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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 6000 Programmable Logic Device Family Data Sheet
General 
Description

The Altera® FLEX 6000 programmable logic device (PLD) family provides 
a low-cost alternative to high-volume gate array designs. FLEX 6000 
devices are based on the OptiFLEX architecture, which minimizes die size 
while maintaining high performance and routability. The devices have 
reconfigurable SRAM elements, which give designers the flexibility to 
quickly change their designs during prototyping and design testing. 
Designers can also change functionality during operation via in-circuit 
reconfiguration.

FLEX 6000 devices are reprogrammable, and they are 100% tested prior to 
shipment. As a result, designers are not required to generate test vectors 
for fault coverage purposes, allowing them to focus on simulation and 
design verification. In addition, the designer does not need to manage 
inventories of different gate array designs. FLEX 6000 devices are 
configured on the board for the specific functionality required.

Table 3 shows FLEX 6000 performance for some common designs. All 
performance values shown were obtained using Synopsys DesignWare or 
LPM functions. Special design techniques are not required to implement 
the applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Note:
(1) This performance value is measured as a pin-to-pin delay.

Table 3. FLEX 6000 Device Performance for Common Designs

Application LEs Used Performance Units

-1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

16-bit loadable counter 16 172 153 133 MHz

16-bit accumulator 16 172 153 133 MHz

24-bit accumulator 24 136 123 108 MHz

16-to-1 multiplexer (pin-to-pin) (1) 10 12.1 13.4 16.6 ns

16 ×  16 multiplier with a 4-stage pipeline 592 84 67 58 MHz
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Table 4 shows FLEX 6000 performance for more complex designs. 

Note:
(1) The applications in this table were created using Altera MegaCoreTM functions.

FLEX 6000 devices are supported by Altera development systems; a 
single, integrated package that offers schematic, text (including AHDL), 
and waveform design entry, compilation and logic synthesis, full 
simulation and worst-case timing analysis, and device configuration. The 
Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, 
and other interfaces for additional design entry and simulation support 
from other industry-standard PC- and UNIX workstation-based EDA 
tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development systems include DesignWare 
functions that are optimized for the FLEX 6000 architecture.

The Altera development system runs on Windows-based PCs, Sun 
SPARCstations, and HP 9000 Series 700/800.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet and the Quartus Programmable Logic Development System & 
Software Data Sheet for more information.

Table 4. FLEX 6000 Device Performance for Complex Designs Note (1)

Application LEs Used Performance Units

-1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

8-bit, 16-tap parallel finite impulse response 
(FIR) filter

599 94 80 72 MSPS

8-bit, 512-point fast Fourier transform (FFT) 
function

1,182 75
63

89
53

109
43

µS
MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

487 36 30 25 MHz

PCI bus target with zero wait states 609 56 49 42 MHz
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Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock and clear control signals on the flipflop can be driven 
by global signals, general-purpose I/O pins, or any internal logic. For 
combinatorial functions, the flipflop is bypassed and the output of the 
LUT drives the outputs of the LE. The LE output can drive both the local 
interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. A carry chain supports high-speed 
arithmetic functions such as counters and adders, while a cascade chain 
implements wide-input functions such as equivalent comparators with 
minimum delay. Carry and cascade chains connect LEs 2 through 10 in an 
LAB and all LABs in the same half of the row. Because extensive use of 
carry and cascade chains can reduce routing flexibility, these chains 
should be limited to speed-critical portions of a design. 
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Figure 7. LE Operating Modes

Notes:
(1) The register feedback multiplexer is available on LE 2 of each LAB.
(2) The data1 and data2 input signals can supply a clock enable, up or down control, or register feedback signals for 

all LEs other than the second LE in an LAB.
(3) The LAB-wide synchronous clear and LAB-wide synchronous load affect all registers in an LAB.
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Figure 8. LE Clear & Preset Modes

Asynchronous Clear 

The flipflop can be cleared by either LABCTRL1 or LABCTRL2.

