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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 6000 Programmable Logic Device Family Data Sheet
General 
Description

The Altera® FLEX 6000 programmable logic device (PLD) family provides 
a low-cost alternative to high-volume gate array designs. FLEX 6000 
devices are based on the OptiFLEX architecture, which minimizes die size 
while maintaining high performance and routability. The devices have 
reconfigurable SRAM elements, which give designers the flexibility to 
quickly change their designs during prototyping and design testing. 
Designers can also change functionality during operation via in-circuit 
reconfiguration.

FLEX 6000 devices are reprogrammable, and they are 100% tested prior to 
shipment. As a result, designers are not required to generate test vectors 
for fault coverage purposes, allowing them to focus on simulation and 
design verification. In addition, the designer does not need to manage 
inventories of different gate array designs. FLEX 6000 devices are 
configured on the board for the specific functionality required.

Table 3 shows FLEX 6000 performance for some common designs. All 
performance values shown were obtained using Synopsys DesignWare or 
LPM functions. Special design techniques are not required to implement 
the applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Note:
(1) This performance value is measured as a pin-to-pin delay.

Table 3. FLEX 6000 Device Performance for Common Designs

Application LEs Used Performance Units

-1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

16-bit loadable counter 16 172 153 133 MHz

16-bit accumulator 16 172 153 133 MHz

24-bit accumulator 24 136 123 108 MHz

16-to-1 multiplexer (pin-to-pin) (1) 10 12.1 13.4 16.6 ns

16 ×  16 multiplier with a 4-stage pipeline 592 84 67 58 MHz
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The interleaved LAB structure—an innovative feature of the FLEX 6000 
architecture—allows each LAB to drive two local interconnects. This 
feature minimizes the use of the FastTrack Interconnect, providing higher 
performance. An LAB can drive 20 LEs in adjacent LABs via the local 
interconnect, which maximizes fitting flexibility while minimizing die 
size. See Figure 2.

Figure 2. Logic Array Block

In most designs, the registers only use global clock and clear signals. 
However, in some cases, other clock or asynchronous clear signals are 
needed. In addition, counters may also have synchronous clear or load 
signals. In a design that uses non-global clock and clear signals, inputs 
from the first LE in an LAB are re-routed to drive the control signals for 
that LAB. See Figure 3.
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Figure 4. Logic Element

The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock and clear control signals on the flipflop can be driven 
by global signals, general-purpose I/O pins, or any internal logic. For 
combinatorial functions, the flipflop is bypassed and the output of the 
LUT drives the outputs of the LE. The LE output can drive both the local 
interconnect and the FastTrack Interconnect.

The FLEX 6000 architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. A carry chain supports high-speed 
arithmetic functions such as counters and adders, while a cascade chain 
implements wide-input functions such as equivalent comparators with 
minimum delay. Carry and cascade chains connect LEs 2 through 10 in an 
LAB and all LABs in the same half of the row. Because extensive use of 
carry and cascade chains can reduce routing flexibility, these chains 
should be limited to speed-critical portions of a design. 
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Figure 5. Carry Chain Operation
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Cascade Chain 

The cascade chain enables the FLEX 6000 architecture to implement very 
wide fan-in functions. Adjacent LUTs can be used to implement portions 
of the function in parallel; the cascade chain serially connects the 
intermediate values. The cascade chain can use a logical AND or logical 
OR gate (via De Morgan’s inversion) to connect the outputs of adjacent 
LEs. Each additional LE provides four more inputs to the effective width 
of a function, with a delay as low as 0.5 ns per LE. Cascade chain logic can 
be created automatically by the Altera software during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
cascade chains for the appropriate functions.

A cascade chain implementing an AND gate can use the register in the last 
LE; a cascade chain implementing an OR gate cannot use this register 
because of the inversion required to implement the OR gate.

Because the first LE of an LAB can generate control signals for that LAB, 
the first LE in each LAB is not included in cascade chains. Moreover, 
cascade chains longer than nine bits are automatically implemented by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from an even-numbered LAB to another even-numbered 
LAB, or from an odd-numbered LAB to another odd-numbered LAB. For 
example, the last LE of the first LAB in a row cascades to the second LE of 
the third LAB. The cascade chain does not cross the center of the row. For 
example, in an EPF6016 device, the cascade chain stops at the 11th LAB in 
a row and a new cascade chain begins at the 12th LAB.

