Intel - EPF6016BC256-3N Datasheet

E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	132
Number of Logic Elements/Cells	1320
Total RAM Bits	-
Number of I/O	204
Number of Gates	16000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-BGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf6016bc256-3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 6000 Programmable Logic Device Family Data Sheet

Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock and clear control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the outputs of the LE. The LE output can drive both the local interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equivalent comparators with minimum delay. Carry and cascade chains connect LEs 2 through 10 in an LAB and all LABs in the same half of the row. Because extensive use of carry and cascade chains can reduce routing flexibility, these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (0.1 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 6000 architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Altera software during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

Because the first LE of each LAB can generate control signals for that LAB, the first LE in each LAB is not included in carry chains. In addition, the inputs of the first LE in each LAB may be used to generate synchronous clear and load enable signals for counters implemented with carry chains.

Carry chains longer than nine LEs are implemented automatically by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from an even-numbered LAB to another even-numbered LAB, or from an odd-numbered LAB to another odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the second LE of the third LAB in the row. In addition, the carry chain does not cross the middle of the row. For instance, in the EPF6016 device, the carry chain stops at the 11th LAB in a row and a new carry chain begins at the 12th LAB.

Figure 5 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. Although the register can be bypassed for simple adders, it can be used for an accumulator function. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the FastTrack Interconnect.

Figure 5. Carry Chain Operation

Cascade Chain

The cascade chain enables the FLEX 6000 architecture to implement very wide fan-in functions. Adjacent LUTs can be used to implement portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR gate (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.5 ns per LE. Cascade chain logic can be created automatically by the Altera software during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of cascade chains for the appropriate functions.

A cascade chain implementing an AND gate can use the register in the last LE; a cascade chain implementing an OR gate cannot use this register because of the inversion required to implement the OR gate.

Because the first LE of an LAB can generate control signals for that LAB, the first LE in each LAB is not included in cascade chains. Moreover, cascade chains longer than nine bits are automatically implemented by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from an even-numbered LAB to another even-numbered LAB, or from an odd-numbered LAB to another odd-numbered LAB. For example, the last LE of the first LAB in a row cascades to the second LE of the third LAB. The cascade chain does not cross the center of the row. For example, in an EPF6016 device, the cascade chain stops at the 11th LAB in a row and a new cascade chain begins at the 12th LAB.

Figure 6 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. In this example, functions of 4n variables are implemented with n LEs. The cascade chain requires 3.4 ns to decode a 16-bit address.

Figure 7. LE Operating Modes

Normal Mode

Arithmetic Mode

Notes:

(1) The register feedback multiplexer is available on LE 2 of each LAB.

- (2) The data1 and data2 input signals can supply a clock enable, up or down control, or register feedback signals for all LEs other than the second LE in an LAB.
- (3) The LAB-wide synchronous clear and LAB-wide synchronous load affect all registers in an LAB.

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a 4-input LUT. The Altera software automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a 3-input function; the other generates a carry output. As shown in Figure 7, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain.

The Altera software implements logic functions to use the arithmetic mode automatically where appropriate; the designer does not have to decide how the carry chain will be used.

Counter Mode

The counter mode offers counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in a LAB use counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. In addition, the Altera software automatically places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load will override any signal carried on the cascade chain. The synchronous clear overrides the synchronous load.

The FastTrack Interconnect consists of column and row interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect, which routes signals between LABs in the same row, and also routes signals from I/O pins to LABs. Additionally, the local interconnect routes signals between LEs in the same LAB and in adjacent LABs. The column interconnect routes signals between rows and routes signals from I/O pins to rows.

LEs 1 through 5 of an LAB drive the local interconnect to the right, while LEs 6 through 10 drive the local interconnect to the left. The DATA1 and DATA3 inputs of each LE are driven by the local interconnect to the left; DATA2 and DATA4 are driven by the local interconnect to the right. The local interconnect also routes signals from LEs to I/O pins. Figure 9 shows an overview of the FLEX 6000 interconnect architecture. LEs in the first and last columns have drivers on both sides so that all LEs in the LAB can drive I/O pins via the local interconnect.

