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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Functional 
Description

The FLEX 6000 OptiFLEX architecture consists of logic elements (LEs). 
Each LE includes a 4-input look-up table (LUT), which can implement any 
4-input function, a register, and dedicated paths for carry and cascade 
chain functions. Because each LE contains a register, a design can be easily 
pipelined without consuming more LEs. The specified gate count for 
FLEX 6000 devices includes all LUTs and registers.

LEs are combined into groups called logic array blocks (LABs); each LAB 
contains 10 LEs. The Altera software automatically places related LEs into 
the same LAB, minimizing the number of required interconnects. Each 
LAB can implement a medium-sized block of logic, such as a counter or 
multiplexer.

Signal interconnections within FLEX 6000 devices—and to and from 
device pins—are provided via the routing structure of the FastTrack 
Interconnect. The routing structure is a series of fast, continuous row and 
column channels that run the entire length and width of the device. Any 
LE or pin can feed or be fed by any other LE or pin via the FastTrack 
Interconnect. See “FastTrack Interconnect” on page 17 of this data sheet 
for more information.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect. Each IOE contains a 
bidirectional I/O buffer. Each IOE is placed next to an LAB, where it can 
be driven by the local interconnect of that LAB. This feature allows fast 
clock-to-output times of less than 8 ns when a pin is driven by any of the 
10 LEs in the adjacent LAB. Also, any LE can drive any pin via the row and 
column interconnect. I/O pins can drive the LE registers via the row and 
column interconnect, providing setup times as low as 2 ns and hold times 
of 0 ns. IOEs provide a variety of features, such as JTAG BST support, 
slew-rate control, and tri-state buffers.

Figure 1 shows a block diagram of the FLEX 6000 OptiFLEX architecture. 
Each group of ten LEs is combined into an LAB, and the LABs are 
arranged into rows and columns. The LABs are interconnected by the 
FastTrack Interconnect. IOEs are located at the end of each FastTrack 
Interconnect row and column.
Altera Corporation  5
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The interleaved LAB structure—an innovative feature of the FLEX 6000 
architecture—allows each LAB to drive two local interconnects. This 
feature minimizes the use of the FastTrack Interconnect, providing higher 
performance. An LAB can drive 20 LEs in adjacent LABs via the local 
interconnect, which maximizes fitting flexibility while minimizing die 
size. See Figure 2.

Figure 2. Logic Array Block

In most designs, the registers only use global clock and clear signals. 
However, in some cases, other clock or asynchronous clear signals are 
needed. In addition, counters may also have synchronous clear or load 
signals. In a design that uses non-global clock and clear signals, inputs 
from the first LE in an LAB are re-routed to drive the control signals for 
that LAB. See Figure 3.

The 10 LEs in the LAB are driven by two
local interconnect areas. The LAB can drive
two local interconnect areas.

Row Interconnect

Local Interconnect

The row interconnect is
bidirectionally connected
to the local interconnect.

Column Interconnect

LEs can directly drive the row
and column interconnect.

To/From 
Adjacent 
LAB or IOEs

To/From
Adjacent 

LAB or IOEs
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Carry Chain 

The carry chain provides a very fast (0.1 ns) carry-forward function 
between LEs. The carry-in signal from a lower-order bit drives forward 
into the higher-order bit via the carry chain, and feeds into both the LUT 
and the next portion of the carry chain. This feature allows the FLEX 6000 
architecture to implement high-speed counters, adders, and comparators 
of arbitrary width. Carry chain logic can be created automatically by the 
Altera software during design processing, or manually by the designer 
during design entry. Parameterized functions such as LPM and 
DesignWare functions automatically take advantage of carry chains for 
the appropriate functions.

Because the first LE of each LAB can generate control signals for that LAB, 
the first LE in each LAB is not included in carry chains. In addition, the 
inputs of the first LE in each LAB may be used to generate synchronous 
clear and load enable signals for counters implemented with carry chains. 

Carry chains longer than nine LEs are implemented automatically by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from an even-numbered LAB to another even-numbered LAB, or from an 
odd-numbered LAB to another odd-numbered LAB. For example, the last 
LE of the first LAB in a row carries to the second LE of the third LAB in 
the row. In addition, the carry chain does not cross the middle of the row. 
For instance, in the EPF6016 device, the carry chain stops at the 11th LAB 
in a row and a new carry chain begins at the 12th LAB.

