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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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...and More 
Features

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Programmable output slew-rate control to reduce switching 

noise
– Fast path from register to I/O pin for fast clock-to-output time

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, high-fan-
in logic functions (automatically used by software tools and 
megafunctions)

– Tri-state emulation that implements internal tri-state networks
– Four low-skew global paths for clock, clear, preset, or logic 

signals
■ Software design support and automatic place-and-route provided by 

Altera’s development system for Windows-based PCs, Sun 
SPARCstations, and HP 9000 Series 700/800

■ Flexible package options
– Available in a variety of packages with 100 to 256 pins, including 

the innovative FineLine BGATM packages (see Table 2)
– SameFrameTM pin-compatibility (with other FLEX® 6000 devices) 

across device densities and pin counts
– Thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and 

ball-grid array (BGA) packages (see Table 2)
– Footprint- and pin-compatibility with other FLEX 6000 devices 

in the same package
■ Additional design entry and simulation support provided by 

EDIF 2 0 0 and 3 0 0 netlist files, the library of parameterized modules 
(LPM), Verilog HDL, VHDL, DesignWare components, and other 
interfaces to popular EDA tools from manufacturers such as 
Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, 
Synplicity, VeriBest, and Viewlogic

Table 2. FLEX 6000 Package Options & I/O Pin Count 

Device 100-Pin 
TQFP

100-Pin 
FineLine BGA

144-Pin 
TQFP

208-Pin 
PQFP

240-Pin 
PQFP

256-Pin 
BGA

256-pin 
FineLine BGA

EPF6010A 71 102

EPF6016 117 171 199 204

EPF6016A 81 81 117 171 171

EPF6024A 117 171 199 218 219
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Table 4 shows FLEX 6000 performance for more complex designs. 

Note:
(1) The applications in this table were created using Altera MegaCoreTM functions.

FLEX 6000 devices are supported by Altera development systems; a 
single, integrated package that offers schematic, text (including AHDL), 
and waveform design entry, compilation and logic synthesis, full 
simulation and worst-case timing analysis, and device configuration. The 
Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, 
and other interfaces for additional design entry and simulation support 
from other industry-standard PC- and UNIX workstation-based EDA 
tools. 

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development systems include DesignWare 
functions that are optimized for the FLEX 6000 architecture.

The Altera development system runs on Windows-based PCs, Sun 
SPARCstations, and HP 9000 Series 700/800.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet and the Quartus Programmable Logic Development System & 
Software Data Sheet for more information.

Table 4. FLEX 6000 Device Performance for Complex Designs Note (1)

Application LEs Used Performance Units

-1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

8-bit, 16-tap parallel finite impulse response 
(FIR) filter

599 94 80 72 MSPS

8-bit, 512-point fast Fourier transform (FFT) 
function

1,182 75
63

89
53

109
43

µS
MHz

a16450 universal asynchronous 
receiver/transmitter (UART)

487 36 30 25 MHz

PCI bus target with zero wait states 609 56 49 42 MHz
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Figure 3. LAB Control Signals

Logic Element 
An LE, the smallest unit of logic in the FLEX 6000 architecture, has a 
compact size that provides efficient logic usage. Each LE contains a four-
input LUT, which is a function generator that can quickly implement any 
function of four variables. An LE contains a programmable flipflop, carry 
and cascade chains. Additionally, each LE drives both the local and the 
FastTrack Interconnect. See Figure 4.

4
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can be rerouted to drive
control  signals within 
the LAB.

The dedicated input signals 
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LAB-wide control signals 
(SYNCLR and SYNLOAD 
signals are used in counter mode).
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Figure 5. Carry Chain Operation
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Figure 7. LE Operating Modes

Notes:
(1) The register feedback multiplexer is available on LE 2 of each LAB.
(2) The data1 and data2 input signals can supply a clock enable, up or down control, or register feedback signals for 

all LEs other than the second LE in an LAB.
(3) The LAB-wide synchronous clear and LAB-wide synchronous load affect all registers in an LAB.
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Either the counter enable or the up/down control may be used for a given 
counter. Moreover, the synchronous load can be used as a count enable by 
routing the register output into the data input automatically when 
requested by the designer.

