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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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...and More 
Features

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Programmable output slew-rate control to reduce switching 

noise
– Fast path from register to I/O pin for fast clock-to-output time

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, high-fan-
in logic functions (automatically used by software tools and 
megafunctions)

– Tri-state emulation that implements internal tri-state networks
– Four low-skew global paths for clock, clear, preset, or logic 

signals
■ Software design support and automatic place-and-route provided by 

Altera’s development system for Windows-based PCs, Sun 
SPARCstations, and HP 9000 Series 700/800

■ Flexible package options
– Available in a variety of packages with 100 to 256 pins, including 

the innovative FineLine BGATM packages (see Table 2)
– SameFrameTM pin-compatibility (with other FLEX® 6000 devices) 

across device densities and pin counts
– Thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and 

ball-grid array (BGA) packages (see Table 2)
– Footprint- and pin-compatibility with other FLEX 6000 devices 

in the same package
■ Additional design entry and simulation support provided by 

EDIF 2 0 0 and 3 0 0 netlist files, the library of parameterized modules 
(LPM), Verilog HDL, VHDL, DesignWare components, and other 
interfaces to popular EDA tools from manufacturers such as 
Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, 
Synplicity, VeriBest, and Viewlogic

Table 2. FLEX 6000 Package Options & I/O Pin Count 

Device 100-Pin 
TQFP

100-Pin 
FineLine BGA

144-Pin 
TQFP

208-Pin 
PQFP

240-Pin 
PQFP

256-Pin 
BGA

256-pin 
FineLine BGA

EPF6010A 71 102

EPF6016 117 171 199 204

EPF6016A 81 81 117 171 171

EPF6024A 117 171 199 218 219
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General 
Description

The Altera® FLEX 6000 programmable logic device (PLD) family provides 
a low-cost alternative to high-volume gate array designs. FLEX 6000 
devices are based on the OptiFLEX architecture, which minimizes die size 
while maintaining high performance and routability. The devices have 
reconfigurable SRAM elements, which give designers the flexibility to 
quickly change their designs during prototyping and design testing. 
Designers can also change functionality during operation via in-circuit 
reconfiguration.

FLEX 6000 devices are reprogrammable, and they are 100% tested prior to 
shipment. As a result, designers are not required to generate test vectors 
for fault coverage purposes, allowing them to focus on simulation and 
design verification. In addition, the designer does not need to manage 
inventories of different gate array designs. FLEX 6000 devices are 
configured on the board for the specific functionality required.

Table 3 shows FLEX 6000 performance for some common designs. All 
performance values shown were obtained using Synopsys DesignWare or 
LPM functions. Special design techniques are not required to implement 
the applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Note:
(1) This performance value is measured as a pin-to-pin delay.

Table 3. FLEX 6000 Device Performance for Common Designs

Application LEs Used Performance Units

-1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

16-bit loadable counter 16 172 153 133 MHz

16-bit accumulator 16 172 153 133 MHz

24-bit accumulator 24 136 123 108 MHz

16-to-1 multiplexer (pin-to-pin) (1) 10 12.1 13.4 16.6 ns

16 ×  16 multiplier with a 4-stage pipeline 592 84 67 58 MHz
Altera Corporation  3
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Table 4 shows FLEX 6000 performance for more complex designs. 

Note:
(1) The applications in this table were created using Altera MegaCoreTM functions.

FLEX 6000 devices are supported by Altera development systems; a 
single, integrated package that offers schematic, text (including AHDL), 
and waveform design entry, compilation and logic synthesis, full 
simulation and worst-case timing analysis, and device configuration. The 
Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, 
and other interfaces for additional design entry and simulation support 
from other industry-standard PC- and UNIX workstation-based EDA 
tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development systems include DesignWare 
functions that are optimized for the FLEX 6000 architecture.

The Altera development system runs on Windows-based PCs, Sun 
SPARCstations, and HP 9000 Series 700/800.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet and the Quartus Programmable Logic Development System & 
Software Data Sheet for more information.

Table 4. FLEX 6000 Device Performance for Complex Designs Note (1)

Application LEs Used Performance Units

-1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

8-bit, 16-tap parallel finite impulse response 
(FIR) filter

599 94 80 72 MSPS

8-bit, 512-point fast Fourier transform (FFT) 
function

1,182 75
63

89
53

109
43

µS
MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

487 36 30 25 MHz

PCI bus target with zero wait states 609 56 49 42 MHz
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The interleaved LAB structure—an innovative feature of the FLEX 6000 
architecture—allows each LAB to drive two local interconnects. This 
feature minimizes the use of the FastTrack Interconnect, providing higher 
performance. An LAB can drive 20 LEs in adjacent LABs via the local 
interconnect, which maximizes fitting flexibility while minimizing die 
size. See Figure 2.