Figure 6 shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in. In this example, functions of 4n variables are 
implemented with n LEs. The cascade chain requires 3.4 ns to decode a 
16-bit address.
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Figure 6. Cascade Chain Operation

LE Operating Modes 

The FLEX 6000 LE can operate in one of the following three modes:

■ Normal mode 
■ Arithmetic mode
■ Counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. LAB-wide signals 
provide clock, asynchronous clear, synchronous clear, and synchronous 
load control for the register. The Altera software, in conjunction with 
parameterized functions such as LPM and DesignWare functions, 
automatically chooses the appropriate mode for common functions such 
as counters, adders, and multipliers. If required, the designer can also 
create special-purpose functions to use an LE operating mode for optimal 
performance.

Figure 7 shows the LE operating modes.
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Figure 8. LE Clear & Preset Modes

Asynchronous Clear 

The flipflop can be cleared by either LABCTRL1 or LABCTRL2.

Asynchronous Preset 

An asynchronous preset is implemented with an asynchronous clear. The 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Inversion control is available for the 
inputs to both LEs and IOEs. Therefore, this technique can be used when 
a register drives logic or drives a pin.

In addition to the two clear and preset modes, FLEX 6000 devices provide 
a chip-wide reset pin (DEV_CLRn) that can reset all registers in the device. 
The option to use this pin is set in the Altera software before compilation. 
The chip-wide reset overrides all other control signals. Any register with 
an asynchronous preset will be preset when the chip-wide reset is asserted 
because of the inversion technique used to implement the asynchronous 
preset.

The Altera software can use a programmable NOT-gate push-back 
technique to emulate simultaneous preset and clear or asynchronous load. 
However, this technique uses an additional three LEs per register.

FastTrack Interconnect
In the FLEX 6000 OptiFLEX architecture, connections between LEs and 
device I/O pins are provided by the FastTrack Interconnect, a series of 
continuous horizontal and vertical routing channels that traverse the 
device. This global routing structure provides predictable performance, 
even for complex designs. In contrast, the segmented routing in FPGAs 
requires switch matrices to connect a variable number of routing paths, 
increasing the delays between logic resources and reducing performance.
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A row channel can be driven by an LE or by one of two column channels. 
These three signals feed a 3-to-1 multiplexer that connects to six specific 
row channels. Row channels drive into the local interconnect via 
multiplexers. 

Each column of LABs is served by a dedicated column interconnect. The 
LEs in an LAB can drive the column interconnect. The LEs in an LAB, a 
column IOE, or a row interconnect can drive the column interconnect. The 
column interconnect can then drive another row’s interconnect to route 
the signals to other LABs in the device. A signal from the column 
interconnect must be routed to the row interconnect before it can enter an 
LAB. 

Each LE has a FastTrack Interconnect output and a local output. The 
FastTrack interconnect output can drive six row and two column lines 
directly; the local output drives the local interconnect. Each local 
interconnect channel driven by an LE can drive four row and two column 
channels. This feature provides additional flexibility, because each LE can 
drive any of ten row lines and four column lines.

In addition, LEs can drive global control signals. This feature is useful for 
distributing internally generated clock, asynchronous clear, and 
asynchronous preset signals. A pin-driven global signal can also drive 
data signals, which is useful for high-fan-out data signals. 

Each LAB drives two groups of local interconnects, which allows an LE to 
drive two LABs, or 20 LEs, via the local interconnect. The row-to-local 
multiplexers are used more efficiently, because the multiplexers can now 
drive two LABs. Figure 10 shows how an LAB connects to row and 
column interconnects.
Altera Corporation  19
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Figure 10. LAB Connections to Row & Column Interconnects