Figure 5 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. Although the register can be bypassed for simple adders, 
it can be used for an accumulator function. Another portion of the LUT 
and the carry chain logic generates the carry-out signal, which is routed 
directly to the carry-in signal of the next-higher-order bit. The final 
carry-out signal is routed to an LE, where it is driven onto the FastTrack 
Interconnect. 
10 Altera Corporation
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Cascade Chain 

The cascade chain enables the FLEX 6000 architecture to implement very 
wide fan-in functions. Adjacent LUTs can be used to implement portions 
of the function in parallel; the cascade chain serially connects the 
intermediate values. The cascade chain can use a logical AND or logical 
OR gate (via De Morgan’s inversion) to connect the outputs of adjacent 
LEs. Each additional LE provides four more inputs to the effective width 
of a function, with a delay as low as 0.5 ns per LE. Cascade chain logic can 
be created automatically by the Altera software during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
cascade chains for the appropriate functions.

A cascade chain implementing an AND gate can use the register in the last 
LE; a cascade chain implementing an OR gate cannot use this register 
because of the inversion required to implement the OR gate.

Because the first LE of an LAB can generate control signals for that LAB, 
the first LE in each LAB is not included in cascade chains. Moreover, 
cascade chains longer than nine bits are automatically implemented by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from an even-numbered LAB to another even-numbered 
LAB, or from an odd-numbered LAB to another odd-numbered LAB. For 
example, the last LE of the first LAB in a row cascades to the second LE of 
the third LAB. The cascade chain does not cross the center of the row. For 
example, in an EPF6016 device, the cascade chain stops at the 11th LAB in 
a row and a new cascade chain begins at the 12th LAB.

Figure 6 shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in. In this example, functions of 4n variables are 
implemented with n LEs. The cascade chain requires 3.4 ns to decode a 
16-bit address.
12 Altera Corporation
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Figure 7. LE Operating Modes

Notes:
(1) The register feedback multiplexer is available on LE 2 of each LAB.
(2) The data1 and data2 input signals can supply a clock enable, up or down control, or register feedback signals for 

all LEs other than the second LE in an LAB.
(3) The LAB-wide synchronous clear and LAB-wide synchronous load affect all registers in an LAB.
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Normal Mode 

The normal mode is suitable for general logic applications, combinatorial 
functions, or wide decoding functions that can take advantage of a 
cascade chain. In normal mode, four data inputs from the LAB local 
interconnect and the carry-in are inputs to a 4-input LUT. The Altera 
software automatically selects the carry-in or the DATA3 signal as one of 
the inputs to the LUT. The LUT output can be combined with the cascade-
in signal to form a cascade chain through the cascade-out signal. 

Arithmetic Mode 

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 7, the first LUT uses the carry-in signal and two data inputs from 
the LAB local interconnect to generate a combinatorial or registered 
output. For example, when implementing an adder, this output is the sum 
of three signals: DATA1, DATA2, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain. 

The Altera software implements logic functions to use the arithmetic 
mode automatically where appropriate; the designer does not have to 
decide how the carry chain will be used.

Counter Mode 

The counter mode offers counter enable, synchronous up/down control, 
synchronous clear, and synchronous load options. The counter enable and 
synchronous up/down control signals are generated from the data inputs 
of the LAB local interconnect. The synchronous clear and synchronous 
load options are LAB-wide signals that affect all registers in the LAB. 
Consequently, if any of the LEs in a LAB use counter mode, other LEs in 
that LAB must be used as part of the same counter or be used for a 
combinatorial function. In addition, the Altera software automatically 
places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data 
and the other generates the fast carry bit. A 2-to-1 multiplexer provides 
synchronous loading, and another AND gate provides synchronous 
clearing. If the cascade function is used by an LE in counter mode, the 
synchronous clear or load will override any signal carried on the cascade 
chain. The synchronous clear overrides the synchronous load.
Altera Corporation  15
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A row channel can be driven by an LE or by one of two column channels. 
These three signals feed a 3-to-1 multiplexer that connects to six specific 
row channels. Row channels drive into the local interconnect via 
multiplexers. 