Figure 9. FastTrack Interconnect Architecture

Note:

(1) For EPF6010A, EPF6016, and EPF6016A devices, n = 144 channels and m = 20 channels; for EPF6024A devices, n = 186 channels and m = 30 channels.

Any LE can drive a pin through the

row and local

interconnect.

Each IOE drives a row or column interconnect when used as an input or bidirectional pin. A row IOE can drive up to six row lines; a column IOE can drive up to two column lines. The input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold time. Figure 13 shows how an IOE connects to a row interconnect, and Figure 14 shows how an IOE connects to a column interconnect.

IOE

•

•

IOE

FastFLEX I/O: An LE can drive a pin through the local interconnect for faster clock-to-output times.

LAB

Up to 10 IOEs are on either

side of a row. Each IOE can

channels, and each IOE data

and OE signal is driven by

the local interconnect.

drive up to six row

Table 6 lists the 3.3-V FLEX 6000 devices with the SameFrame pin-out feature.

Table 6. 3.3-V FLEX 6000 Devices with SameFrame Pin-Outs							
Device	100-Pin FineLine BGA	256-Pin FineLine BGA					
EPF6016A	V	V					
EPF6024A		v					

Output Configuration

This section discusses slew-rate control, the MultiVolt I/O interface, power sequencing, and hot-socketing for FLEX 6000 devices.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew-rate that can be configured for low-noise or high-speed performance. A slower slew-rate reduces system noise and adds a maximum delay of 6.8 ns. The fast slew-rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew-rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a device-wide basis. The slew-rate setting affects only the falling edge of the output.

FLEX 6000	Programmable	Logic Device	Family Data	a Sheet
-----------	--------------	--------------	-------------	---------

Table 1	0. JTAG Timing Parameters & Values			
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock-to-output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock-to-output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Generic Testing

Each FLEX 6000 device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% configuration yield. AC test measurements for FLEX 6000 devices are made under conditions equivalent to those shown in Figure 17. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 17. AC Test Conditions

Operating Conditions

Г

Tables 11 through 18 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V and 3.3-V FLEX 6000 devices.

Table 1	Table 11. FLEX 6000 5.0-V Device Absolute Maximum Ratings Note (1)							
Symbol	Parameter	Conditions	Conditions Min Max vect to ground (2) -2.0 7.0 -2.0 7.0		Unit			
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V			
VI	DC input voltage		-2.0	7.0	V			
IOUT	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
T _{AMB}	Ambient temperature	Under bias	-65	135	°C			
TJ	Junction temperature	PQFP, TQFP, and BGA packages		135	°C			

Table 12. FLEX 6000 5.0-V Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V		
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V		
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V		
VI	Input voltage		-0.5	V _{CCINT} + 0.5	V		
Vo	Output voltage		0	V _{CCIO}	V		
TJ	Operating temperature	For commercial use	0	85	°C		
		For industrial use	-40	100	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

FLEX 6000 Frogrammable Logic Device Faining Data She	FLEX	6000	Programmable	Logic Device	Family Data	Sheet
--	------	------	--------------	--------------	-------------	-------

Table 1	Table 17. FLEX 6000 3.3-V Device DC Operating Conditions Notes (5), (6)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
V _{IH}	High-level input voltage		1.7		5.75	V			
V _{IL}	Low-level input voltage		-0.5		0.8	V			
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V} (7)$	2.4			V			
	3.3-V high-level CMOS output voltage	nigh-level CMOS output $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) e				V			
	2.5-V high-level output voltage	2.1			V				
		I_{OH} = -1 mA DC, V_{CCIO} = 2.30 V (7)	2.0			V			
		I_{OH} = -2 mA DC, V_{CCIO} = 2.30 V (7)	1.7			V			
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC, V _{CCIO} = 3.00 V (8)			0.45	V			
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V <i>(8)</i>			0.2	V			
	2.5-V low-level output voltage	I _{OL} = 100 μA DC, V _{CCIO} = 2.30 V <i>(8)</i>			0.2	V			
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8)			0.4	V			
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8)			0.7	V			
I _I	Input pin leakage current	$V_1 = 5.3 V$ to ground (8)	-10		10	μΑ			
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = 5.3 V$ to ground (8)	-10		10	μA			
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	5	mA			

