circuitry.

Table 8. FLEX 6000	Table 8. FLEX 6000 JTAG Instructions					
JTAG Instruction	Description					
SAMPLE/PRELOAD	Allows a snapshot of the signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins.					
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test result at the input pins.					
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through the selected device to adjacent devices during normal device operation.					

The instruction register length for FLEX 6000 devices is three bits. Table 9 shows the boundary-scan register length for FLEX 6000 devices.

Table 9. FLEX 6000 Device Boundary-Scan Register Length					
Device	Boundary-Scan Register Length				
EPF6010A	522				
EPF6016	621				
EPF6016A	522				
EPF6024A	666				

FLEX 6000 devices include a weak pull-up on JTAG pins.

f See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information.

Figure 16 shows the timing requirements for the JTAG signals.

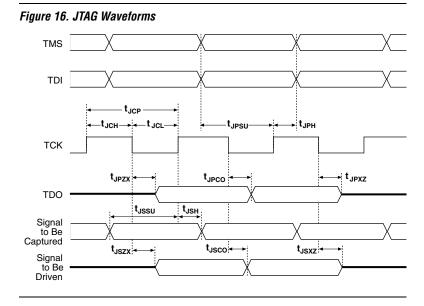


Table 10 shows the JTAG timing parameters and values for FLEX 6000 devices.

Operating Conditions

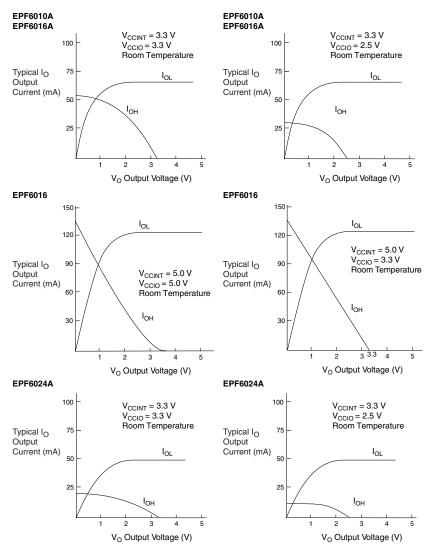
Tables 11 through 18 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V and 3.3-V FLEX 6000 devices.

Table 1	1. FLEX 6000 5.0-V Device	Absolute Maximum Ratings Note	(1)		
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	٧
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	° C
TJ	Junction temperature	PQFP, TQFP, and BGA packages		135	° C

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
V _I	Input voltage		-0.5	V _{CCINT} + 0.5	٧
Vo	Output voltage		0	V _{CCIO}	V
TJ	Operating temperature	For commercial use	0	85	° C
		For industrial use	-40	100	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 1	3. FLEX 6000 5.0-V Device D	C Operating Conditions Notes (5), (6)			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		2.0		V _{CCINT} + 0.5	٧
V _{IL}	Low-level input voltage		-0.5		0.8	V
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V } (7)$	2.4			٧
	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	2.4			٧
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	V _{CCIO} - 0.2			٧
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 8 mA DC, V _{CCIO} = 4.75 V (8)			0.45	٧
	3.3-V low-level TTL output voltage	I_{OL} = 8 mA DC, V_{CCIO} = 3.00 V (8)			0.45	٧
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$			0.2	٧
I _I	Input pin leakage current	V _I = V _{CC} or ground (8)	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	V _O = V _{CC} or ground (8)	-40		40	μΑ
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	5	mA

Table 1	4. FLEX 6000 5.0-V Device Capa	citance Note (9)			
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input capacitance for I/O pin	V _{IN} = 0 V, f = 1.0 MHz		8	pF
C _{INCLK}	Input capacitance for dedicated input	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF


Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.

- (4) Maximum V_{CC} rise time to 100 ms. V_{CC} must rise monotonically.
 (5) Typical values are for T_A = 25° C and V_{CC} = 5.0 V.
 (6) These values are specified under the FLEX 6000 Recommended Operating Conditions shown in Table 12 on page 31. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (9) Capacitance is sample-tested only.

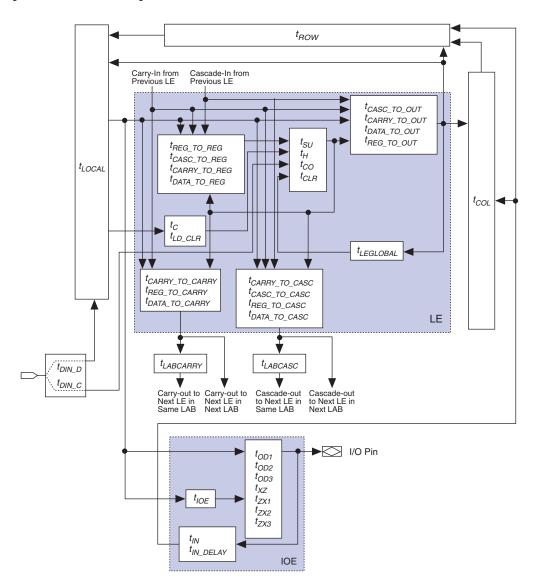
Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V $V_{\rm CCIO}$. When $V_{\rm CCIO}=5.0$ V on EPF6016 devices, the output driver is compliant with the *PCI Local Bus Specification, Revision* 2.2 for 5.0-V operation. When $V_{\rm CCIO}=3.3$ V on the EPF6010A and EPF6016A devices, the output driver is compliant with the *PCI Local Bus Specification, Revision* 2.2 for 3.3-V operation.