For improved routability, the row interconnect consists of full-length and 
half-length channels. The full-length channels connect to all LABs in a 
row; the half-length channels connect to the LABs in half of the row. In 
addition to providing a predictable, row-wide interconnect, this 
architecture provides increased routing resources. Two neighboring LABs 
can be connected using a half-length channel, which saves the other half 
of the channel for the other half of the row. One-third of the row channels 
are half-length channels.
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I/O Elements 
An IOE contains a bidirectional I/O buffer and a tri-state buffer. IOEs can 
be used as input, output, or bidirectional pins. An IOE receives its data 
signals from the adjacent local interconnect, which can be driven by a row 
or column interconnect (allowing any LE in the device to drive the IOE) or 
by an adjacent LE (allowing fast clock-to-output delays). A FastFLEXTM 
I/O pin is a row or column output pin that receives its data signals from 
the adjacent local interconnect driven by an adjacent LE. The IOE receives 
its output enable signal through the same path, allowing individual 
output enables for every pin and permitting emulation of open-drain 
buffers. The Altera Compiler uses programmable inversion to invert the 
data or output enable signals automatically where appropriate. Open-
drain emulation is provided by driving the data input low and toggling 
the OE of each IOE. This emulation is possible because there is one OE per 
pin. 

A chip-wide output enable feature allows the designer to disable all pins 
of the device by asserting one pin (DEV_OE). This feature is useful during 
board debugging or testing.

Figure 12 shows the IOE block diagram. 

Figure 12.  IOE Block Diagram
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Tables 19 through 21 describe the FLEX 6000 internal timing 
microparameters, which are expressed as worst-case values. Using hand 
calculations, these parameters can be used to estimate design 
performance. However, before committing designs to silicon, actual 
worst-case performance should be modeled using timing simulation and 
timing analysis. Tables 22 and 23 describe FLEX 6000 external timing 
parameters.

Table 19. LE Timing Microparameters Note (1)

Symbol Parameter Conditions

tREG_TO_REG LUT delay for LE register feedback in carry chain

tCASC_TO_REG Cascade-in to register delay

tCARRY_TO_REG Carry-in to register delay

tDATA_TO_REG LE input to register delay

tCASC_TO_OUT Cascade-in to LE output delay

tCARRY_TO_OUT Carry-in to LE output delay

tDATA_TO_OUT LE input to LE output delay

tREG_TO_OUT Register output to LE output delay

tSU LE register setup time before clock; LE register recovery time after 
asynchronous clear

tH LE register hold time after clock

tCO LE register clock-to-output delay

tCLR LE register clear delay

tC LE register control signal delay

tLD_CLR Synchronous load or clear delay in counter mode

tCARRY_TO_CARRY Carry-in to carry-out delay

tREG_TO_CARRY Register output to carry-out delay

tDATA_TO_CARRY LE input to carry-out delay

tCARRY_TO_CASC Carry-in to cascade-out delay

tCASC_TO_CASC Cascade-in to cascade-out delay

tREG_TO_CASC Register-out to cascade-out delay

tDATA_TO_CASC LE input to cascade-out delay

tCH LE register clock high time

tCL LE register clock low time
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Table 20. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ Output buffer disable delay C1 = 5 pF

tZX1 Output buffer enable delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tZX2 Output buffer enable delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tIOE Output enable control delay

tIN Input pad and buffer to FastTrack Interconnect delay

tIN_DELAY Input pad and buffer to FastTrack Interconnect delay with additional delay 
turned on

Table 21. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tLOCAL LAB local interconnect delay

tROW Row interconnect routing delay (5)

tCOL Column interconnect routing delay (5)

tDIN_D Dedicated input to LE data delay (5)

tDIN_C Dedicated input to LE control delay

tLEGLOBAL LE output to LE control via internally-generated global signal delay (5)

tLABCARRY Routing delay for the carry-out of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 22. External Reference Timing Parameters

Symbol Parameter Conditions

t1 Register-to-register test pattern (6)

tDRR Register-to-register delay via 4 LEs, 3 row interconnects, and 4 local 
interconnects

(7)
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements and cannot be measured 

explicitly.
(2) Operating conditions:

VCCIO = 5.0 V ± 5% for commercial use in 5.0-V FLEX 6000 devices.
VCCIO = 5.0 V ± 10% for industrial use in 5.0-V FLEX 6000 devices.
VCCIO = 3.3 V ± 10% for commercial or industrial use in 3.3-V FLEX 6000 devices.

(3) Operating conditions:
VCCIO = 3.3 V ± 10% for commercial or industrial use in 5.0-V FLEX 6000 devices.
VCCIO = 2.5 V ± 0.2 V for commercial or industrial use in 3.3-V FLEX 6000 devices.

(4) Operating conditions:
VCCIO = 2.5 V, 3.3 V, or 5.0 V.

(5) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 
analysis are required to determine actual worst-case performance.

