Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|-------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 132 | | Number of Logic Elements/Cells | 1320 | | Total RAM Bits | - | | Number of I/O | 117 | | Number of Gates | 16000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf6016ati144-3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 1. OptiFLEX Architecture Block Diagram FLEX 6000 devices provide four dedicated, global inputs that drive the control inputs of the flipflops to ensure efficient distribution of high-speed, low-skew control signals. These inputs use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect. These inputs can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device. The dedicated global routing structure is built into the device, eliminating the need to create a clock tree. #### **Logic Array Block** An LAB consists of ten LEs, their associated carry and cascade chains, the LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 6000 architecture, and facilitates efficient routing with optimum device utilization and high performance. The interleaved LAB structure—an innovative feature of the FLEX 6000 architecture—allows each LAB to drive two local interconnects. This feature minimizes the use of the FastTrack Interconnect, providing higher performance. An LAB can drive 20 LEs in adjacent LABs via the local interconnect, which maximizes fitting flexibility while minimizing die size. See Figure 2. Figure 2. Logic Array Block In most designs, the registers only use global clock and clear signals. However, in some cases, other clock or asynchronous clear signals are needed. In addition, counters may also have synchronous clear or load signals. In a design that uses non-global clock and clear signals, inputs from the first LE in an LAB are re-routed to drive the control signals for that LAB. See Figure 3. Figure 5. Carry Chain Operation Figure 6. Cascade Chain Operation #### LE Operating Modes The FLEX 6000 LE can operate in one of the following three modes: - Normal mode - Arithmetic mode - Counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, synchronous clear, and synchronous load control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions to use an LE operating mode for optimal performance. Figure 7 shows the LE operating modes. Figure 7. LE Operating Modes #### **Normal Mode** #### **Arithmetic Mode** #### Notes: - (1) The register feedback multiplexer is available on LE 2 of each LAB. - (2) The data1 and data2 input signals can supply a clock enable, up or down control, or register feedback signals for all LEs other than the second LE in an LAB. - (3) The LAB-wide synchronous clear and LAB-wide synchronous load affect all registers in an LAB. Figure 8. LE Clear & Preset Modes #### Asynchronous Clear The flipflop can be cleared by either LABCTRL1 or LABCTRL2. #### **Asynchronous Preset** An asynchronous preset is implemented with an asynchronous clear. The Altera software provides preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, this technique can be used when a register drives logic or drives a pin. In addition to the two clear and preset modes, FLEX 6000 devices provide a chip-wide reset pin (DEV\_CLRn) that can reset all registers in the device. The option to use this pin is set in the Altera software before compilation. The chip-wide reset overrides all other control signals. Any register with an asynchronous preset will be preset when the chip-wide reset is asserted because of the inversion technique used to implement the asynchronous preset. The Altera software can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses an additional three LEs per register. #### FastTrack Interconnect In the FLEX 6000 OptiFLEX architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even for complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect consists of column and row interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect, which routes signals between LABs in the same row, and also routes signals from I/O pins to LABs. Additionally, the local interconnect routes signals between LEs in the same LAB and in adjacent LABs. The column interconnect routes signals between rows and routes signals from I/O pins to rows. LEs 1 through 5 of an LAB drive the local interconnect to the right, while LEs 6 through 10 drive the local interconnect to the left. The DATA1 and DATA3 inputs of each LE are driven by the local interconnect to the left; DATA2 and DATA4 are driven by the local interconnect to the right. The local interconnect also routes signals from LEs to I/O pins. Figure 9 shows an overview of the FLEX 6000 interconnect architecture. LEs in the first and last columns have drivers on both sides so that all LEs in the LAB can drive I/O pins via the local interconnect. Figure 9. FastTrack Interconnect Architecture #### Note: (1) For EPF6010A, EPF6016, and EPF6016A devices, *n* = 144 channels and *m* = 20 channels; for EPF6024A devices, *n* = 186 channels and *m* = 30 channels. A row channel can be driven by an LE or by one of two column channels. These three signals feed a 3-to-1 multiplexer that connects to six specific row channels. Row channels drive into the local interconnect via multiplexers. Each column of LABs is served by a dedicated column interconnect. The LEs in an LAB can drive the column interconnect. The LEs in an LAB, a column IOE, or a row interconnect can drive the column interconnect. The column interconnect can then drive another row's interconnect to route the signals to other LABs in the device. A signal from the column interconnect must be routed to the row interconnect before it can enter an LAB. Each LE has a FastTrack Interconnect output and a local output. The FastTrack interconnect output can drive six row and two column lines directly; the local output drives the local interconnect. Each local interconnect channel driven by an LE can drive four row and two column channels. This feature provides additional flexibility, because each LE can drive any of ten row lines and four column lines. In addition, LEs can drive global control signals. This feature is useful for distributing internally generated clock, asynchronous clear, and asynchronous preset signals. A pin-driven global signal can also drive data signals, which is useful for high-fan-out data signals. Each LAB drives two groups of local interconnects, which allows an LE to drive two LABs, or 20 LEs, via the local interconnect. The row-to-local multiplexers are used more efficiently, because the multiplexers can now drive two LABs. Figure 10 shows how an LAB connects to row and column interconnects. Table 5 summarizes the FastTrack Interconnect resources available in each FLEX 6000 device. | Table 5. FLEX 600 | Table 5. FLEX 6000 FastTrack Interconnect Resources | | | | | | | | | |---------------------|-----------------------------------------------------|---------------------|---------|------------------------|--|--|--|--|--| | Device | Rows | Channels per<br>Row | Columns | Channels per<br>Column | | | | | | | EPF6010A | 4 | 144 | 22 | 20 | | | | | | | EPF6016<br>EPF6016A | 6 | 144 | 22 | 20 | | | | | | | EPF6024A | 7 | 186 | 28 | 30 | | | | | | In addition to general-purpose I/O pins, FLEX 6000 devices have four dedicated input pins that provide low-skew signal distribution across the device. These four inputs can be used for global clock and asynchronous clear control signals. These signals are available as control signals for all LEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. Using