Asynchronous Preset 

An asynchronous preset is implemented with an asynchronous clear. The 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Inversion control is available for the 
inputs to both LEs and IOEs. Therefore, this technique can be used when 
a register drives logic or drives a pin.

In addition to the two clear and preset modes, FLEX 6000 devices provide 
a chip-wide reset pin (DEV_CLRn) that can reset all registers in the device. 
The option to use this pin is set in the Altera software before compilation. 
The chip-wide reset overrides all other control signals. Any register with 
an asynchronous preset will be preset when the chip-wide reset is asserted 
because of the inversion technique used to implement the asynchronous 
preset.

The Altera software can use a programmable NOT-gate push-back 
technique to emulate simultaneous preset and clear or asynchronous load. 
However, this technique uses an additional three LEs per register.

FastTrack Interconnect
In the FLEX 6000 OptiFLEX architecture, connections between LEs and 
device I/O pins are provided by the FastTrack Interconnect, a series of 
continuous horizontal and vertical routing channels that traverse the 
device. This global routing structure provides predictable performance, 
even for complex designs. In contrast, the segmented routing in FPGAs 
requires switch matrices to connect a variable number of routing paths, 
increasing the delays between logic resources and reducing performance.
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D Q

labctrl1 or
labctrl2
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D Q Chip-Wide Reset
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The FastTrack Interconnect consists of column and row interconnect 
channels that span the entire device. Each row of LABs is served by a 
dedicated row interconnect, which routes signals between LABs in the 
same row, and also routes signals from I/O pins to LABs. Additionally, 
the local interconnect routes signals between LEs in the same LAB and in 
adjacent LABs. The column interconnect routes signals between rows and 
routes signals from I/O pins to rows.

LEs 1 through 5 of an LAB drive the local interconnect to the right, while 
LEs 6 through 10 drive the local interconnect to the left. The DATA1 and 
DATA3 inputs of each LE are driven by the local interconnect to the left; 
DATA2 and DATA4 are driven by the local interconnect to the right. The 
local interconnect also routes signals from LEs to I/O pins. Figure 9 shows 
an overview of the FLEX 6000 interconnect architecture. LEs in the first 
and last columns have drivers on both sides so that all LEs in the LAB can 
drive I/O pins via the local interconnect.

Figure 9. FastTrack Interconnect Architecture

Note:
(1) For EPF6010A, EPF6016, and EPF6016A devices, n = 144 channels and m = 20 channels; for EPF6024A devices, 

n = 186 channels and m = 30 channels.
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Figure 10. LAB Connections to Row & Column Interconnects

For improved routability, the row interconnect consists of full-length and 
half-length channels. The full-length channels connect to all LABs in a 
row; the half-length channels connect to the LABs in half of the row. In 
addition to providing a predictable, row-wide interconnect, this 
architecture provides increased routing resources. Two neighboring LABs 
can be connected using a half-length channel, which saves the other half 
of the channel for the other half of the row. One-third of the row channels 
are half-length channels.

Each LE output signal driving
the FastTrack Interconnect can
drive two column channels.

Row 
Interconnect

Any column channel can 
drive six row channels.

Each local channel 
driven by an LE can 
drive four row channels.

At each intersection, 
four row channels can 
drive column channels.

Each LE FastTrack Interconnect
output can drive six row channels.

Column Interconnect Local Interconnect 

From Adjacent
Local Interconnect

LE

LE

Each local channel 
driven by an LE can 
drive two column 
channels.

An LE can be driven by any signal 
from two local interconnect areas.

Row interconnect
drives the local 
interconnect.
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Table 5 summarizes the FastTrack Interconnect resources available in 
each FLEX 6000 device.

In addition to general-purpose I/O pins, FLEX 6000 devices have four 
dedicated input pins that provide low-skew signal distribution across the 
device. These four inputs can be used for global clock and asynchronous 
clear control signals. These signals are available as control signals for all 
LEs in the device. The dedicated inputs can also be used as general-
purpose data inputs because they can feed the local interconnect of each 
LAB in the device. Using dedicated inputs to route data signals provides 
a fast path for high fan-out signals.