Figure 2. Logic Array Block

In most designs, the registers only use global clock and clear signals. 
However, in some cases, other clock or asynchronous clear signals are 
needed. In addition, counters may also have synchronous clear or load 
signals. In a design that uses non-global clock and clear signals, inputs 
from the first LE in an LAB are re-routed to drive the control signals for 
that LAB. See Figure 3.

The 10 LEs in the LAB are driven by two
local interconnect areas. The LAB can drive
two local interconnect areas.

Row Interconnect

Local Interconnect

The row interconnect is
bidirectionally connected
to the local interconnect.

Column Interconnect

LEs can directly drive the row
and column interconnect.

To/From 
Adjacent 
LAB or IOEs

To/From
Adjacent 

LAB or IOEs
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Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock and clear control signals on the flipflop can be driven 
by global signals, general-purpose I/O pins, or any internal logic. For 
combinatorial functions, the flipflop is bypassed and the output of the 
LUT drives the outputs of the LE. The LE output can drive both the local 
interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. A carry chain supports high-speed 
arithmetic functions such as counters and adders, while a cascade chain 
implements wide-input functions such as equivalent comparators with 
minimum delay. Carry and cascade chains connect LEs 2 through 10 in an 
LAB and all LABs in the same half of the row. Because extensive use of 
carry and cascade chains can reduce routing flexibility, these chains 
should be limited to speed-critical portions of a design. 
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Carry Chain 

The carry chain provides a very fast (0.1 ns) carry-forward function 
between LEs. The carry-in signal from a lower-order bit drives forward 
into the higher-order bit via the carry chain, and feeds into both the LUT 
and the next portion of the carry chain. This feature allows the FLEX 6000 
architecture to implement high-speed counters, adders, and comparators 
of arbitrary width. Carry chain logic can be created automatically by the 
Altera software during design processing, or manually by the designer 
during design entry. Parameterized functions such as LPM and 
DesignWare functions automatically take advantage of carry chains for 
the appropriate functions.

Because the first LE of each LAB can generate control signals for that LAB, 
the first LE in each LAB is not included in carry chains. In addition, the 
inputs of the first LE in each LAB may be used to generate synchronous 
clear and load enable signals for counters implemented with carry chains. 

Carry chains longer than nine LEs are implemented automatically by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from an even-numbered LAB to another even-numbered LAB, or from an 
odd-numbered LAB to another odd-numbered LAB. For example, the last 
LE of the first LAB in a row carries to the second LE of the third LAB in 
the row. In addition, the carry chain does not cross the middle of the row. 
For instance, in the EPF6016 device, the carry chain stops at the 11th LAB 
in a row and a new carry chain begins at the 12th LAB.

Figure 5 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. Although the register can be bypassed for simple adders, 
it can be used for an accumulator function. Another portion of the LUT 
and the carry chain logic generates the carry-out signal, which is routed 
directly to the carry-in signal of the next-higher-order bit. The final 
carry-out signal is routed to an LE, where it is driven onto the FastTrack 
Interconnect. 
10 Altera Corporation
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Figure 5. Carry Chain Operation
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Figure 10. LAB Connections to Row & Column Interconnects

For improved routability, the row interconnect consists of full-length and 
half-length channels. The full-length channels connect to all LABs in a 
row; the half-length channels connect to the LABs in half of the row. In 
addition to providing a predictable, row-wide interconnect, this 
architecture provides increased routing resources. Two neighboring LABs 
can be connected using a half-length channel, which saves the other half 
of the channel for the other half of the row. One-third of the row channels 
are half-length channels.

Each LE output signal driving
the FastTrack Interconnect can
drive two column channels.

Row 
Interconnect

Any column channel can 
drive six row channels.

Each local channel 
driven by an LE can 
drive four row channels.

At each intersection, 
four row channels can 
drive column channels.

Each LE FastTrack Interconnect
output can drive six row channels.

Column Interconnect Local Interconnect 

From Adjacent
Local Interconnect

LE

LE

Each local channel 
driven by an LE can 
drive two column 
channels.

An LE can be driven by any signal 
from two local interconnect areas.

Row interconnect
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Table 5 summarizes the FastTrack Interconnect resources available in 
each FLEX 6000 device.

In addition to general-purpose I/O pins, FLEX 6000 devices have four 
dedicated input pins that provide low-skew signal distribution across the 
device. These four inputs can be used for global clock and asynchronous 
clear control signals. These signals are available as control signals for all 
LEs in the device. The dedicated inputs can also be used as general-
purpose data inputs because they can feed the local interconnect of each 
LAB in the device. Using dedicated inputs to route data signals provides 
a fast path for high fan-out signals.