dedicated inputs to route data signals provides a fast path for high fan-out signals. The local interconnect from LABs located at either end of two rows can drive a global control signal. For instance, in an EPF6016 device, LABs C1, D1, C22, and D22 can all drive global control signals. When an LE drives a global control signal, the dedicated input pin that drives that signal cannot be used. Any LE in the device can drive a global control signal by driving the FastTrack Interconnect into the appropriate LAB. To minimize delay, however, the Altera software places the driving LE in the appropriate LAB. The LE-driving-global signal feature is optimized for speed for control signals; regular data signals are better routed on the FastTrack Interconnect and do not receive any advantage from being routed on global signals. This LE-driving-global control signal feature is controlled by the designer and is not used automatically by the Altera software. See Figure 11. Figure 11. Global Clock & Clear Distribution Note (1) #### Notes: - The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals. The local interconnect from LABs C1 and D1 can drive two global control signals on the left side. - (2) - Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals. (3) - The local interconnect from LABs C22 and D22 can drive two global control signals on the right side. | Symbol | Parameter | Min | Max | Unit | |-------------------|------------------------------------------------|-----|-----|------| | t <sub>JCP</sub> | TCK clock period | 100 | | ns | | t <sub>JCH</sub> | TCK clock high time | 50 | | ns | | t <sub>JCL</sub> | TCK clock low time | 50 | | ns | | t <sub>JPSU</sub> | JTAG port setup time | 20 | | ns | | t <sub>JPH</sub> | JTAG port hold time | 45 | | ns | | t <sub>JPCO</sub> | JTAG port clock-to-output | | 25 | ns | | t <sub>JPZX</sub> | JTAG port high impedance to valid output | | 25 | ns | | t <sub>JPXZ</sub> | JTAG port valid output to high impedance | | 25 | ns | | t <sub>JSSU</sub> | Capture register setup time | 20 | | ns | | t <sub>JSH</sub> | Capture register hold time | 45 | | ns | | t <sub>JSCO</sub> | Update register clock-to-output | | 35 | ns | | t <sub>JSZX</sub> | Update register high impedance to valid output | | 35 | ns | | t <sub>JSXZ</sub> | Update register valid output to high impedance | | 35 | ns | ### **Generic Testing** Each FLEX 6000 device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 6000 devices are made under conditions equivalent to those shown in Figure 17. Multiple test patterns can be used to configure devices during all stages of the production flow. #### Figure 17. AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers without parentheses are for 5.0-V devices or outputs. Numbers in parentheses are for 3.3-V devices or outputs. Numbers in brackets are for 2.5-V devices or outputs. # Operating Conditions Tables 11 through 18 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V and 3.3-V FLEX 6000 devices. | Table 1 | Table 11. FLEX 6000 5.0-V Device Absolute Maximum Ratings Note (1) | | | | | | | | | | | | |------------------|--------------------------------------------------------------------|------------------------------|------|-----|------|--|--|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | | | V <sub>CC</sub> | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | ٧ | | | | | | | | | VI | DC input voltage | | -2.0 | 7.0 | V | | | | | | | | | I <sub>OUT</sub> | DC output current, per pin | | -25 | 25 | mA | | | | | | | | | T <sub>STG</sub> | Storage temperature | No bias | -65 | 150 | ° C | | | | | | | | | T <sub>AMB</sub> | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | | | | | TJ | Junction temperature | PQFP, TQFP, and