Table 1	Table 18. FLEX 6000 3.3-V Device Capacitance Note (9)								
Symbol	Parameter	Conditions	Min	Max	Unit				
CIN	Input capacitance for I/O pin	V _{IN} = 0 V, f = 1.0 MHz		8	pF				
CINCLK	Input capacitance for dedicated input	V _{IN} = 0 V, f = 1.0 MHz		12	pF				
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF				

Notes to tables:

- 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
 (3) Numbers in parentheses are for industrial-temperature-range devices.
 (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
 (5) Typical values are for T_A = 25° C and V_{CC} = 3.3 V.
 (6) These values are specified under Table 16 on page 33.
 (7) The I_{OH} parameter refers to high-level TTL or CMOS output current.
 (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
 (9) Capacitance is cample-tested only.

(9) Capacitance is sample-tested only.

See the Operating Requirements for Altera Devices Data Sheet.
 The minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.

Figure 19. FLEX 6000 Timing Model

Parameter			Speed	Grade			Unit
	-	1	-	2	-3		
	Min	Max	Min	Max	Min	Max	
tco		0.3		0.4		0.4	ns
t _{CLR}		0.4		0.4		0.5	ns
t _C		1.8		2.1		2.6	ns
t _{LD_CLR}		1.8		2.1		2.6	ns
t _{CARRY_TO_CARRY}		0.1		0.1		0.1	ns
treg_to_carry		1.6		1.9		2.3	ns
tDATA_TO_CARRY		2.1		2.5		3.0	ns
tcarry_to_casc		1.0		1.1		1.4	ns
tcasc_to_casc		0.5		0.6		0.7	ns
treg_to_casc		1.4		1.7		2.1	ns
tDATA_TO_CASC		1.1		1.2		1.5	ns
^t cн	2.5		3.0		3.5		ns
^t CL	2.5		3.0		3.5		ns

Parameter			Speed	l Grade			Unit
	-	1	-2		-3		
	Min	Мах	Min	Max	Min	Max	
t _{OD1}		1.9		2.2		2.7	ns
t _{OD2}		4.1		4.8		5.8	ns
t _{OD3}		5.8		6.8		8.3	ns
t _{xz}		1.4		1.7		2.1	ns
t _{XZ1}		1.4		1.7		2.1	ns
t xzz		3.6		4.3		5.2	ns
t _{xz3}		5.3		6.3		7.7	ns
t _{IOE}		0.5		0.6		0.7	ns
t _{IN}		3.6		4.1		5.1	ns
tin_delay		4.8		5.4		6.7	ns

FLEX	6000	Programmable	Logic	Device	Family	Data	Sheet
------	------	--------------	-------	--------	--------	------	-------

Parameter	Speed Grade								
	-1		-2		-3				
	Min	Max	Min	Max	Min	Мах			
t _{LOCAL}		0.7		0.7		1.0	ns		
t _{ROW}		2.9		3.2		3.2	ns		
^t COL		1.2		1.3		1.4	ns		
t _{DIN_D}		5.4		5.7		6.4	ns		
t _{DIN_C}		4.3		5.0		6.1	ns		
t _{LEGLOBAL}		2.6		3.0		3.7	ns		
t _{LABCARRY}		0.7		0.8		0.9	ns		
t _{LABCASC}		1.3		1.4		1.8	ns		

Table 27. Ex	xternal Refere	ence Timing	Parameters	s for EPF60	10A & EPF60	16A Device	s		
Parameter	Device	Speed Grade							
		-1		-2		-3			
		Min	Max	Min	Max	Min	Max		
t ₁	EPF6010A		37.6		43.6		53.7	ns	
	EPF6016A		38.0		44.0		54.1	ns	

