Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 132 | | Number of Logic Elements/Cells | 1320 | | Total RAM Bits | - | | Number of I/O | 171 | | Number of Gates | 16000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf6016qc208-2n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 1. OptiFLEX Architecture Block Diagram FLEX 6000 devices provide four dedicated, global inputs that drive the control inputs of the flipflops to ensure efficient distribution of high-speed, low-skew control signals. These inputs use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect. These inputs can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device. The dedicated global routing structure is built into the device, eliminating the need to create a clock tree. #### **Logic Array Block** An LAB consists of ten LEs, their associated carry and cascade chains, the LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure of the FLEX 6000 architecture, and facilitates efficient routing with optimum device utilization and high performance. The interleaved LAB structure—an innovative feature of the FLEX 6000 architecture—allows each LAB to drive two local interconnects. This feature minimizes the use of the FastTrack Interconnect, providing higher performance. An LAB can drive 20 LEs in adjacent LABs via the local interconnect, which maximizes fitting flexibility while minimizing die size. See Figure 2. Figure 2. Logic Array Block In most designs, the registers only use global clock and clear signals. However, in some cases, other clock or asynchronous clear signals are needed. In addition, counters may also have synchronous clear or load signals. In a design that uses non-global clock and clear signals, inputs from the first LE in an LAB are re-routed to drive the control signals for that LAB. See Figure 3. Figure 3. LAB Control Signals #### **Logic Element** An LE, the smallest unit of logic in the FLEX 6000 architecture, has a compact size that provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. An LE contains a programmable flipflop, carry and cascade chains. Additionally, each LE drives both the local and the FastTrack Interconnect. See Figure 4. Figure 5. Carry Chain Operation Either the counter enable or the up/down control may be used for a given counter. Moreover, the synchronous load can be used as a count enable by routing the register output into the data input automatically when requested by the designer. The second LE of each LAB has a special function for counter mode; the carry-in of the LE can be driven by a fast feedback path from the register. This function gives a faster counter speed for counter carry chains starting in the second LE of an LAB. The Altera software implements functions to use the counter mode automatically where appropriate. The designer does not have to decide how the carry chain will be used. #### Internal Tri-State Emulation Internal tri-state emulation provides internal tri-states without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer. #### Clear & Preset Logic Control Logic for the programmable register's clear and preset functions is controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE register has an asynchronous clear that can implement an asynchronous preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear or preset. Because the clear and preset functions are active-low, the Altera software automatically assigns a logic high to an unused clear or preset signal. The clear and preset logic is implemented in either the asynchronous clear or asynchronous preset mode, which is chosen during design entry (see Figure 8). The FastTrack Interconnect consists of column and row interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect, which routes signals between LABs in the same row, and also routes signals from I/O pins to LABs. Additionally, the local interconnect routes signals between LEs in the same LAB and in adjacent LABs. The column interconnect routes signals between rows and routes signals