The local interconnect from LABs located at either end of two rows can 
drive a global control signal. For instance, in an EPF6016 device, LABs C1, 
D1, C22, and D22 can all drive global control signals. When an LE drives 
a global control signal, the dedicated input pin that drives that signal 
cannot be used. Any LE in the device can drive a global control signal by 
driving the FastTrack Interconnect into the appropriate LAB. To minimize 
delay, however, the Altera software places the driving LE in the 
appropriate LAB. The LE-driving-global signal feature is optimized for 
speed for control signals; regular data signals are better routed on the 
FastTrack Interconnect and do not receive any advantage from being 
routed on global signals. This LE-driving-global control signal feature is 
controlled by the designer and is not used automatically by the Altera 
software. See Figure 11.

Table 5. FLEX 6000 FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per 
Column

EPF6010A 4 144 22 20

EPF6016
EPF6016A

6 144 22 20

EPF6024A 7 186 28 30
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Figure 14. IOE Connection to Column Interconnect

SameFrame 
Pin-Outs

3.3-V FLEX 6000 devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support an EPF6016A device in a 100-pin FineLine BGA package or an 
EPF6024A device in a 256-pin FineLine BGA package.

The Altera software packages provide support to design PCBs with 
SameFrame pin-out devices. Devices can be defined for present and future 
use. The Altera software packages generate pin-outs describing how to lay 
out a board to take advantage of this migration (see Figure 15).

Row Interconnect

Column Interconnect

Each IOE can drive two 
column interconnect channels. 
Each IOE data and OE signal is 
driven to a local interconnect.

Any LE can drive a 
pin through the row
and local interconnect.

IOE IOE

LAB

FastFLEX I/O: An 
LE can drive a 
pin through a local 
interconnect for faster 
clock-to-output times.
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Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-
up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that 
require a VIH of 3.5 V. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. 
The open-drain pin will only drive low or tri-state; it will never drive high. 
The rise time is dependent on the value of the pull-up resistor and load 
impedance. The IOL current specification should be considered when 
selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with VCCIO = 3.3 V or 5.0 V (with 
a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input 
pins. In this case, the pull-up transistor will turn off when the pin voltage 
exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing
Because FLEX 6000 family devices can be used in a mixed-voltage 
environment, they have been designed specifically to tolerate any possible 
power-up sequence. The VCCIO and VCCINT power planes can be powered 
in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during 
power up without damaging the device. Additionally, FLEX 6000 devices 
do not drive out during power up. Once operating conditions are reached, 
FLEX 6000 devices operate as specified by the user.

IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All FLEX 6000 devices provide JTAG BST circuitry that comply with the 
IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for 
FLEX 6000 devices. JTAG BST can be performed before or after 
configuration, but not during configuration (except when you disable 
JTAG support in user mode).

1 See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan 
Testing in Altera Devices) for more information on JTAG BST 
circuitry. 

Table 8. FLEX 6000 JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of the signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a test 
pattern at the output pins and capturing test result at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST 
data to pass synchronously through the selected device to adjacent devices during 
normal device operation.
28 Altera Corporation
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Generic Testing Each FLEX 6000 device is functionally tested. Complete testing of each 
configurable SRAM bit and all logic functionality ensures 100% 
configuration yield. AC test measurements for FLEX 6000 devices are 
made under conditions equivalent to those shown in Figure 17. Multiple 
test patterns can be used to configure devices during all stages of the 
production flow.