The second LE of each LAB has a special function for counter mode; the 
carry-in of the LE can be driven by a fast feedback path from the register. 
This function gives a faster counter speed for counter carry chains starting 
in the second LE of an LAB. 

The Altera software implements functions to use the counter mode 
automatically where appropriate. The designer does not have to decide 
how the carry chain will be used.

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer.

Clear & Preset Logic Control 

Logic for the programmable register’s clear and preset functions is 
controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE 
register has an asynchronous clear that can implement an asynchronous 
preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear 
or preset. Because the clear and preset functions are active-low, the Altera 
software automatically assigns a logic high to an unused clear or preset 
signal. The clear and preset logic is implemented in either the 
asynchronous clear or asynchronous preset mode, which is chosen during 
design entry (see Figure 8). 
16 Altera Corporation
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The FastTrack Interconnect consists of column and row interconnect 
channels that span the entire device. Each row of LABs is served by a 
dedicated row interconnect, which routes signals between LABs in the 
same row, and also routes signals from I/O pins to LABs. Additionally, 
the local interconnect routes signals between LEs in the same LAB and in 
adjacent LABs. The column interconnect routes signals between rows and 
routes signals from I/O pins to rows.

LEs 1 through 5 of an LAB drive the local interconnect to the right, while 
LEs 6 through 10 drive the local interconnect to the left. The DATA1 and 
DATA3 inputs of each LE are driven by the local interconnect to the left; 
DATA2 and DATA4 are driven by the local interconnect to the right. The 
local interconnect also routes signals from LEs to I/O pins. Figure 9 shows 
an overview of the FLEX 6000 interconnect architecture. LEs in the first 
and last columns have drivers on both sides so that all LEs in the LAB can 
drive I/O pins via the local interconnect.

Figure 9. FastTrack Interconnect Architecture

Note:
(1) For EPF6010A, EPF6016, and EPF6016A devices, n = 144 channels and m = 20 channels; for EPF6024A devices, 

n = 186 channels and m = 30 channels.
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Figure 11. Global Clock & Clear Distribution       Note (1) 

Notes:
(1) The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, 

LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals.
(2) The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
(3) Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals.
(4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.
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Figure 15. SameFrame Pin-Out Example

Table 6 lists the 3.3-V FLEX 6000 devices with the SameFrame pin-out 
feature.

Output 
Configuration

This section discusses slew-rate control, the MultiVolt I/O interface, 
power sequencing, and hot-socketing for FLEX 6000 devices.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew-rate that can 
be configured for low-noise or high-speed performance. A slower 
slew-rate reduces system noise and adds a maximum delay of 6.8 ns. The 
fast slew-rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew-rate on 
a pin-by-pin basis during design entry or assign a default slew rate to all 
pins on a device-wide basis. The slew-rate setting affects only the falling 
edge of the output.

Designed for 256-Pin FineLine BGA Package
Printed Circuit Board

100-Pin FineLine BGA Package
(Reduced I/O Count or
Logic Requirements)

256-Pin FineLine BGA Package
(Increased I/O Count or

Logic Requirements)

100-Pin
FineLine

BGA

256-Pin
FineLine

BGA

Table 6. 3.3-V FLEX 6000 Devices with SameFrame Pin-Outs

Device 100-Pin FineLine BGA 256-Pin FineLine BGA

EPF6016A v v
EPF6024A v
26 Altera Corporation
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MultiVolt I/O Interface
The FLEX 6000 device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 6000 devices to interface with systems of 
differing supply voltages. The EPF6016 device can be set for 3.3-V or 5.0-V 
I/O pin operation. This device has one set of VCC pins for internal 
operation and input buffers (VCCINT), and another set for output drivers 
(VCCIO). 

The VCCINT pins on 5.0-V FLEX 6000 devices must always be connected 
to a 5.0-V power supply. With a 5.0-V VCCINT level, input voltages are at 
TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs. 

The VCCIO pins on 5.0-V FLEX 6000 devices can be connected to either a 
3.3-V or 5.0-V power supply, depending on the output requirements. 
When the VCCIO pins are connected to a 5.0-V power supply, the output 
levels are compatible with 5.0-V systems. When the VCCIO pins are 
connected to a 3.3-V power supply, the output high is 3.3 V and is 
therefore compatible with 3.3-V or 5.0-V systems. Devices operating with 
VCCIO levels lower than 4.75 V incur a nominally greater timing delay of 
tOD2 instead of tOD1.