BGA packages | | 135 | ° C | | | | | | | | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|-----------------------------------------------------|--------------------|-------------|--------------------------|------| | V <sub>CCINT</sub> | Supply voltage for internal logic and input buffers | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | V <sub>CCIO</sub> | Supply voltage for output buffers, 5.0-V operation | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | V <sub>I</sub> | Input voltage | | -0.5 | V <sub>CCINT</sub> + 0.5 | V | | Vo | Output voltage | | 0 | V <sub>CCIO</sub> | V | | TJ | Operating temperature | For commercial use | 0 | 85 | ° C | | | | For industrial use | -40 | 100 | ° C | | t <sub>R</sub> | Input rise time | | | 40 | ns | | t <sub>F</sub> | Input fall time | | | 40 | ns | Figure 19. FLEX 6000 Timing Model | Table 23. External Timing Parameters | | | | | | | | |--------------------------------------|---------------------------------------------------------------------------------|------------|--|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | | t <sub>INSU</sub> | Setup time with global clock at LE register | (8) | | | | | | | t <sub>INH</sub> | Hold time with global clock at LE register | (8) | | | | | | | t <sub>оитсо</sub> | Clock-to-output delay with global clock with LE register using FastFLEX I/O pin | (8) | | | | | | #### *Notes to tables:* - Microparameters are timing delays contributed by individual architectural elements and cannot be measured explicitly. - (2) Operating conditions: - $\hat{V_{CCIO}} = \widecheck{5}.0~V \pm 5\%$ for commercial use in 5.0-V FLEX 6000 devices. - $V_{CCIO} = 5.0 \text{ V} \pm 10\%$ for industrial use in 5.0-V FLEX 6000 devices. - $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in 3.3-V FLEX 6000 devices. - (3) Operating conditions: - $\hat{V_{CCIO}} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in 5.0-V FLEX 6000 devices. - $V_{CCIO}$ = 2.5 V ±0.2 V for commercial or industrial use in 3.3-V FLEX 6000 devices. - (4) Operating conditions: - $V_{\text{CCIO}} = 2.5 \text{ V}, 3.3 \text{ V}, \text{ or } 5.0 \text{ V}.$ - (5) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (6) This timing parameter shows the delay of a register-to-register test pattern and is used to determine speed grades. There are 12 LEs, including source and destination registers. The row and column interconnects between the registers vary in length. - 7) This timing parameter is shown for reference and is specified by characterization. - (8) This timing parameter is specified by characterization. Tables 24 through 28 show the timing information for EPF6010A and EPF6016A devices. | Parameter | | | Speed | Grade | | | Unit | |---------------------------|-----|-----|-------|-------|-----|-----|------| | | - | -1 | | -2 | | 3 | 1 | | | Min | Max | Min | Max | Min | Max | | | treg_to_reg | | 1.2 | | 1.3 | | 1.7 | ns | | t <sub>CASC_TO_REG</sub> | | 0.9 | | 1.0 | | 1.2 | ns | | t <sub>CARRY_TO_REG</sub> | | 0.9 | | 1.0 | | 1.2 | ns | | t <sub>DATA_TO_REG</sub> | | 1.1 | | 1.2 | | 1.5 | ns | | t <sub>CASC_TO_OUT</sub> | | 1.3 | | 1.4 | | 1.8 | ns | | t <sub>CARRY_TO_OUT</sub> | | 1.6 | | 1.8 | | 2.3 | ns | | <sup>t</sup> DATA_TO_OUT | | 1.7 | | 2.0 | | 2.5 | ns | | t <sub>REG_TO_OUT</sub> | | 0.4 | | 0.4 | | 0.5 | ns | | t <sub>SU</sub> | 0.9 | | 1.0 | | 1.3 | | ns | | t <sub>H</sub> | 1.4 | | 1.7 | | 2.1 | | ns | | Parameter | Speed Grade | | | | | | | | |---------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | - | 1 | -2 | | - | 3 | ] | | | | Min | Max | Min | Max | Min | Max | | | | t <sub>co</sub> | | 0.3 | | 0.4 | | 0.4 | ns | | | t <sub>CLR</sub> | | 0.4 | | 0.4 | | 0.5 | ns | | | t <sub>C</sub> | | 1.8 | | 2.1 | | 2.6 | ns | | | t <sub>LD_CLR</sub> | | 1.8 | | 2.1 | | 2.6 | ns | | | tCARRY_TO_CARRY | | 0.1 | | 0.1 | | 0.1 | ns | | | tREG_TO_CARRY | | 1.6 | | 1.9 | | 2.3 | ns | | | tDATA_TO_CARRY | | 2.1 | | 2.5 | | 3.0 | ns | | | tCARRY_TO_CASC | | 1.0 | | 1.1 | | 1.4 | ns | | | t <sub>CASC_TO_CASC</sub> | | 0.5 | | 0.6 | | 0.7 | ns | | | tREG_TO_CASC | | 1.4 | | 1.7 | | 2.1 | ns | | | t <sub>DATA_TO_CASC</sub> | | 1.1 | | 1.2 | | 1.5 | ns | | | <sup>t</sup> ch | 2.5 | | 3.0 | | 3.5 | | ns | | | <sup>t</sup> CL | 2.5 | | 3.0 | | 3.5 | | ns | | | Parameter | Speed Grade | | | | | | | | |------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t <sub>OD1</sub> | | 1.9 | | 2.2 | | 2.7 | ns | | | t <sub>OD2</sub> | | 4.1 | | 4.8 | | 5.8 | ns | | | t <sub>OD3</sub> | | 5.8 | | 6.8 | | 8.3 | ns | | | $t_{XZ}$ | | 1.4 | | 1.7 | | 2.1 | ns | | | t <sub>XZ1</sub> | | 1.4 | | 1.7 | | 2.1 | ns | | | t <sub>XZ2</sub> | | 3.6 | | 4.3 | | 5.2 | ns | | | t <sub>XZ3</sub> | | 5.3 | | 6.3 | | 7.7 | ns | | | t <sub>IOE</sub> | | 0.5 | | 0.6 | | 0.7 | ns | | | t <sub>IN</sub> | | 3.6 | | 4.1 | | 5.1 | ns | | | tin delay | | 4.8 | | 5.4 | | 6.7 | ns | | | Parameter | | | Speed | Grade | | | Unit | |-----------------------|-----|-----|-------|-------|-----|-----|------| | | - | 1 | | 2 | -; | 3 | | | | Min | Max | Min | Max | Min | Max | | | t <sub>LOCAL</sub> | | 0.7 | | 0.7 | | 1.0 | ns | | t <sub>ROW</sub> | | 2.9 | | 3.2 | | 3.2 | ns | | t <sub>COL</sub> | | 1.2 | | 1.3 | | 1.4 | ns | | t <sub>DIN_D</sub> | | 5.4 | | 5.7 | | 6.4 | ns | | t <sub>DIN_C</sub> | | 4.3 | | 5.0 | | 6.1 | ns | | t<br>LEGLOBAL | | 2.6 | | 3.0 | | 3.7 | ns | | t <sub>LABCARRY</sub> | | 0.7 | | 0.8 | | 0.9 | ns | | t <sub>LABCASC</sub> | | 1.3 | | 1.4 | | 1.8 | ns | | Table 27. External Reference Timing Parameters for EPF6010A & EPF6016A Devices | | | | | | | | | | | |--------------------------------------------------------------------------------|----------|----------|------|-----|------|-----|------|------|--|--| | Parameter Device Speed Grade | | | | | | | | Unit | | | | | | -1 -2 -3 | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t <sub>1</sub> | EPF6010A | | 37.6 | | 43.6 | | 53.7 | ns | | | | | EPF6016A | | 38.0 | | 44.0 | | 54.1 | ns | | | | Table 28. Externa | Table 28. External Timing Parameters for EPF6010A & EPF6016A Devices | | | | | | | | | | | |--------------------|----------------------------------------------------------------------|-------------|---------|-----|---------|------|----|--|--|--|--| | Parameter | | Speed Grade | | | | | | | | | | | | -1 | I | -2 | l. | -; | 3 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t <sub>INSU</sub> | 2.1 (1) | | 2.4 (1) | | 3.3 (1) | | ns | | | | | | t <sub>INH</sub> | 0.2 (2) | | 0.3 (2) | | 0.1 (2) | | ns | | | | | | t <sub>оитсо</sub> | 2.0 | 7.1 | 2.0 | 8.2 | 2.0 | 10.1 | ns | | | | | #### Notes: Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off. Hold time is zero when the *Increase Input Delay* option is turned on. Tables 29 through 33 show the timing information for EPF6016 devices. | Parameter | Speed Grade | | | | | |-----------------------------|-------------|-----|-----|-----|----| | | -2 | | -3 | | 1 | | | Min | Max | Min | Max | | | t <sub>REG_TO_REG</sub> | | 2.2 | | 2.8 | ns | | t <sub>CASC_TO_REG</sub> | | 0.9 | | 1.2 | ns | | t <sub>CARRY_TO_REG</sub> | | 1.6 | | 2.1 | ns | | t <sub>DATA_TO_REG</sub> | | 2.4 | | 3.0 | ns | | t <sub>CASC_TO_OUT</sub> | | 1.3 | | 1.7 | ns | | t <sub>CARRY_TO_OUT</sub> | | 2.4 | | 3.0 | ns | | t <sub>DATA_TO_OUT</sub> | | 2.7 | | 3.4 | ns | | t <sub>REG_TO_OUT</sub> | | 0.3 | | 0.5 | ns | | t <sub>SU</sub> | 1.1 | | 1.6 | | ns | | t <sub>H</sub> | 1.8 | | 2.3 | | ns | | $t_{CO}$ | | 0.3 | | 0.4 | ns | | t <sub>CLR</sub> | | 0.5 | | 0.6 | ns | | $t_C$ | | 1.2 | | 1.5 | ns | | t <sub>LD_CLR</sub> | | 1.2 | | 1.5 | ns | | t <sub>CARRY_TO_CARRY</sub> | | 0.2 | | 0.4 | ns | | t <sub>REG_TO_CARRY</sub> | | 0.8 | | 1.1 | ns | | t <sub>DATA_TO_CARRY</sub> | | 1.7 | | 2.2 | ns | | t <sub>CARRY_TO_CASC</sub> | | 1.7 | | 2.2 | ns | | t <sub>CASC_TO_CASC</sub> | | 0.9 | | 1.2 | ns | | t <sub>REG_TO_CASC</sub> | | 1.6 | | 2.0 | ns | | t <sub>DATA_TO_CASC</sub> | | 1.7 | | 2.1 | ns | | t <sub>CH</sub> | 4.0 | | 4.0 | | ns | | t <sub>CL</sub> | 4.0 | | 4.0 | | ns | | Parameter | Speed Grade | | | | | |------------------|-------------|-----|-----|-----|----| | | -2 | | -3 | | | | | Min | Max | Min | Max | | | t <sub>OD1</sub> | | 2.3 | | 2.8 | ns | | t <sub>OD2</sub> | | 4.6 | | 5.1 | ns | | Table 38. External Timing Parameters for EPF6024A Devices | | | | | | | | |-----------------------------------------------------------|-------------|-----|---------|-----|---------|-----|----| | Parameter | Speed Grade | | | | | | | | | -1 | | -2 | | -3 | | 1 | | | Min | Max | Min | Max | Min | Max | | | t <sub>INSU</sub> | 2.0 (1) | | 2.2 (1) | | 2.6 (1) | | ns | | t <sub>INH</sub> | 0.2 (2) | | 0.2 (2) | | 0.3 (2) | | ns | | t <sub>outco</sub> | 2.0 | 7.4 | 2.0 | 8.2 | 2.0 | 9.9 | ns | #### Notes: - (1) Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off. - (2) Hold time is zero when the *Increase Input Delay* option is turned on. ## Power Consumption The supply power (P) for FLEX 6000 devices can be calculated with the following equations: $$\begin{array}{ll} P &=& P_{INT} + P_{IO} \\ P &=& (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO} \end{array}$$ Typical $I_{CCSTANDBY}$ values are shown as $I_{CC0}$ in the "FLEX 6000 Device DC Operating Conditions" table on pages 31 and 33 of this data sheet. The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is based on the amount of current that each LE typically consumes. The $P_{IO}$ value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. The I<sub>CCACTIVE</sub> value can be calculated with the following equation: $$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$ Where: $f_{MAX}$ = Maximum operating frequency in MHz N = Total number of LEs used in a FLEX 6000 device $tog_{LC}$ = Average percentage of LEs toggling at each clock (typically 12.5%) K = Constant, shown in Table 39 | Table 39. K Constant Values | | | | | |-----------------------------|---------|--|--|--| | Device | K Value | | | | | EPF6010A | 14 | | | | | EPF6016 | 88 | | | | | EPF6016A | 14 | | | | | EPF6024A | 14 | | | | This calculation provides an $I_{CC}$ estimate based on typical conditions with no output load. The actual $I_{CC}$ should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions. To better reflect actual designs, the power model (and the constant K in the power calculation equations shown above) for continuous interconnect FLEX devices assumes that LEs drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all LEs drive only one short interconnect segment. This assumption may lead to inaccurate results, compared to measured power consumption for an actual design in a segmented interconnect FPGA. Figure 20 shows the relationship between the current and operating frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices. Figure 20. I<sub>CCACTIVE</sub> vs. Operating Frequency ## Device Configuration & Operation The FLEX 6000 architecture supports several configuration schemes to load a design into the device(s) on the circuit board. This section summarizes the device operating modes and available device configuration schemes. See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices) for detailed information on configuring FLEX 6000 devices, including sample schematics, timing diagrams, configuration options, pins names, and timing parameters.