Figure 17. AC Test Conditions

Table 10. JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock-to-output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock-to-output 35 ns

tJSZX Update register high impedance to valid 
output

35 ns

tJSXZ Update register valid output to high 
impedance

35 ns

VCC

To Test
System

C1 (includes
JIG capacitance)

Device input
rise and fall
times < 3 ns

464 Ω
(703 Ω)

Device
Output

(8.06 kΩ)

[521 Ω]

[481 Ω]

250 Ω

Power supply transients can affect 
AC measurements. Simultaneous 
transitions of multiple outputs 
should be avoided for accurate 
measurement. Threshold tests must 
not be performed under AC conditions. 
Large-amplitude, fast-ground-current 
transients normally occur as the 
device outputs discharge the load 
capacitances. When these transients 
flow through the parasitic 
inductance between the device 
ground pin and the test system ground, 
significant reductions in observable 
noise immunity can result. Numbers 
without parentheses are for 5.0-V 
devices or outputs. Numbers in 
parentheses are for 3.3-V devices or 
outputs. Numbers in brackets are for 
2.5-V devices or outputs.
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Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, PLCC, and BGA packages 135 ° C

Table 16. FLEX 6000 3.3-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic and 

input buffers
(3), (4) 3.00 (3.00) 3.60 (3.60) V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage –0.5 5.75 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) The minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 

5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms. VCC must rise monotonically.
(5) Typical values are for TA = 25°  C and VCC = 3.3 V.
(6) These values are specified under Table 16 on page 33.
(7) The IOH parameter refers to high-level TTL or CMOS output current. 
(8) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(9) Capacitance is sample-tested only.

Table 17. FLEX 6000 3.3-V Device DC Operating Conditions Notes (5), (6)

Symbol Parameter Conditions Min Typ Max Unit
VIH High-level input voltage 1.7 5.75 V

VIL Low-level input voltage –0.5 0.8 V

VOH 3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 3.00 V (7) 2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, VCCIO = 3.00 V (7) VCCIO – 0.2 V

2.5-V high-level output voltage IOH = –100 µA DC, VCCIO = 2.30 V (7) 2.1 V

IOH = –1 mA DC, VCCIO = 2.30 V (7) 2.0 V

IOH = –2 mA DC, VCCIO = 2.30 V (7) 1.7 V

VOL 3.3-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 3.00 V (8) 0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, VCCIO = 3.00 V (8) 0.2 V

2.5-V low-level output voltage IOL = 100 µA DC, VCCIO = 2.30 V (8) 0.2 V

IOL = 1 mA DC, VCCIO = 2.30 V (8) 0.4 V

IOL = 2 mA DC, VCCIO = 2.30 V (8) 0.7 V

II Input pin leakage current VI = 5.3 V to ground (8) –10 10 µA

IOZ Tri-stated I/O pin leakage current VO = 5.3 V to ground (8) –10 10 µA

ICC0 VCC supply current (standby) VI = ground, no load 0.5 5 mA

Table 18. FLEX 6000 3.3-V Device Capacitance Note (9)

Symbol Parameter Conditions Min Max Unit
CIN Input capacitance for I/O pin VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance for dedicated input VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
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Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure predictable performance and accurate simulation and 
timing analysis. This predictable performance contrasts with that of 
FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance.

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters:

■ LE register clock-to-output delay (tCO + tREG_TO_OUT)
■ Routing delay (tROW + tLOCAL)
■ LE LUT delay (tDATA_TO_REG)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 

Timing simulation and delay prediction are available with the Simulator 
and Timing Analyzer, or with industry-standard EDA tools. The 
Simulator offers both pre-synthesis functional simulation to evaluate logic 
design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.

Figure 19 shows the overall timing model, which maps the possible 
routing paths to and from the various elements of the FLEX 6000 device.
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Figure 19. FLEX 6000 Timing Model
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tXZ
tZX1
tZX2
tZX3

tIOE

tIN
tIN_DELAY
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Table 20. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ Output buffer disable delay C1 = 5 pF

tZX1 Output buffer enable delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tZX2 Output buffer enable delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tIOE Output enable control delay

tIN Input pad and buffer to FastTrack Interconnect delay

tIN_DELAY Input pad and buffer to FastTrack Interconnect delay with additional delay 
turned on