Figure 18. Output Drive Characteristics

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:


- LE register clock-to-output delay ($t_{CO} + t_{REG_TO_OUT}$)
- Routing delay $(t_{ROW} + t_{LOCAL})$
- LE LUT delay ($t_{DATA_TO_REG}$)
- LE register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Timing simulation and delay prediction are available with the Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 19 shows the overall timing model, which maps the possible routing paths to and from the various elements of the FLEX 6000 device.

Figure 19. FLEX 6000 Timing Model

Parameter	Speed Grade								
	-	1	-	-2		3			
	Min	Max	Min	Max	Min	Max			
t _{co}		0.3		0.4		0.4	ns		
t _{CLR}		0.4		0.4		0.5	ns		
t _C		1.8		2.1		2.6	ns		
t _{LD_CLR}		1.8		2.1		2.6	ns		
tCARRY_TO_CARRY		0.1		0.1		0.1	ns		
tREG_TO_CARRY		1.6		1.9		2.3	ns		
tDATA_TO_CARRY		2.1		2.5		3.0	ns		
tCARRY_TO_CASC		1.0		1.1		1.4	ns		
t _{CASC_TO_CASC}		0.5		0.6		0.7	ns		
tREG_TO_CASC		1.4		1.7		2.1	ns		
t _{DATA_TO_CASC}		1.1		1.2		1.5	ns		
^t ch	2.5		3.0		3.5		ns		
^t CL	2.5		3.0		3.5		ns		

Parameter			Speed	Grade			Unit
	-1		-2		-3		-
	Min	Max	Min	Max	Min	Max	
t _{OD1}		1.9		2.2		2.7	ns
t _{OD2}		4.1		4.8		5.8	ns
t _{OD3}		5.8		6.8		8.3	ns
t_{XZ}		1.4		1.7		2.1	ns
t _{XZ1}		1.4		1.7		2.1	ns
t _{XZ2}		3.6		4.3		5.2	ns
t _{XZ3}		5.3		6.3		7.7	ns
t _{IOE}		0.5		0.6		0.7	ns
t _{IN}		3.6		4.1		5.1	ns
tin delay		4.8		5.4		6.7	ns

Tables 29 through 33 show the timing information for EPF6016 devices.

Parameter	Speed Grade					
	-	2	=	3		
	Min	Max	Min	Max		
t _{REG_TO_REG}		2.2		2.8	ns	
t _{CASC_TO_REG}		0.9		1.2	ns	
t _{CARRY_TO_REG}		1.6		2.1	ns	
t _{DATA_TO_REG}		2.4		3.0	ns	
t _{CASC_TO_OUT}		1.3		1.7	ns	
t _{CARRY_TO_OUT}		2.4		3.0	ns	
t _{DATA_TO_OUT}		2.7		3.4	ns	
t _{REG_TO_OUT}		0.3		0.5	ns	
t _{SU}	1.1		1.6		ns	
t _H	1.8		2.3		ns	
t_{CO}		0.3		0.4	ns	
t _{CLR}		0.5		0.6	ns	
t_C		1.2		1.5	ns	
t _{LD_CLR}		1.2		1.5	ns	
t _{CARRY_TO_CARRY}		0.2		0.4	ns	
t _{REG_TO_CARRY}		0.8		1.1	ns	
t _{DATA_TO_CARRY}		1.7		2.2	ns	
t _{CARRY_TO_CASC}		1.7		2.2	ns	
t _{CASC_TO_CASC}		0.9		1.2	ns	
t _{REG_TO_CASC}		1.6		2.0	ns	
t _{DATA_TO_CASC}		1.7		2.1	ns	
t _{CH}	4.0		4.0		ns	
t _{CL}	4.0		4.0		ns	

Parameter	Speed Grade				
	-2		-3		
	Min	Max	Min	Max	
t _{OD1}		2.3		2.8	ns
t _{OD2}		4.6		5.1	ns

Table 38. External Timing Parameters for EPF6024A Devices									
Parameter	Speed Grade								
	-1		-2		-3		1		
	Min	Max	Min	Max	Min	Max			
t _{INSU}	2.0 (1)		2.2 (1)		2.6 (1)		ns		
t _{INH}	0.2 (2)		0.2 (2)		0.3 (2)		ns		
t _{outco}	2.0	7.4	2.0	8.2	2.0	9.9	ns		

Notes:

- (1) Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off.
- (2) Hold time is zero when the *Increase Input Delay* option is turned on.

Power Consumption

The supply power (P) for FLEX 6000 devices can be calculated with the following equations:

$$\begin{array}{ll} P &=& P_{INT} + P_{IO} \\ P &=& (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO} \end{array}$$

Typical $I_{CCSTANDBY}$ values are shown as I_{CC0} in the "FLEX 6000 Device DC Operating Conditions" table on pages 31 and 33 of this data sheet. The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.

The I_{CCACTIVE} value can be calculated with the following equation:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$

Where:

 f_{MAX} = Maximum operating frequency in MHz

N = Total number of LEs used in a FLEX 6000 device tog_{LC} = Average percentage of LEs toggling at each clock

(typically 12.5%)

K = Constant, shown in Table 39

Table 39. K Constant Values				
Device	K Value			
EPF6010A	14			
EPF6016	88			
EPF6016A	14			
EPF6024A	14			

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.