Each column of LABs is served by a dedicated column interconnect. The 
LEs in an LAB can drive the column interconnect. The LEs in an LAB, a 
column IOE, or a row interconnect can drive the column interconnect. The 
column interconnect can then drive another row’s interconnect to route 
the signals to other LABs in the device. A signal from the column 
interconnect must be routed to the row interconnect before it can enter an 
LAB. 

Each LE has a FastTrack Interconnect output and a local output. The 
FastTrack interconnect output can drive six row and two column lines 
directly; the local output drives the local interconnect. Each local 
interconnect channel driven by an LE can drive four row and two column 
channels. This feature provides additional flexibility, because each LE can 
drive any of ten row lines and four column lines.

In addition, LEs can drive global control signals. This feature is useful for 
distributing internally generated clock, asynchronous clear, and 
asynchronous preset signals. A pin-driven global signal can also drive 
data signals, which is useful for high-fan-out data signals. 

Each LAB drives two groups of local interconnects, which allows an LE to 
drive two LABs, or 20 LEs, via the local interconnect. The row-to-local 
multiplexers are used more efficiently, because the multiplexers can now 
drive two LABs. Figure 10 shows how an LAB connects to row and 
column interconnects.
Altera Corporation  19
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Figure 11. Global Clock & Clear Distribution       Note (1) 

Notes:
(1) The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, 

LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals.
(2) The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
(3) Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals.
(4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.

Dedicated 
Inputs

LAB C1

LAB
(Repeated

Across
Device)

4

Dedicated 
Inputs

(3)(2)

(2) (4)

(4)

LAB D1 LAB D22

LAB C22
22 Altera Corporation



FLEX 6000 Programmable Logic Device Family Data Sheet
I/O Elements 
An IOE contains a bidirectional I/O buffer and a tri-state buffer. IOEs can 
be used as input, output, or bidirectional pins. An IOE receives its data 
signals from the adjacent local interconnect, which can be driven by a row 
or column interconnect (allowing any LE in the device to drive the IOE) or 
by an adjacent LE (allowing fast clock-to-output delays). A FastFLEXTM 
I/O pin is a row or column output pin that receives its data signals from 
the adjacent local interconnect driven by an adjacent LE. The IOE receives 
its output enable signal through the same path, allowing individual 
output enables for every pin and permitting emulation of open-drain 
buffers. The Altera Compiler uses programmable inversion to invert the 
data or output enable signals automatically where appropriate. Open-
drain emulation is provided by driving the data input low and toggling 
the OE of each IOE. This emulation is possible because there is one OE per 
pin. 

A chip-wide output enable feature allows the designer to disable all pins 
of the device by asserting one pin (DEV_OE). This feature is useful during 
board debugging or testing.

Figure 12 shows the IOE block diagram. 

Figure 12.  IOE Block Diagram

From LAB Local Interconnect
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Each IOE drives a row or column interconnect when used as an input or 
bidirectional pin. A row IOE can drive up to six row lines; a column IOE 
can drive up to two column lines. The input path from the I/O pad to the 
FastTrack Interconnect has a programmable delay element that can be 
used to guarantee a zero hold time. Depending on the placement of the 
IOE relative to what it is driving, the designer may choose to turn on the 
programmable delay to ensure a zero hold time. Figure 13 shows how an 
IOE connects to a row interconnect, and Figure 14 shows how an IOE 
connects to a column interconnect.

Figure 13. IOE Connection to Row Interconnect

Row Interconnect

Any LE can drive 
a pin through the
row and local
interconnect.

FastFLEX I/O: An LE can drive a pin through the 
local interconnect for faster clock-to-output times.

IOE

IOE

Up to 10 IOEs are on either 
side of a row. Each IOE can 
drive up to six row 
channels, and each IOE data 
and OE signal is driven by  
the local interconnect.