(6) This timing parameter shows the delay of a register-to-register test pattern and is used to determine speed grades. 
There are 12 LEs, including source and destination registers. The row and column interconnects between the 
registers vary in length.

(7) This timing parameter is shown for reference and is specified by characterization.
(8) This timing parameter is specified by characterization.

Tables 24 through 28 show the timing information for EPF6010A and 
EPF6016A devices.

Table 23. External Timing Parameters

Symbol Parameter Conditions

tINSU Setup time with global clock at LE register (8)

tINH Hold time with global clock at LE register (8)

tOUTCO Clock-to-output delay with global clock with LE register using FastFLEX I/O 
pin

(8)

Table 24. LE Timing Microparameters for EPF6010A & EPF6016A Devices  (Part 1 of 2)

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tREG_TO_REG 1.2 1.3 1.7 ns

tCASC_TO_REG 0.9 1.0 1.2 ns

tCARRY_TO_REG 0.9 1.0 1.2 ns

tDATA_TO_REG 1.1 1.2 1.5 ns

tCASC_TO_OUT 1.3 1.4 1.8 ns

tCARRY_TO_OUT 1.6 1.8 2.3 ns

tDATA_TO_OUT 1.7 2.0 2.5 ns

tREG_TO_OUT 0.4 0.4 0.5 ns

tSU 0.9 1.0 1.3 ns

tH 1.4 1.7 2.1 ns
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Notes:
(1) Setup times are longer when the Increase Input Delay option is turned on. The setup time values are shown with the 

Increase Input Delay option turned off.
(2) Hold time is zero when the Increase Input Delay option is turned on.

Table 26. Interconnect Timing Microparameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLOCAL 0.7 0.7 1.0 ns

tROW 2.9 3.2 3.2 ns

tCOL 1.2 1.3 1.4 ns

tDIN_D 5.4 5.7 6.4 ns

tDIN_C 4.3 5.0 6.1 ns

tLEGLOBAL 2.6 3.0 3.7 ns

tLABCARRY 0.7 0.8 0.9 ns

tLABCASC 1.3 1.4 1.8 ns

Table 27. External Reference Timing Parameters for EPF6010A & EPF6016A Devices

Parameter Device Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

t1 EPF6010A 37.6 43.6 53.7 ns

EPF6016A 38.0 44.0 54.1 ns

Table 28. External Timing Parameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSU 2.1 (1) 2.4 (1) 3.3 (1) ns

tINH 0.2 (2) 0.3 (2) 0.1 (2) ns

tOUTCO 2.0 7.1 2.0 8.2 2.0 10.1 ns
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Tables 29 through 33 show the timing information for EPF6016 devices. 

Table 29. LE Timing Microparameters for EPF6016 Devices  

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tREG_TO_REG 2.2 2.8 ns

tCASC_TO_REG 0.9 1.2 ns

tCARRY_TO_REG 1.6 2.1 ns

tDATA_TO_REG 2.4 3.0 ns

tCASC_TO_OUT 1.3 1.7 ns

tCARRY_TO_OUT 2.4 3.0 ns

tDATA_TO_OUT 2.7 3.4 ns

tREG_TO_OUT 0.3 0.5 ns

tSU 1.1 1.6 ns

tH 1.8 2.3 ns

tCO 0.3 0.4 ns

tCLR 0.5 0.6 ns

tC 1.2 1.5 ns

tLD_CLR 1.2 1.5 ns

tCARRY_TO_CARRY 0.2 0.4 ns

tREG_TO_CARRY 0.8 1.1 ns

tDATA_TO_CARRY 1.7 2.2 ns

tCARRY_TO_CASC 1.7 2.2 ns

tCASC_TO_CASC 0.9 1.2 ns

tREG_TO_CASC 1.6 2.0 ns

tDATA_TO_CASC 1.7 2.1 ns

tCH 4.0 4.0 ns

tCL 4.0 4.0 ns

Table 30. IOE Timing Microparameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tOD1 2.3 2.8 ns

tOD2 4.6 5.1 ns
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tOD3 4.7 5.2 ns