from I/O pins to rows. LEs 1 through 5 of an LAB drive the local interconnect to the right, while LEs 6 through 10 drive the local interconnect to the left. The DATA1 and DATA3 inputs of each LE are driven by the local interconnect to the left; DATA2 and DATA4 are driven by the local interconnect to the right. The local interconnect also routes signals from LEs to I/O pins. Figure 9 shows an overview of the FLEX 6000 interconnect architecture. LEs in the first and last columns have drivers on both sides so that all LEs in the LAB can drive I/O pins via the local interconnect. Figure 9. FastTrack Interconnect Architecture #### Note: (1) For EPF6010A, EPF6016, and EPF6016A devices, *n* = 144 channels and *m* = 20 channels; for EPF6024A devices, *n* = 186 channels and *m* = 30 channels. #### I/O Elements An IOE contains a bidirectional I/O buffer and a tri-state buffer. IOEs can be used as input, output, or bidirectional pins. An IOE receives its data signals from the adjacent local interconnect, which can be driven by a row or column interconnect (allowing any LE in the device to drive the IOE) or by an adjacent LE (allowing fast clock-to-output delays). A FastFLEXTM I/O pin is a row or column output pin that receives its data signals from the adjacent local interconnect driven by an adjacent LE. The IOE receives its output enable signal through the same path, allowing individual output enables for every pin and permitting emulation of open-drain buffers. The Altera Compiler uses programmable inversion to invert the data or output enable signals automatically where appropriate. Open-drain emulation is provided by driving the data input low and toggling the OE of each IOE. This emulation is possible because there is one OE per pin. A chip-wide output enable feature allows the designer to disable all pins of the device by asserting one pin (DEV_OE). This feature is useful during board debugging or testing. Figure 12 shows the IOE block diagram. To Row or Column Interconnect Chip-Wide Output Enable From LAB Local Interconnect Slew-Rate Control Figure 12. IOE Block Diagram #### MultiVolt I/O Interface The FLEX 6000 device architecture supports the MultiVolt I/O interface feature, which allows FLEX 6000 devices to interface with systems of differing supply voltages. The EPF6016 device can be set for 3.3-V or 5.0-V I/O pin operation. This device has one set of $V_{\rm CC}$ pins for internal operation and input buffers (VCCINT), and another set for output drivers (VCCIO). The VCCINT pins on 5.0-V FLEX 6000 devices must always be connected to a 5.0-V power supply. With a 5.0-V V_{CCINT} level, input voltages are at TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs. The VCCIO pins on 5.0-V FLEX 6000 devices can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with VCCIO levels lower than 4.75 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} . On 3.3-V FLEX 6000 devices, the VCCINT pins must be connected to a 3.3-V power supply. Additionally, 3.3-V FLEX 6000A devices can interface with 2.5-V, 3.3-V, or 5.0-V systems when the VCCIO pins are tied to 2.5 V. The output can drive 2.5-V systems, and the inputs can be driven by 2.5-V, 3.3-V, or 5.0-V systems. When the VCCIO pins are tied to 3.3 V, the output can drive 3.3-V or 5.0-V systems. MultiVolt I/Os are not supported on 100-pin TQFP or 100-pin FineLine BGA packages. | Table 7 | describes | FLFX 6000 | MultiVolt I | /O support. | |---------|-----------|-----------|-------------|--------------| | Table / | describes | TLLA UUUU | munu v On i | / O subboit. | | Table 7. FLEX 6000 MultiVolt I/O Support | | | | | | | | |-------------------------------------------------------------------------|-----|-----|-----|-----|-------|-------|-----| | V _{CCINT} V _{CCIO} Input Signal (V) Output Signal (V) | | | | | | l (V) | | | (V) | (V) | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | 3.3 | 2.5 | v | V | v | V | | | | 3.3 | 3.3 | v | v | v | v (1) | v | v | | 5.0 | 3.3 | | v | v | | v | v | | 5.0 | 5.0 | | V | v | | | V | #### Note: (1) When $V_{\rm CCIO} = 3.3~{\rm V}$, a FLEX 6000 device can drive a 2.5-V device that has 3.3-V tolerant inputs. The instruction register length for FLEX 6000 devices is three bits. Table 9 shows the boundary-scan register length for FLEX 6000 devices. | Table 9. FLEX 6000 Device Boundary-Scan Register Length | | | | | |---------------------------------------------------------|-------------------------------|--|--|--| | Device | Boundary-Scan Register Length | | | | | EPF6010A | 522 | | | | | EPF6016 | 621 | | | | | EPF6016A | 522 | | | | | EPF6024A | 666 | | | | FLEX 6000 devices include a weak pull-up on JTAG pins. f See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information. Figure 16 shows the timing requirements for the JTAG signals. Table 10 shows the JTAG timing parameters and values for FLEX 6000 devices. # Operating Conditions Tables 11 through 18 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V and 3.3-V FLEX 6000 devices. | Table 11. FLEX 6000 5.0-V Device Absolute Maximum Ratings Note (1) | | | | | | | |----------------------------------------------------------------------|----------------------------|------------------------------|------|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | ٧ | | | VI | DC input voltage | | -2.0 | 7.0 | V | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | TJ | Junction temperature | PQFP, TQFP, and BGA packages | | 135 | ° C | | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|-----------------------------------------------------|--------------------|-------------|--------------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | V _{CCIO} | Supply voltage for output buffers, 5.0-V operation | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | V _I | Input voltage | | -0.5 | V _{CCINT} + 0.5 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | TJ | Operating temperature | For commercial use | 0 | 85 | ° C | | | | For industrial use | -40 | 100 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1) | | | | | | | |----------------------------------------------------------------------|----------------------------|------------------------------|------|------|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | V _{CC} | Supply voltage | With respect to ground (2) | -0.5 | 4.6 | V | | | V _I | DC input voltage | | -2.0 | 5.75 | ٧ | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | T _J | Junction temperature | PQFP, PLCC, and BGA packages | | 135 | ° C | | | Table 1 | Table 16. FLEX 6000 3.3-V Device Recommended Operating Conditions | | | | | | | |--------------------|-------------------------------------------------------------------|--------------------|-------------|-------------------|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | V | | | | VI | Input voltage | | -0.5 | 5.75 | ٧ | | | | Vo | Output voltage | | 0 | V _{CCIO} | V | | | | T_J | Operating temperature | For commercial use | 0 | 85 | ° C | | | | | | For industrial use | -40 | 100 | °C | | | | t _R | Input rise time | | | 40 | ns | | | | t _F | Input fall time | | | 40 | ns | | | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|------------------------------------------|--------------------------------------------------------------|-------------------------|-----|------|------| | V _{IH} | High-level input voltage | | 1.7 | | 5.75 | ٧ | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | ٧ | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} - 0.2 | | | V | | | 2.5-V high-level output voltage | $I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V (7)$ | 2.1 | | | ٧ | | | | I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (7) | 2.0 | | | ٧ | | | | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V}$ (7) | 1.7 | | | ٧ | | V _{OL} | 3.3-V low-level TTL output voltage | $I_{OL} = 8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | | 0.2 | V | | | 2.5-V low-level output voltage | I _{OL} = 100 μA DC, V _{CCIO} = 2.30 V (8) | | | 0.2 | ٧ | | | | I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8) | | | 0.4 | ٧ | | | | I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8) | | | 0.7 | ٧ | | I _I | Input pin leakage current | V _I = 5.3 V to ground (8) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = 5.3 \text{ V to ground } (8)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.5 | 5 | mA | | Table 1 | Table 18. FLEX 6000 3.3-V Device CapacitanceNote (9) | | | | | |--------------------|------------------------------------------------------|-------------------------------------|-----|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input capacitance for I/O pin | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | C _{INCLK} | Input capacitance for dedicated input | $V_{IN} = 0 V$, $f = 1.0 MHz$ | | 12 | pF | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) The minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically. (5) Typical values are for T_A = 25° C and V_{CC} = 3.3 V. (6) These values are specified under Table 16 on page 33. (7) The I_{OH} parameter refers to high-level TTL or CMOS output current. - (8) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (9) Capacitance is sample-tested only. Tables 19 through 21 describe the FLEX 6000 internal timing microparameters, which are expressed as worst-case values. Using hand calculations, these parameters can be used to estimate design performance. However, before committing designs to silicon, actual worst-case performance should be modeled using timing simulation and timing analysis. Tables 22 and 23 describe FLEX 6000 external timing parameters. | Symbol | Parameter | Conditions | |-----------------------------|-----------------------------------------------------------------------------------------|------------| | t _{REG_TO_REG} | LUT delay for LE register feedback in carry chain | | | t _{CASC_TO_REG} | Cascade-in to register delay | | | t _{CARRY_TO_REG} | Carry-in to register delay | | | t _{DATA_TO_REG} | LE input to register delay | | | t _{CASC_TO_OUT} | Cascade-in to LE output delay | | | t _{CARRY_TO_OUT} | Carry-in to LE output delay | | | t _{DATA_TO_OUT} | LE input to LE output delay | | | t _{REG_TO_OUT} | Register output to LE output delay | | | t _{SU} | LE register setup time before clock; LE register recovery time after asynchronous clear | | | t _H | LE register hold time after clock | | | t_{CO} | LE register clock-to-output delay | | | t _{CLR} | LE register clear delay | | | t_C | LE register control signal delay | | | t _{LD_CLR} | Synchronous load or clear delay in counter mode | | | t _{CARRY_TO_CARRY} | Carry-in to carry-out delay | | | t _{REG_TO_CARRY} | Register output to carry-out delay | | | t _{DATA_TO_CARRY} | LE input to carry-out delay | | | t _{CARRY_TO_CASC} | Carry-in to cascade-out delay | | | t _{CASC_TO_CASC} | Cascade-in to cascade-out delay | | | t _{REG_TO_CASC} | Register-out to cascade-out delay | | | t _{DATA_TO_CASC} | LE input to cascade-out delay | | | t _{CH} | LE register clock high time | | | t_{CL} | LE register clock low time | | | | + | - | | Table 23. External Timing Parameters | | | | | |--------------------------------------|---------------------------------------------------------------------------------|------------|--|--| | Symbol | Parameter | Conditions | | | | t _{INSU} | Setup time with global clock at LE register | (8) | | | | t _{INH} | Hold time with global clock at LE register | (8) | | | | t _{оитсо} | Clock-to-output delay with global clock with LE register using FastFLEX I/O pin | (8) | | | #### *Notes to tables:* - Microparameters are timing delays contributed by individual architectural elements and cannot be measured explicitly. - (2) Operating conditions: - $\hat{V_{CCIO}} = \widecheck{5}.0~V \pm 5\%$ for commercial use in 5.0-V FLEX 6000 devices. - $V_{CCIO} = 5.0 \text{ V} \pm 10\%$ for industrial use in 5.0-V FLEX 6000 devices. - $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in 3.3-V FLEX 6000 devices. - (3) Operating conditions: - $\hat{V_{CCIO}} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in 5.0-V FLEX 6000 devices. - V_{CCIO} = 2.5 V ±0.2 V for commercial or industrial use in 3.3-V FLEX 6000 devices. - (4) Operating conditions: - $V_{\text{CCIO}} = 2.5 \text{ V}, 3.3 \text{ V}, \text{ or } 5.0 \text{ V}.