LAB
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Figure 14. IOE Connection to Column Interconnect

SameFrame 
Pin-Outs

3.3-V FLEX 6000 devices support the SameFrame pin-out feature for 
FineLine BGA packages. The SameFrame pin-out feature is the 
arrangement of balls on FineLine BGA packages such that the lower-ball-
count packages form a subset of the higher-ball-count packages. 
SameFrame pin-outs provide the flexibility to migrate not only from 
device to device within the same package, but also from one package to 
another. A given printed circuit board (PCB) layout can support multiple 
device density/package combinations. For example, a single board layout 
can support an EPF6016A device in a 100-pin FineLine BGA package or an 
EPF6024A device in a 256-pin FineLine BGA package.

The Altera software packages provide support to design PCBs with 
SameFrame pin-out devices. Devices can be defined for present and future 
use. The Altera software packages generate pin-outs describing how to lay 
out a board to take advantage of this migration (see Figure 15).

Row Interconnect

Column Interconnect

Each IOE can drive two 
column interconnect channels. 
Each IOE data and OE signal is 
driven to a local interconnect.

Any LE can drive a 
pin through the row
and local interconnect.

IOE IOE

LAB

FastFLEX I/O: An 
LE can drive a 
pin through a local 
interconnect for faster 
clock-to-output times.
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Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-
up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that 
require a VIH of 3.5 V. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. 
The open-drain pin will only drive low or tri-state; it will never drive high. 
The rise time is dependent on the value of the pull-up resistor and load 
impedance. The IOL current specification should be considered when 
selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with VCCIO = 3.3 V or 5.0 V (with 
a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input 
pins. In this case, the pull-up transistor will turn off when the pin voltage 
exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing
Because FLEX 6000 family devices can be used in a mixed-voltage 
environment, they have been designed specifically to tolerate any possible 
power-up sequence. The VCCIO and VCCINT power planes can be powered 
in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during 
power up without damaging the device. Additionally, FLEX 6000 devices 
do not drive out during power up. Once operating conditions are reached, 
FLEX 6000 devices operate as specified by the user.

IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All FLEX 6000 devices provide JTAG BST circuitry that comply with the 
IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for 
FLEX 6000 devices. JTAG BST can be performed before or after 
configuration, but not during configuration (except when you disable 
JTAG support in user mode).

1 See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan 
Testing in Altera Devices) for more information on JTAG BST 
circuitry. 

Table 8. FLEX 6000 JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of the signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a test 
pattern at the output pins and capturing test result at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST 
data to pass synchronously through the selected device to adjacent devices during 
normal device operation.
28 Altera Corporation
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The instruction register length for FLEX 6000 devices is three bits. Table 9 
shows the boundary-scan register length for FLEX 6000 devices.

FLEX 6000 devices include a weak pull-up on JTAG pins.

f See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera 
Devices) for more information.

Figure 16 shows the timing requirements for the JTAG signals.

Figure 16. JTAG Waveforms

Table 10 shows the JTAG timing parameters and values for FLEX 6000 
devices.

Table 9. FLEX 6000 Device Boundary-Scan Register Length

Device Boundary-Scan Register Length

EPF6010A 522

EPF6016 621

EPF6016A 522

EPF6024A 666

TDO

TCK

tJPZX tJPCO

tJPH

t JPXZ

 tJCP

 tJPSU t JCL tJCH

TDI

TMS

Signal
to Be

Captured

Signal
to Be

Driven

tJSZX

tJSSU tJSH

tJSCO tJSXZ
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Operating 
Conditions

Tables 11 through 18 provide information on absolute maximum ratings, 
recommended operating conditions, operating conditions, and 
capacitance for 5.0-V and 3.3-V FLEX 6000 devices.

Table 11. FLEX 6000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –2.0 7.0 V

VI DC input voltage –2.0 7.0 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, and BGA packages 135 ° C

Table 12. FLEX 6000 5.0-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic 

and input buffers
(3), (4) 4.75 (4.50) 5.25 (5.50) V

VCCIO Supply voltage for output buffers, 
5.0-V operation

(3), (4) 4.75 (4.50) 5.25 (5.50) V

Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

VI Input voltage –0.5 VCCINT + 0.5 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V 
FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V VCCIO. When 
VCCIO = 5.0 V on EPF6016 devices, the output driver is compliant with the 
PCI Local Bus Specification, Revision 2.2 for 5.0-V operation. When 
VCCIO = 3.3 V on the EPF6010A and EPF6016A devices, the output driver 
is compliant with the PCI Local Bus Specification, Revision 2.2 for 3.3-V 
operation.

