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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 6000 Programmable Logic Device Family Data Sheet
...and More 
Features

■ Powerful I/O pins
– Individual tri-state output enable control for each pin
– Programmable output slew-rate control to reduce switching 

noise
– Fast path from register to I/O pin for fast clock-to-output time

■ Flexible interconnect
– FastTrack® Interconnect continuous routing structure for fast, 

predictable interconnect delays
– Dedicated carry chain that implements arithmetic functions such 

as fast adders, counters, and comparators (automatically used by 
software tools and megafunctions)

– Dedicated cascade chain that implements high-speed, high-fan-
in logic functions (automatically used by software tools and 
megafunctions)

– Tri-state emulation that implements internal tri-state networks
– Four low-skew global paths for clock, clear, preset, or logic 

signals
■ Software design support and automatic place-and-route provided by 

Altera’s development system for Windows-based PCs, Sun 
SPARCstations, and HP 9000 Series 700/800

■ Flexible package options
– Available in a variety of packages with 100 to 256 pins, including 

the innovative FineLine BGATM packages (see Table 2)
– SameFrameTM pin-compatibility (with other FLEX® 6000 devices) 

across device densities and pin counts
– Thin quad flat pack (TQFP), plastic quad flat pack (PQFP), and 

ball-grid array (BGA) packages (see Table 2)
– Footprint- and pin-compatibility with other FLEX 6000 devices 

in the same package
■ Additional design entry and simulation support provided by 

EDIF 2 0 0 and 3 0 0 netlist files, the library of parameterized modules 
(LPM), Verilog HDL, VHDL, DesignWare components, and other 
interfaces to popular EDA tools from manufacturers such as 
Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, 
Synplicity, VeriBest, and Viewlogic

Table 2. FLEX 6000 Package Options & I/O Pin Count 

Device 100-Pin 
TQFP

100-Pin 
FineLine BGA

144-Pin 
TQFP

208-Pin 
PQFP

240-Pin 
PQFP

256-Pin 
BGA

256-pin 
FineLine BGA

EPF6010A 71 102

EPF6016 117 171 199 204

EPF6016A 81 81 117 171 171

EPF6024A 117 171 199 218 219
2 Altera Corporation



FLEX 6000 Programmable Logic Device Family Data Sheet
General 
Description

The Altera® FLEX 6000 programmable logic device (PLD) family provides 
a low-cost alternative to high-volume gate array designs. FLEX 6000 
devices are based on the OptiFLEX architecture, which minimizes die size 
while maintaining high performance and routability. The devices have 
reconfigurable SRAM elements, which give designers the flexibility to 
quickly change their designs during prototyping and design testing. 
Designers can also change functionality during operation via in-circuit 
reconfiguration.

FLEX 6000 devices are reprogrammable, and they are 100% tested prior to 
shipment. As a result, designers are not required to generate test vectors 
for fault coverage purposes, allowing them to focus on simulation and 
design verification. In addition, the designer does not need to manage 
inventories of different gate array designs. FLEX 6000 devices are 
configured on the board for the specific functionality required.

Table 3 shows FLEX 6000 performance for some common designs. All 
performance values shown were obtained using Synopsys DesignWare or 
LPM functions. Special design techniques are not required to implement 
the applications; the designer simply infers or instantiates a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Note:
(1) This performance value is measured as a pin-to-pin delay.

Table 3. FLEX 6000 Device Performance for Common Designs

Application LEs Used Performance Units

-1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

16-bit loadable counter 16 172 153 133 MHz

16-bit accumulator 16 172 153 133 MHz

24-bit accumulator 24 136 123 108 MHz

16-to-1 multiplexer (pin-to-pin) (1) 10 12.1 13.4 16.6 ns

16 ×  16 multiplier with a 4-stage pipeline 592 84 67 58 MHz
Altera Corporation  3



FLEX 6000 Programmable Logic Device Family Data Sheet
Functional 
Description

The FLEX 6000 OptiFLEX architecture consists of logic elements (LEs). 
Each LE includes a 4-input look-up table (LUT), which can implement any 
4-input function, a register, and dedicated paths for carry and cascade 
chain functions. Because each LE contains a register, a design can be easily 
pipelined without consuming more LEs. The specified gate count for 
FLEX 6000 devices includes all LUTs and registers.