On 3.3-V FLEX 6000 devices, the VCCINT pins must be connected to a 
3.3-V power supply. Additionally, 3.3-V FLEX 6000A devices can interface 
with 2.5-V, 3.3-V, or 5.0-V systems when the VCCIO pins are tied to 2.5 V. 
The output can drive 2.5-V systems, and the inputs can be driven by 2.5-
V, 3.3-V, or 5.0-V systems. When the VCCIO pins are tied to 3.3 V, the 
output can drive 3.3-V or 5.0-V systems. MultiVolt I/Os are not supported 
on 100-pin TQFP or 100-pin FineLine BGA packages.

Table 7 describes FLEX 6000 MultiVolt I/O support.

Note:
(1) When VCCIO = 3.3 V, a FLEX 6000 device can drive a 2.5-V device that has 3.3-V 

tolerant inputs.

Table 7. FLEX 6000 MultiVolt I/O Support

VCCINT 
(V)

VCCIO 
(V)

Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

3.3 2.5 v v v v
3.3 3.3 v v v v (1) v v
5.0 3.3 v v v v
5.0 5.0 v v v
Altera Corporation  27
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Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-
up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that 
require a VIH of 3.5 V. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. 
The open-drain pin will only drive low or tri-state; it will never drive high. 
The rise time is dependent on the value of the pull-up resistor and load 
impedance. The IOL current specification should be considered when 
selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with VCCIO = 3.3 V or 5.0 V (with 
a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input 
pins. In this case, the pull-up transistor will turn off when the pin voltage 
exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing
Because FLEX 6000 family devices can be used in a mixed-voltage 
environment, they have been designed specifically to tolerate any possible 
power-up sequence. The VCCIO and VCCINT power planes can be powered 
in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during 
power up without damaging the device. Additionally, FLEX 6000 devices 
do not drive out during power up. Once operating conditions are reached, 
FLEX 6000 devices operate as specified by the user.

IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All FLEX 6000 devices provide JTAG BST circuitry that comply with the 
IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for 
FLEX 6000 devices. JTAG BST can be performed before or after 
configuration, but not during configuration (except when you disable 
JTAG support in user mode).

1 See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan 
Testing in Altera Devices) for more information on JTAG BST 
circuitry. 

Table 8. FLEX 6000 JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of the signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a test 
pattern at the output pins and capturing test result at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST 
data to pass synchronously through the selected device to adjacent devices during 
normal device operation.
28 Altera Corporation
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The instruction register length for FLEX 6000 devices is three bits. Table 9 
shows the boundary-scan register length for FLEX 6000 devices.

FLEX 6000 devices include a weak pull-up on JTAG pins.

f See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera 
Devices) for more information.

Figure 16 shows the timing requirements for the JTAG signals.

Figure 16. JTAG Waveforms

Table 10 shows the JTAG timing parameters and values for FLEX 6000 
devices.

Table 9. FLEX 6000 Device Boundary-Scan Register Length

Device Boundary-Scan Register Length

EPF6010A 522

EPF6016 621

EPF6016A 522

EPF6024A 666

TDO

TCK

tJPZX tJPCO

tJPH

t JPXZ

 tJCP

 tJPSU t JCL tJCH

TDI

TMS

Signal
to Be

Captured

Signal
to Be

Driven

tJSZX

tJSSU tJSH

tJSCO tJSXZ
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Table 15. FLEX 6000 3.3-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –0.5 4.6 V

VI DC input voltage –2.0 5.75 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, PLCC, and BGA packages 135 ° C

Table 16. FLEX 6000 3.3-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic and 

input buffers
(3), (4) 3.00 (3.00) 3.60 (3.60) V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage –0.5 5.75 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure predictable performance and accurate simulation and 
timing analysis. This predictable performance contrasts with that of 
FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance.