Figure 18. Output Drive Characteristics 
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements and cannot be measured 

explicitly.
(2) Operating conditions:

VCCIO = 5.0 V ± 5% for commercial use in 5.0-V FLEX 6000 devices.
VCCIO = 5.0 V ± 10% for industrial use in 5.0-V FLEX 6000 devices.
VCCIO = 3.3 V ± 10% for commercial or industrial use in 3.3-V FLEX 6000 devices.

(3) Operating conditions:
VCCIO = 3.3 V ± 10% for commercial or industrial use in 5.0-V FLEX 6000 devices.
VCCIO = 2.5 V ± 0.2 V for commercial or industrial use in 3.3-V FLEX 6000 devices.

(4) Operating conditions:
VCCIO = 2.5 V, 3.3 V, or 5.0 V.

(5) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 
analysis are required to determine actual worst-case performance.

(6) This timing parameter shows the delay of a register-to-register test pattern and is used to determine speed grades. 
There are 12 LEs, including source and destination registers. The row and column interconnects between the 
registers vary in length.

(7) This timing parameter is shown for reference and is specified by characterization.
(8) This timing parameter is specified by characterization.

Tables 24 through 28 show the timing information for EPF6010A and 
EPF6016A devices.

Table 23. External Timing Parameters

Symbol Parameter Conditions

tINSU Setup time with global clock at LE register (8)

tINH Hold time with global clock at LE register (8)

tOUTCO Clock-to-output delay with global clock with LE register using FastFLEX I/O 
pin

(8)

Table 24. LE Timing Microparameters for EPF6010A & EPF6016A Devices  (Part 1 of 2)

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tREG_TO_REG 1.2 1.3 1.7 ns

tCASC_TO_REG 0.9 1.0 1.2 ns

tCARRY_TO_REG 0.9 1.0 1.2 ns

tDATA_TO_REG 1.1 1.2 1.5 ns

tCASC_TO_OUT 1.3 1.4 1.8 ns

tCARRY_TO_OUT 1.6 1.8 2.3 ns

tDATA_TO_OUT 1.7 2.0 2.5 ns

tREG_TO_OUT 0.4 0.4 0.5 ns

tSU 0.9 1.0 1.3 ns

tH 1.4 1.7 2.1 ns
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tOD3 4.7 5.2 ns

tXZ 2.3 2.8 ns

tZX1 2.3 2.8 ns

tZX2 4.6 5.1 ns

tZX3 4.7 5.2 ns

tIOE 0.5 0.6 ns

tIN 3.3 4.0 ns

tIN_DELAY 4.6 5.6 ns

Table 31. Interconnect Timing Microparameters for EPF6016 Devices 

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tLOCAL 0.8 1.0 ns

tROW 2.9 3.3 ns

tCOL 2.3 2.5 ns

tDIN_D 4.9 6.0 ns

tDIN_C 4.8 6.0 ns

tLEGLOBAL 3.1 3.9 ns

tLABCARRY 0.4 0.5 ns

tLABCASC 0.8 1.0 ns

Table 32. External Reference Timing Parameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

t1 53.0 65.0 ns

tDRR 16.0 20.0 ns

Table 30. IOE Timing Microparameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max
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This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions. 

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations shown above) for continuous 
interconnect FLEX devices assumes that LEs drive FastTrack Interconnect 
channels. In contrast, the power model of segmented FPGAs assumes that 
all LEs drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating 
frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.
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Figure 20.  ICCACTIVE vs. Operating Frequency  

Device 
Configuration & 
Operation

The FLEX 6000 architecture supports several configuration schemes to 
load a design into the device(s) on the circuit board. This section 
summarizes the device operating modes and available device 
configuration schemes. 

f See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 
Devices) for detailed information on configuring FLEX 6000 devices, 
including sample schematics, timing diagrams, configuration options, 
pins names, and timing parameters.
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Device Pin-
Outs

See the Altera web site (http://www.altera.com) or the Altera Digital 
Library for pin-out information.
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