Table 21. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tLOCAL LAB local interconnect delay

tROW Row interconnect routing delay (5)

tCOL Column interconnect routing delay (5)

tDIN_D Dedicated input to LE data delay (5)

tDIN_C Dedicated input to LE control delay

tLEGLOBAL LE output to LE control via internally-generated global signal delay (5)

tLABCARRY Routing delay for the carry-out of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 22. External Reference Timing Parameters

Symbol Parameter Conditions

t1 Register-to-register test pattern (6)

tDRR Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local 
interconnects

(7)
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tCO 0.3 0.4 0.4 ns

tCLR 0.4 0.4 0.5 ns

tC 1.8 2.1 2.6 ns

tLD_CLR 1.8 2.1 2.6 ns

tCARRY_TO_CARRY 0.1 0.1 0.1 ns

tREG_TO_CARRY 1.6 1.9 2.3 ns

tDATA_TO_CARRY 2.1 2.5 3.0 ns

tCARRY_TO_CASC 1.0 1.1 1.4 ns

tCASC_TO_CASC 0.5 0.6 0.7 ns

tREG_TO_CASC 1.4 1.7 2.1 ns

tDATA_TO_CASC 1.1 1.2 1.5 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns

Table 25. IOE Timing Microparameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tOD1 1.9 2.2 2.7 ns

tOD2 4.1 4.8 5.8 ns

tOD3 5.8 6.8 8.3 ns

tXZ 1.4 1.7 2.1 ns

tXZ1 1.4 1.7 2.1 ns

tXZ2 3.6 4.3 5.2 ns

tXZ3 5.3 6.3 7.7 ns

tIOE 0.5 0.6 0.7 ns

tIN 3.6 4.1 5.1 ns

tIN_DELAY 4.8 5.4 6.7 ns

Table 24. LE Timing Microparameters for EPF6010A & EPF6016A Devices  (Part 2 of 2)

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Tables 34 through 38 show the timing information for EPF6024A devices.

Table 33. External Timing Parameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tINSU 3.2 4.1 ns

tINH 0.0 0.0 ns

tOUTCO 2.0 7.9 2.0 9.9 ns

Table 34. LE Timing Microparameters for EPF6024A Devices 

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tREG_TO_REG 1.2 1.3 1.6 ns

tCASC_TO_REG 0.7 0.8 1.0 ns

tCARRY_TO_REG 1.6 1.8 2.2 ns

tDATA_TO_REG 1.3 1.4 1.7 ns

tCASC_TO_OUT 1.2 1.3 1.6 ns

tCARRY_TO_OUT 2.0 2.2 2.6 ns

tDATA_TO_OUT 1.8 2.1 2.6 ns

tREG_TO_OUT 0.3 0.3 0.4 ns

tSU 0.9 1.0 1.2 ns

tH 1.3 1.4 1.7 ns

tCO 0.2 0.3 0.3 ns

tCLR 0.3 0.3 0.4 ns

tC 1.9 2.1 2.5 ns

tLD_CLR 1.9 2.1 2.5 ns

tCARRY_TO_CARRY 0.2 0.2 0.3 ns

tREG_TO_CARRY 1.4 1.6 1.9 ns

tDATA_TO_CARRY 1.3 1.4 1.7 ns

tCARRY_TO_CASC 1.1 1.2 1.4 ns

tCASC_TO_CASC 0.7 0.8 1.0 ns

tREG_TO_CASC 1.4 1.6 1.9 ns

tDATA_TO_CASC 1.0 1.1 1.3 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns
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This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions. 

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations shown above) for continuous 
interconnect FLEX devices assumes that LEs drive FastTrack Interconnect 
channels. In contrast, the power model of segmented FPGAs assumes that 
all LEs drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating 
frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.
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Figure 20.  ICCACTIVE vs. Operating Frequency  

Device 
Configuration & 
Operation

The FLEX 6000 architecture supports several configuration schemes to 
load a design into the device(s) on the circuit board. This section 
summarizes the device operating modes and available device 
configuration schemes. 

f See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 
Devices) for detailed information on configuring FLEX 6000 devices, 
including sample schematics, timing diagrams, configuration options, 
pins names, and timing parameters.
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