The local interconnect from LABs located at either end of two rows can 
drive a global control signal. For instance, in an EPF6016 device, LABs C1, 
D1, C22, and D22 can all drive global control signals. When an LE drives 
a global control signal, the dedicated input pin that drives that signal 
cannot be used. Any LE in the device can drive a global control signal by 
driving the FastTrack Interconnect into the appropriate LAB. To minimize 
delay, however, the Altera software places the driving LE in the 
appropriate LAB. The LE-driving-global signal feature is optimized for 
speed for control signals; regular data signals are better routed on the 
FastTrack Interconnect and do not receive any advantage from being 
routed on global signals. This LE-driving-global control signal feature is 
controlled by the designer and is not used automatically by the Altera 
software. See Figure 11.

Table 5. FLEX 6000 FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per 
Column

EPF6010A 4 144 22 20

EPF6016
EPF6016A

6 144 22 20

EPF6024A 7 186 28 30
Altera Corporation  21
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Figure 11. Global Clock & Clear Distribution       Note (1) 

Notes:
(1) The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, 

LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals.
(2) The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
(3) Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals.
(4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.
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Each IOE drives a row or column interconnect when used as an input or 
bidirectional pin. A row IOE can drive up to six row lines; a column IOE 
can drive up to two column lines. The input path from the I/O pad to the 
FastTrack Interconnect has a programmable delay element that can be 
used to guarantee a zero hold time. Depending on the placement of the 
IOE relative to what it is driving, the designer may choose to turn on the 
programmable delay to ensure a zero hold time. Figure 13 shows how an 
IOE connects to a row interconnect, and Figure 14 shows how an IOE 
connects to a column interconnect.

Figure 13. IOE Connection to Row Interconnect

Row Interconnect

Any LE can drive 
a pin through the
row and local
interconnect.

FastFLEX I/O: An LE can drive a pin through the 
local interconnect for faster clock-to-output times.

IOE

IOE

Up to 10 IOEs are on either 
side of a row. Each IOE can 
drive up to six row 
channels, and each IOE data 
and OE signal is driven by  
the local interconnect.

LAB
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MultiVolt I/O Interface
The FLEX 6000 device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 6000 devices to interface with systems of 
differing supply voltages. The EPF6016 device can be set for 3.3-V or 5.0-V 
I/O pin operation. This device has one set of VCC pins for internal 
operation and input buffers (VCCINT), and another set for output drivers 
(VCCIO). 

The VCCINT pins on 5.0-V FLEX 6000 devices must always be connected 
to a 5.0-V power supply. With a 5.0-V VCCINT level, input voltages are at 
TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs. 

The VCCIO pins on 5.0-V FLEX 6000 devices can be connected to either a 
3.3-V or 5.0-V power supply, depending on the output requirements. 
When the VCCIO pins are connected to a 5.0-V power supply, the output 
levels are compatible with 5.0-V systems. When the VCCIO pins are 
connected to a 3.3-V power supply, the output high is 3.3 V and is 
therefore compatible with 3.3-V or 5.0-V systems. Devices operating with 
VCCIO levels lower than 4.75 V incur a nominally greater timing delay of 
tOD2 instead of tOD1.

On 3.3-V FLEX 6000 devices, the VCCINT pins must be connected to a 
3.3-V power supply. Additionally, 3.3-V FLEX 6000A devices can interface 
with 2.5-V, 3.3-V, or 5.0-V systems when the VCCIO pins are tied to 2.5 V. 
The output can drive 2.5-V systems, and the inputs can be driven by 2.5-
V, 3.3-V, or 5.0-V systems. When the VCCIO pins are tied to 3.3 V, the 
output can drive 3.3-V or 5.0-V systems. MultiVolt I/Os are not supported 
on 100-pin TQFP or 100-pin FineLine BGA packages.

Table 7 describes FLEX 6000 MultiVolt I/O support.

Note:
(1) When VCCIO = 3.3 V, a FLEX 6000 device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Table 7. FLEX 6000 MultiVolt I/O Support

VCCINT 
(V)

VCCIO 
(V)

Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

3.3 2.5 v v v v
3.3 3.3 v v v v (1) v v
5.0 3.3 v v v v
5.0 5.0 v v v
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Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-
up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that 
require a VIH of 3.5 V. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. 
The open-drain pin will only drive low or tri-state; it will never drive high. 
The rise time is dependent on the value of the pull-up resistor and load 
impedance. The IOL current specification should be considered when 
selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with VCCIO = 3.3 V or 5.0 V (with 
a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input 
pins. In this case, the pull-up transistor will turn off when the pin voltage 
exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing
Because FLEX 6000 family devices can be used in a mixed-voltage 
environment, they have been designed specifically to tolerate any possible 
power-up sequence. The VCCIO and VCCINT power planes can be powered 
in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during 
power up without damaging the device. Additionally, FLEX 6000 devices 
do not drive out during power up. Once operating conditions are reached, 
FLEX 6000 devices operate as specified by the user.

IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All FLEX 6000 devices provide JTAG BST circuitry that comply with the 
IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for 
FLEX 6000 devices. JTAG BST can be performed before or after 
configuration, but not during configuration (except when you disable 
JTAG support in user mode).

1 See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan 
Testing in Altera Devices) for more information on JTAG BST 
circuitry. 

Table 8. FLEX 6000 JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of the signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a test 
pattern at the output pins and capturing test result at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST 
data to pass synchronously through the selected device to adjacent devices during 
normal device operation.
28 Altera Corporation
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time to 100 ms. VCC must rise monotonically.
(5) Typical values are for TA = 25°  C and VCC = 5.0 V.
(6) These values are specified under the FLEX 6000 Recommended Operating Conditions shown in Table 12 on 

page 31.
(7) The IOH parameter refers to high-level TTL or CMOS output current. 
(8) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(9) Capacitance is sample-tested only.

Table 13. FLEX 6000 5.0-V Device DC Operating Conditions Notes (5), (6)

Symbol Parameter Conditions Min Typ Max Unit
VIH High-level input voltage 2.0 VCCINT + 0.5 V

VIL Low-level input voltage –0.5 0.8 V

VOH 5.0-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 4.75 V (7) 2.4 V

3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 3.00 V (7) 2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, VCCIO = 3.00 V (7) VCCIO – 0.2 V

VOL 5.0-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 4.75 V (8) 0.45 V

3.3-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 3.00 V (8) 0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, VCCIO = 3.00 V (8) 0.2 V

II Input pin leakage current VI = VCC or ground (8) –10 10 µA

IOZ Tri-stated I/O pin leakage current VO = VCC or ground (8) –40 40 µA

ICC0 VCC supply current (standby) VI = ground, no load 0.5 5 mA

Table 14. FLEX 6000 5.0-V Device Capacitance Note (9)

Symbol Parameter Conditions Min Max Unit
CIN Input capacitance for I/O pin VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance for dedicated input VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
32 Altera Corporation
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Figure 19. FLEX 6000 Timing Model
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Table 20. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ Output buffer disable delay C1 = 5 pF

tZX1 Output buffer enable delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tZX2 Output buffer enable delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tIOE Output enable control delay

tIN Input pad and buffer to FastTrack Interconnect delay

tIN_DELAY Input pad and buffer to FastTrack Interconnect delay with additional delay 
turned on

Table 21. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tLOCAL LAB local interconnect delay

tROW Row interconnect routing delay (5)

tCOL Column interconnect routing delay (5)

tDIN_D Dedicated input to LE data delay (5)

tDIN_C Dedicated input to LE control delay

tLEGLOBAL LE output to LE control via internally-generated global signal delay (5)

tLABCARRY Routing delay for the carry-out of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 22. External Reference Timing Parameters

Symbol Parameter Conditions

t1 Register-to-register test pattern (6)

tDRR Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local 
interconnects

(7)
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tOD3 4.7 5.2 ns

tXZ 2.3 2.8 ns

tZX1 2.3 2.8 ns

tZX2 4.6 5.1 ns

tZX3 4.7 5.2 ns

tIOE 0.5 0.6 ns

tIN 3.3 4.0 ns

tIN_DELAY 4.6 5.6 ns

Table 31. Interconnect Timing Microparameters for EPF6016 Devices 

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tLOCAL 0.8 1.0 ns

tROW 2.9 3.3 ns

tCOL 2.3 2.5 ns

tDIN_D 4.9 6.0 ns

tDIN_C 4.8 6.0 ns

tLEGLOBAL 3.1 3.9 ns

tLABCARRY 0.4 0.5 ns

tLABCASC 0.8 1.0 ns

Table 32. External Reference Timing Parameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

t1 53.0 65.0 ns

tDRR 16.0 20.0 ns

Table 30. IOE Timing Microparameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max
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This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions. 

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations shown above) for continuous 
interconnect FLEX devices assumes that LEs drive FastTrack Interconnect 
channels. In contrast, the power model of segmented FPGAs assumes that 
all LEs drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating 
frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.
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Figure 20.  ICCACTIVE vs. Operating Frequency  

Device 
Configuration & 
Operation

The FLEX 6000 architecture supports several configuration schemes to 
load a design into the device(s) on the circuit board. This section 
summarizes the device operating modes and available device 
configuration schemes. 

f See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 
Devices) for detailed information on configuring FLEX 6000 devices, 
including sample schematics, timing diagrams, configuration options, 
pins names, and timing parameters.
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