$ - (5) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (6) This timing parameter shows the delay of a register-to-register test pattern and is used to determine speed grades. There are 12 LEs, including source and destination registers. The row and column interconnects between the registers vary in length. - 7) This timing parameter is shown for reference and is specified by characterization. - (8) This timing parameter is specified by characterization. Tables 24 through 28 show the timing information for EPF6010A and EPF6016A devices. | Parameter | | Speed Grade | | | | | | | | |---------------------------|-----|-------------|-----|-----|-----|-----|----|--|--| | | -1 | | - | -2 | | 3 | 1 | | | | • | Min | Max | Min | Max | Min | Max | | | | | treg_to_reg | | 1.2 | | 1.3 | | 1.7 | ns | | | | t _{CASC_TO_REG} | | 0.9 | | 1.0 | | 1.2 | ns | | | | t _{CARRY_TO_REG} | | 0.9 | | 1.0 | | 1.2 | ns | | | | t _{DATA_TO_REG} | | 1.1 | | 1.2 | | 1.5 | ns | | | | t _{CASC_TO_OUT} | | 1.3 | | 1.4 | | 1.8 | ns | | | | t _{CARRY_TO_OUT} | | 1.6 | | 1.8 | | 2.3 | ns | | | | ^t DATA_TO_OUT | | 1.7 | | 2.0 | | 2.5 | ns | | | | t _{REG_TO_OUT} | | 0.4 | | 0.4 | | 0.5 | ns | | | | t _{su} | 0.9 | | 1.0 | | 1.3 | | ns | | | | t _H | 1.4 | | 1.7 | | 2.1 | | ns | | | | Parameter | Speed Grade | | | | | | | | |---------------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | 1 | | | | Min | Max | Min | Max | Min | Max | | | | t _{co} | | 0.3 | | 0.4 | | 0.4 | ns | | | t _{CLR} | | 0.4 | | 0.4 | | 0.5 | ns | | | t _C | | 1.8 | | 2.1 | | 2.6 | ns | | | t _{LD_CLR} | | 1.8 | | 2.1 | | 2.6 | ns | | | tCARRY_TO_CARRY | | 0.1 | | 0.1 | | 0.1 | ns | | | tREG_TO_CARRY | | 1.6 | | 1.9 | | 2.3 | ns | | | tDATA_TO_CARRY | | 2.1 | | 2.5 | | 3.0 | ns | | | tCARRY_TO_CASC | | 1.0 | | 1.1 | | 1.4 | ns | | | t _{CASC_TO_CASC} | | 0.5 | | 0.6 | | 0.7 | ns | | | tREG_TO_CASC | | 1.4 | | 1.7 | | 2.1 | ns | | | t _{DATA_TO_CASC} | | 1.1 | | 1.2 | | 1.5 | ns | | | ^t ch | 2.5 | | 3.0 | | 3.5 | | ns | | | ^t CL | 2.5 | | 3.0 | | 3.5 | | ns | | | Parameter | Speed Grade | | | | | | | | |-----------------------|-------------|-----|-----|-----|-----|-----|----|--| | | -1 | | -2 | | -3 | | 1 | | | | Min | Max | Min | Max | Min | Max | | | | t _{OD1} | | 1.9 | | 2.2 | | 2.7 | ns | | | t _{OD2} | | 4.1 | | 4.8 | | 5.8 | ns | | | t _{OD3} | | 5.8 | | 6.8 | | 8.3 | ns | | | t_{XZ} | | 1.4 | | 1.7 | | 2.1 | ns | | | t _{XZ1} | | 1.4 | | 1.7 | | 2.1 | ns | | | t _{XZ2} | | 3.6 | | 4.3 | | 5.2 | ns | | | t _{XZ3} | | 5.3 | | 6.3 | | 7.7 | ns | | | t _{IOE} | | 0.5 | | 0.6 | | 0.7 | ns | | | t _{IN} | | 3.6 | | 4.1 | | 5.1 | ns | | | ^t IN DELAY | | 4.8 | | 5.4 | | 6.7 | ns | | | Parameter | Speed Grade | | | | | | | | |-----------------------|-------------|-----|-----|-----|-----|-----|----|--| | | - | -1 | | -2 | | 3 | | | | | Min | Max | Min | Max | Min | Max | | | | t _{LOCAL} | | 0.7 | | 0.7 | | 1.0 | ns | | | t _{ROW} | | 2.9 | | 3.2 | | 3.2 | ns | | | t _{COL} | | 1.2 | | 1.3 | | 1.4 | ns | | | t _{DIN_D} | | 5.4 | | 5.7 | | 6.4 | ns | | | t _{DIN_C} | | 4.3 | | 5.0 | | 6.1 | ns | | | t
LEGLOBAL | | 2.6 | | 3.0 | | 3.7 | ns | | | t _{LABCARRY} | | 0.7 | | 0.8 | | 0.9 | ns | | | t _{LABCASC} | | 1.3 | | 1.4 | | 1.8 | ns | | | Table 27. External Reference Timing Parameters for EPF6010A & EPF6016A Devices | | | | | | | | | |--|----------|-------------|------|-----|------|-----|------|----| | Parameter | Device | Speed Grade | | | | | Unit | | | | | - | 1 | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | t ₁ | EPF6010A | | 37.6 | | 43.6 | | 53.7 | ns | | | EPF6016A | | 38.0 | | 44.0 | | 54.1 | ns | | Table 28. Externa | l Timing Para | meters for E | PF6010A & EP | PF6016A De | vices | | | |--------------------|---------------|--------------|--------------|------------|---------|------|------| | Parameter | | | Speed (| Grade | | | Unit | | | -1 | | -2 | l. | -; | 3 | | | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.1 (1) | | 2.4 (1) | | 3.3 (1) | | ns | | t _{INH} | 0.2 (2) | | 0.3 (2) | | 0.1 (2) | | ns | | t _{оитсо} | 2.0 | 7.1 | 2.0 | 8.2 | 2.0 | 10.1 | ns | #### Notes: Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off. Hold time is zero when the *Increase Input Delay* option is turned on. | Parameter | | Unit | | | | |-----------------------|-----|------|-----|-----|----| | | -2 | | - | 3 | | | | Min | Max | Min | Max | | | OD3 | | 4.7 | | 5.2 | ns | | XZ | | 2.3 | | 2.8 | ns | | ZX1 | | 2.3 | | 2.8 | ns | | ZX2 | | 4.6 | | 5.1 | ns | | ZX3 | | 4.7 | | 5.2 | ns | | IOE | | 0.5 | | 0.6 | ns | | ^t in | | 3.3 | | 4.0 | ns | | t _{IN DELAY} | | 4.6 | | 5.6 | ns | | Parameter | Speed Grade | | | | | | | |-----------------------|-------------|-----|-----|-----|----|--|--| | | -2 | | - | 3 | | | | | | Min | Max | Min | Max | | | | | t _{LOCAL} | | 0.8 | | 1.0 | ns | | | | t _{ROW} | | 2.9 | | 3.3 | ns | | | | t _{COL} | | 2.3 | | 2.5 | ns | | | | t _{DIN_D} | | 4.9 | | 6.0 | ns | | | | t _{DIN_C} | | 4.8 | | 6.0 | ns | | | | t _{LEGLOBAL} | | 3.1 | | 3.9 | ns | | | | t _{LABCARRY} | | 0.4 | | 0.5 | ns | | | | t _{LABCASC} | | 0.8 | | 1.0 | ns | | | | Table 32. External Reference Timing Parameters for EPF6016 Devices | | | | | | | | |--|-----|-------------|-----|------|----|--|--| | Parameter | | Speed Grade | | | | | | | | | -2 | | -3 | | | | | | Min | Max | Min | Max | | | | | t ₁ | | 53.0 | | 65.0 | ns | | | | t _{DRR} | | 16.0 | | 20.0 | ns | | | | Table 38. Externa | l Timing Paran | neters for E | PF6024A Devi | es | | | | | |--------------------|----------------|--------------|--------------|-----|---------|-----|----|--| | Parameter | Speed Grade | | | | | | | | | | -1 | | -2 | | -3 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.0 (1) | | 2.2 (1) | | 2.6 (1) | | ns | | | t _{INH} | 0.2 (2) | | 0.2 (2) | | 0.3 (2) | | ns | | | t _{outco} | 2.0 | 7.4 | 2.0 | 8.2 | 2.0 | 9.9 | ns | | #### Notes: - (1) Setup times are longer when the *Increase Input Delay* option is turned on. The setup time values are shown with the *Increase Input Delay* option turned off. - (2) Hold time is zero when the *Increase Input Delay* option is turned on. ## Power Consumption The supply power (P) for FLEX 6000 devices can be calculated with the following equations: $$\begin{array}{ll} P &=& P_{INT} + P_{IO} \\ P &=& (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO} \end{array}$$ Typical $I_{CCSTANDBY}$ values are shown as I_{CC0} in the "FLEX 6000 Device DC Operating Conditions" table on pages 31 and 33 of this data sheet. The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. The I_{CCACTIVE} value can be calculated with the following equation: $$I_{CCACTIVE} = K \times f_{MAX} \times N \times tog_{LC} \times \frac{\mu A}{MHz \times LE}$$ Where: f_{MAX} = Maximum operating frequency in MHz N = Total number of LEs used in a FLEX 6000 device tog_{LC} = Average percentage of LEs toggling at each clock (typically 12.5%) K = Constant, shown in Table 39 | Table 39. K Constant Values | | | | | | |-----------------------------|---------|--|--|--|--| | Device | K Value | | | | | | EPF6010A | 14 | | | | | | EPF6016 | 88 | | | | | | EPF6016A | 14 | | | | | | EPF6024A | 14 | | | | | Figure 20. I_{CCACTIVE} vs. Operating Frequency # Device Configuration & Operation The FLEX 6000 architecture supports several configuration schemes to load a design into the device(s) on the circuit board. This section summarizes the device operating modes and available device configuration schemes. See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices) for detailed information on configuring FLEX 6000 devices, including sample schematics, timing diagrams, configuration options, pins names, and timing parameters. ### Device Pin-Outs See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.