tXZ 2.3 2.8 ns

tZX1 2.3 2.8 ns

tZX2 4.6 5.1 ns

tZX3 4.7 5.2 ns

tIOE 0.5 0.6 ns

tIN 3.3 4.0 ns

tIN_DELAY 4.6 5.6 ns

Table 31. Interconnect Timing Microparameters for EPF6016 Devices 

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tLOCAL 0.8 1.0 ns

tROW 2.9 3.3 ns

tCOL 2.3 2.5 ns

tDIN_D 4.9 6.0 ns

tDIN_C 4.8 6.0 ns

tLEGLOBAL 3.1 3.9 ns

tLABCARRY 0.4 0.5 ns

tLABCASC 0.8 1.0 ns

Table 32. External Reference Timing Parameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

t1 53.0 65.0 ns

tDRR 16.0 20.0 ns

Table 30. IOE Timing Microparameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max
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Table 35. IOE Timing Microparameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tOD1 1.9 2.1 2.5 ns

tOD2 4.0 4.4 5.3 ns

tOD3 7.0 7.8 9.3 ns

tXZ 4.3 4.8 5.8 ns

tXZ1 4.3 4.8 5.8 ns

tXZ2 6.4 7.1 8.6 ns

tXZ3 9.4 10.5 12.6 ns

tIOE 0.5 0.6 0.7 ns

tIN 3.3 3.7 4.4 ns

tIN_DELAY 5.3 5.9 7.0 ns

Table 36. Interconnect Timing Microparameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLOCAL 0.8 0.8 1.1 ns

tROW 3.0 3.1 3.3 ns

tCOL 3.0 3.2 3.4 ns

tDIN_D 5.4 5.6 6.2 ns

tDIN_C 4.6 5.1 6.1 ns

tLEGLOBAL 3.1 3.5 4.3 ns

tLABCARRY 0.6 0.7 0.8 ns

tLABCASC 0.3 0.3 0.4 ns

Table 37. External Reference Timing Parameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

t1 45.0 50.0 60.0 ns
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This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions. 

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations shown above) for continuous 
interconnect FLEX devices assumes that LEs drive FastTrack Interconnect 
channels. In contrast, the power model of segmented FPGAs assumes that 
all LEs drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating 
frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.
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Figure 20.  ICCACTIVE vs. Operating Frequency  

Device 
Configuration & 
Operation

The FLEX 6000 architecture supports several configuration schemes to 
load a design into the device(s) on the circuit board. This section 
summarizes the device operating modes and available device 
configuration schemes. 

f See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 
Devices) for detailed information on configuring FLEX 6000 devices, 
including sample schematics, timing diagrams, configuration options, 
pins names, and timing parameters.
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Operating Modes 
The FLEX 6000 architecture uses SRAM configuration elements that 
require configuration data to be loaded every time the circuit powers 
up. This process of physically loading the SRAM data into a FLEX 
6000 device is known as configuration. During initialization—a 
process that occurs immediately after configuration—the device 
resets registers, enables I/O pins, and begins to operate as a logic 
device. The I/O pins are tri-stated during power-up, and before and 
during configuration. The configuration and initialization processes 
of a device are referred to as command mode; normal device operation 
is called user mode.

SRAM configuration elements allow FLEX 6000 devices to be 
reconfigured in-circuit by loading new configuration data into the 
device. Real-time reconfiguration is performed by forcing the device 
into command mode with a device pin, loading different 
configuration data, reinitializing the device, and resuming user-
mode operation. The entire reconfiguration process requires less 
than 100 ms and is used to dynamically reconfigure an entire system. 
Also, in-field system upgrades can be performed by distributing new 
configuration files. 

Configuration Schemes 
The configuration data for a FLEX 6000 device can be loaded with 
one of three configuration schemes, which is chosen on the basis of 
the target application. An EPC1 or EPC1441 configuration device or 
intelligent controller can be used to control the configuration of a 
FLEX 6000 device, allowing automatic configuration on system 
power-up.

Multiple FLEX 6000 devices can be configured in any of the three 
configuration schemes by connecting the configuration enable input 
(nCE) and configuration enable output (nCEO) pins on each device.

Table 40 shows the data sources for each configuration scheme. 

Table 40. Configuration Schemes 

Configuration Scheme Data Source

Configuration device EPC1 or EPC1441 configuration device

Passive serial (PS) BitBlasterTM, ByteBlasterMVTM, or MasterBlasterTM 
download cables, or serial data source

Passive serial asynchronous 
(PSA)

BitBlaster, ByteBlasterMV, or MasterBlaster 
download cables, or serial data source
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