Table 28. Externa	al Timing Para	nmeters for E	PF6010A & El	PF6016A De	vices		
Parameter			Speed	Grade			Unit
	-1		-2		-		
	Min	Мах	Min	Max	Min	Мах	
t _{INSU}	2.1 (1)		2.4 (1)		3.3 (1)		ns
t _{INH}	0.2 <i>(2)</i>		0.3 (2)		0.1 <i>(2)</i>		ns
t _{оитсо}	2.0	7.1	2.0	8.2	2.0	10.1	ns

Notes:

Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off.
 Hold time is zero when the *Increase Input Delay* option is turned on.

Parameter		Speed	Grade		Unit
	-	2	-:	3	
	Min	Max	Min	Max	
t _{REG_TO_REG}		2.2		2.8	ns
t _{CASC_TO_REG}		0.9		1.2	ns
t _{CARRY_TO_REG}		1.6		2.1	ns
t _{DATA_TO_REG}		2.4		3.0	ns
t _{CASC_TO_OUT}		1.3		1.7	ns
t _{CARRY_TO_OUT}		2.4		3.0	ns
t _{DATA_TO_OUT}		2.7		3.4	ns
t _{REG_TO_OUT}		0.3		0.5	ns
t _{SU}	1.1		1.6		ns
t _H	1.8		2.3		ns
tco		0.3		0.4	ns
t _{CLR}		0.5		0.6	ns
t _C		1.2		1.5	ns
t _{LD_CLR}		1.2		1.5	ns
t _{CARRY_TO_CARRY}		0.2		0.4	ns
t _{REG_TO_CARRY}		0.8		1.1	ns
t _{DATA_TO_CARRY}		1.7		2.2	ns
t _{CARRY_TO_CASC}		1.7		2.2	ns
tcasc_to_casc		0.9		1.2	ns
t _{REG_TO_CASC}		1.6		2.0	ns
t _{DATA_TO_CASC}		1.7		2.1	ns
t _{CH}	4.0		4.0		ns
t _{CL}	4.0		4.0		ns

Tables 29 through 33 show the timing information for EPF6016 devices.

Table 30. IOE Timing Microparameters for EPF6016 Devices							
Parameter		Speed Grade					
	-2						
	Min	Max	Min	Max			
t _{OD1}		2.3		2.8	ns		
t _{OD2}		4.6		5.1	ns		

Table 33. External Timing Parameters for EPF6016 Devices							
Parameter		Speed Grade					
	-2		-				
	Min	Max	Min	Max			
t _{INSU}	3.2		4.1		ns		
t _{INH}	0.0		0.0		ns		
t _{оитсо}	2.0	7.9	2.0	9.9	ns		

Tables 34 through 38 show the timing information for EPF6024A devices.

Table 34. LE Timi	Table 34. LE Timing Microparameters for EPF6024A Devices							
Parameter			Speed	l Grade			Unit	
	-	1	-	-2		-3	-	
	Min	Max	Min	Max	Min	Max		
t _{REG_TO_REG}		1.2		1.3		1.6	ns	
t _{CASC_TO_REG}		0.7		0.8		1.0	ns	
t _{CARRY_TO_REG}		1.6		1.8		2.2	ns	
t _{DATA_TO_REG}		1.3		1.4		1.7	ns	
t _{CASC_TO_OUT}		1.2		1.3		1.6	ns	
t _{CARRY_TO_OUT}		2.0		2.2		2.6	ns	
t _{DATA_TO_OUT}		1.8		2.1		2.6	ns	
t _{REG_TO_OUT}		0.3		0.3		0.4	ns	
t _{SU}	0.9		1.0		1.2		ns	
t _H	1.3		1.4		1.7		ns	
t _{CO}		0.2		0.3		0.3	ns	
t _{CLR}		0.3		0.3		0.4	ns	
t _C		1.9		2.1		2.5	ns	
t _{LD_CLR}		1.9		2.1		2.5	ns	
t _{CARRY_TO_CARRY}		0.2		0.2		0.3	ns	
t _{REG_TO_CARRY}		1.4		1.6		1.9	ns	
t _{DATA_TO_CARRY}		1.3		1.4		1.7	ns	
t _{CARRY_TO_CASC}		1.1		1.2		1.4	ns	
t _{CASC_TO_CASC}		0.7		0.8		1.0	ns	
t _{REG_TO_CASC}		1.4		1.6		1.9	ns	
t _{DATA_TO_CASC}		1.0		1.1		1.3	ns	
t _{CH}	2.5		3.0		3.5		ns	
t _{CL}	2.5		3.0		3.5		ns	