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters:

■ LE register clock-to-output delay (tCO + tREG_TO_OUT)
■ Routing delay (tROW + tLOCAL)
■ LE LUT delay (tDATA_TO_REG)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 

Timing simulation and delay prediction are available with the Simulator 
and Timing Analyzer, or with industry-standard EDA tools. The 
Simulator offers both pre-synthesis functional simulation to evaluate logic 
design accuracy and post-synthesis timing simulation with 0.1-ns 
resolution. The Timing Analyzer provides point-to-point timing delay 
information, setup and hold time analysis, and device-wide performance 
analysis.

Figure 19 shows the overall timing model, which maps the possible 
routing paths to and from the various elements of the FLEX 6000 device.
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Figure 19. FLEX 6000 Timing Model
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Tables 19 through 21 describe the FLEX 6000 internal timing 
microparameters, which are expressed as worst-case values. Using hand 
calculations, these parameters can be used to estimate design 
performance. However, before committing designs to silicon, actual 
worst-case performance should be modeled using timing simulation and 
timing analysis. Tables 22 and 23 describe FLEX 6000 external timing 
parameters.

Table 19. LE Timing Microparameters Note (1)

Symbol Parameter Conditions

tREG_TO_REG LUT delay for LE register feedback in carry chain

tCASC_TO_REG Cascade-in to register delay

tCARRY_TO_REG Carry-in to register delay

tDATA_TO_REG LE input to register delay

tCASC_TO_OUT Cascade-in to LE output delay

tCARRY_TO_OUT Carry-in to LE output delay

tDATA_TO_OUT LE input to LE output delay

tREG_TO_OUT Register output to LE output delay

tSU LE register setup time before clock; LE register recovery time after 
asynchronous clear

tH LE register hold time after clock

tCO LE register clock-to-output delay

tCLR LE register clear delay

tC LE register control signal delay

tLD_CLR Synchronous load or clear delay in counter mode

tCARRY_TO_CARRY Carry-in to carry-out delay

tREG_TO_CARRY Register output to carry-out delay

tDATA_TO_CARRY LE input to carry-out delay

tCARRY_TO_CASC Carry-in to cascade-out delay

tCASC_TO_CASC Cascade-in to cascade-out delay

tREG_TO_CASC Register-out to cascade-out delay

tDATA_TO_CASC LE input to cascade-out delay

tCH LE register clock high time

tCL LE register clock low time
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tCO 0.3 0.4 0.4 ns

tCLR 0.4 0.4 0.5 ns

tC 1.8 2.1 2.6 ns

tLD_CLR 1.8 2.1 2.6 ns

tCARRY_TO_CARRY 0.1 0.1 0.1 ns

tREG_TO_CARRY 1.6 1.9 2.3 ns

tDATA_TO_CARRY 2.1 2.5 3.0 ns

tCARRY_TO_CASC 1.0 1.1 1.4 ns

tCASC_TO_CASC 0.5 0.6 0.7 ns

tREG_TO_CASC 1.4 1.7 2.1 ns

tDATA_TO_CASC 1.1 1.2 1.5 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns

Table 25. IOE Timing Microparameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tOD1 1.9 2.2 2.7 ns

tOD2 4.1 4.8 5.8 ns

tOD3 5.8 6.8 8.3 ns

tXZ 1.4 1.7 2.1 ns

tXZ1 1.4 1.7 2.1 ns

tXZ2 3.6 4.3 5.2 ns

tXZ3 5.3 6.3 7.7 ns

tIOE 0.5 0.6 0.7 ns

tIN 3.6 4.1 5.1 ns

tIN_DELAY 4.8 5.4 6.7 ns

Table 24. LE Timing Microparameters for EPF6010A & EPF6016A Devices  (Part 2 of 2)

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Tables 29 through 33 show the timing information for EPF6016 devices. 