Parameter	Speed Grade								
	-1		-2		-3				
	Min	Max	Min	Max	Min	Мах			
t _{OD1}		1.9		2.1		2.5	ns		
t _{OD2}		4.0		4.4		5.3	ns		
t _{OD3}		7.0		7.8		9.3	ns		
t _{XZ}		4.3		4.8		5.8	ns		
t _{XZ1}		4.3		4.8		5.8	ns		
t _{XZ2}		6.4		7.1		8.6	ns		
t _{XZ3}		9.4		10.5		12.6	ns		
t _{IOE}		0.5		0.6		0.7	ns		
t _{IN}		3.3		3.7		4.4	ns		
t _{IN_DELAY}		5.3		5.9		7.0	ns		

Parameter	Speed Grade								
	-1		-2		-3				
	Min	Max	Min	Max	Min	Мах			
t _{LOCAL}		0.8		0.8		1.1	ns		
t _{ROW}		3.0		3.1		3.3	ns		
t _{COL}		3.0		3.2		3.4	ns		
t _{DIN_D}		5.4		5.6		6.2	ns		
t _{DIN_C}		4.6		5.1		6.1	ns		
t _{LEGLOBAL}		3.1		3.5		4.3	ns		
t _{LABCARRY}		0.6		0.7		0.8	ns		
t _{LABCASC}		0.3		0.3		0.4	ns		

Table 37. External	Reference 1	iming Param	neters for EPI	F6024A Devic	es		
Parameter	Speed Grade						
	-1		-2		-3		
	Min	Max	Min	Max	Min	Max	
t ₁		45.0		50.0		60.0	ns

Table 38. Externa	nl Timing Paran	neters for E	PF6024A Devi	ces					
Parameter		Speed Grade							
	-1		-2		-3				
	Min	Max	Min	Max	Min	Max	1		
t _{INSU}	2.0 (1)		2.2 (1)		2.6 (1)		ns		
t _{INH}	0.2 (2)		0.2 (2)		0.3 <i>(2)</i>		ns		
t _{оитсо}	2.0	7.4	2.0	8.2	2.0	9.9	ns		

Notes:

(1) Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off.

(2) Hold time is zero when the Increase Input Delay option is turned on.

Power Consumption

The supply power (P) for FLEX 6000 devices can be calculated with the following equations:

 $P = P_{INT} + P_{IO}$ $P = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$

Typical I_{CCSTANDBY} values are shown as I_{CC0} in the "FLEX 6000 Device DC Operating Conditions" table on pages 31 and 33 of this data sheet. The I_{CCACTIVE} value depends on the switching frequency and the application logic. This value is based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note* 74 (*Evaluating Power for Altera Devices*).

The I_{CCACTIVE} value can be calculated with the following equation:

$$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$

Where:

f _{MAX}	=	Maximum operating frequency in MHz
Ν	=	Total number of LEs used in a FLEX 6000 device
tog _{LC}	=	Average percentage of LEs toggling at each clock
		(typically 12.5%)
Κ	=	Constant, shown in Table 39

Table 39. K Constant Values	
Device	K Value
EPF6010A	14
EPF6016	88
EPF6016A	14
EPF6024A	14

Device Pin-
OutsSee the Altera web site (http://www.altera.com) or the Altera Digital
Library for pin-out information.