Table 29. LE Timing Microparameters for EPF6016 Devices  

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tREG_TO_REG 2.2 2.8 ns

tCASC_TO_REG 0.9 1.2 ns

tCARRY_TO_REG 1.6 2.1 ns

tDATA_TO_REG 2.4 3.0 ns

tCASC_TO_OUT 1.3 1.7 ns

tCARRY_TO_OUT 2.4 3.0 ns

tDATA_TO_OUT 2.7 3.4 ns

tREG_TO_OUT 0.3 0.5 ns

tSU 1.1 1.6 ns

tH 1.8 2.3 ns

tCO 0.3 0.4 ns

tCLR 0.5 0.6 ns

tC 1.2 1.5 ns

tLD_CLR 1.2 1.5 ns

tCARRY_TO_CARRY 0.2 0.4 ns

tREG_TO_CARRY 0.8 1.1 ns

tDATA_TO_CARRY 1.7 2.2 ns

tCARRY_TO_CASC 1.7 2.2 ns

tCASC_TO_CASC 0.9 1.2 ns

tREG_TO_CASC 1.6 2.0 ns

tDATA_TO_CASC 1.7 2.1 ns

tCH 4.0 4.0 ns

tCL 4.0 4.0 ns

Table 30. IOE Timing Microparameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tOD1 2.3 2.8 ns

tOD2 4.6 5.1 ns
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Tables 34 through 38 show the timing information for EPF6024A devices.

Table 33. External Timing Parameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tINSU 3.2 4.1 ns

tINH 0.0 0.0 ns

tOUTCO 2.0 7.9 2.0 9.9 ns

Table 34. LE Timing Microparameters for EPF6024A Devices 

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tREG_TO_REG 1.2 1.3 1.6 ns

tCASC_TO_REG 0.7 0.8 1.0 ns

tCARRY_TO_REG 1.6 1.8 2.2 ns

tDATA_TO_REG 1.3 1.4 1.7 ns

tCASC_TO_OUT 1.2 1.3 1.6 ns

tCARRY_TO_OUT 2.0 2.2 2.6 ns

tDATA_TO_OUT 1.8 2.1 2.6 ns

tREG_TO_OUT 0.3 0.3 0.4 ns

tSU 0.9 1.0 1.2 ns

tH 1.3 1.4 1.7 ns

tCO 0.2 0.3 0.3 ns

tCLR 0.3 0.3 0.4 ns

tC 1.9 2.1 2.5 ns

tLD_CLR 1.9 2.1 2.5 ns

tCARRY_TO_CARRY 0.2 0.2 0.3 ns

tREG_TO_CARRY 1.4 1.6 1.9 ns

tDATA_TO_CARRY 1.3 1.4 1.7 ns

tCARRY_TO_CASC 1.1 1.2 1.4 ns

tCASC_TO_CASC 0.7 0.8 1.0 ns

tREG_TO_CASC 1.4 1.6 1.9 ns

tDATA_TO_CASC 1.0 1.1 1.3 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns
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Notes:
(1) Setup times are longer when the Increase Input Delay option is turned on. The setup time values are shown with the 

Increase Input Delay option turned off.
(2) Hold time is zero when the Increase Input Delay option is turned on.

Power 
Consumption

The supply power (P) for FLEX 6000 devices can be calculated with the 
following equations:

P =  PINT + PIO
P =  (ICCSTANDBY + ICCACTIVE) ×  VCC + PIO

Typical ICCSTANDBY values are shown as ICC0 in the “FLEX 6000 Device 
DC Operating Conditions” table on pages 31 and 33 of this data sheet. The 
ICCACTIVE value depends on the switching frequency and the application 
logic. This value is based on the amount of current that each LE typically 
consumes. The PIO value, which depends on the device output load 
characteristics and switching frequency, can be calculated using the 
guidelines given in Application Note 74 (Evaluating Power for Altera Devices).

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K ×  fMAX ×  N ×  togLC ×  

Where: 
fMAX = Maximum operating frequency in MHz 
N = Total number of LEs used in a FLEX 6000 device
togLC = Average percentage of LEs toggling at each clock 

(typically 12.5%)
K = Constant, shown in Table 39 

Table 38. External Timing Parameters for EPF6024A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSU 2.0 (1) 2.2 (1) 2.6 (1) ns

tINH 0.2 (2) 0.2 (2) 0.3 (2) ns

tOUTCO 2.0 7.4 2.0 8.2 2.0 9.9 ns

µA
MHz LE×
-----------------------------

Table 39. K Constant Values

Device K Value

EPF6010A 14

EPF6016 88

EPF6016A 14

EPF6024A 14
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