LEs are combined into groups called logic array blocks (LABs); each LAB 
contains 10 LEs. The Altera software automatically places related LEs into 
the same LAB, minimizing the number of required interconnects. Each 
LAB can implement a medium-sized block of logic, such as a counter or 
multiplexer.

Signal interconnections within FLEX 6000 devices—and to and from 
device pins—are provided via the routing structure of the FastTrack 
Interconnect. The routing structure is a series of fast, continuous row and 
column channels that run the entire length and width of the device. Any 
LE or pin can feed or be fed by any other LE or pin via the FastTrack 
Interconnect. See “FastTrack Interconnect” on page 17 of this data sheet 
for more information.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect. Each IOE contains a 
bidirectional I/O buffer. Each IOE is placed next to an LAB, where it can 
be driven by the local interconnect of that LAB. This feature allows fast 
clock-to-output times of less than 8 ns when a pin is driven by any of the 
10 LEs in the adjacent LAB. Also, any LE can drive any pin via the row and 
column interconnect. I/O pins can drive the LE registers via the row and 
column interconnect, providing setup times as low as 2 ns and hold times 
of 0 ns. IOEs provide a variety of features, such as JTAG BST support, 
slew-rate control, and tri-state buffers.

Figure 1 shows a block diagram of the FLEX 6000 OptiFLEX architecture. 
Each group of ten LEs is combined into an LAB, and the LABs are 
arranged into rows and columns. The LABs are interconnected by the 
FastTrack Interconnect. IOEs are located at the end of each FastTrack 
Interconnect row and column.
Altera Corporation  5



FLEX 6000 Programmable Logic Device Family Data Sheet
Figure 1. OptiFLEX Architecture Block Diagram

FLEX 6000 devices provide four dedicated, global inputs that drive the 
control inputs of the flipflops to ensure efficient distribution of high-
speed, low-skew control signals. These inputs use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect. These inputs can also be driven by internal logic, providing 
an ideal solution for a clock divider or an internally generated 
asynchronous clear signal that clears many registers in the device. The 
dedicated global routing structure is built into the device, eliminating the 
need to create a clock tree.

Logic Array Block
An LAB consists of ten LEs, their associated carry and cascade chains, the 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure of the FLEX 6000 architecture, and facilitates 
efficient routing with optimum device utilization and high performance. 
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The interleaved LAB structure—an innovative feature of the FLEX 6000 
architecture—allows each LAB to drive two local interconnects. This 
feature minimizes the use of the FastTrack Interconnect, providing higher 
performance. An LAB can drive 20 LEs in adjacent LABs via the local 
interconnect, which maximizes fitting flexibility while minimizing die 
size. See Figure 2.

Figure 2. Logic Array Block

In most designs, the registers only use global clock and clear signals. 
However, in some cases, other clock or asynchronous clear signals are 
needed. In addition, counters may also have synchronous clear or load 
signals. In a design that uses non-global clock and clear signals, inputs 
from the first LE in an LAB are re-routed to drive the control signals for 
that LAB. See Figure 3.

The 10 LEs in the LAB are driven by two
local interconnect areas. The LAB can drive
two local interconnect areas.

Row Interconnect
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The row interconnect is
bidirectionally connected
to the local interconnect.

Column Interconnect

LEs can directly drive the row
and column interconnect.
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LAB or IOEs
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Figure 5. Carry Chain Operation
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Cascade Chain 

The cascade chain enables the FLEX 6000 architecture to implement very 
wide fan-in functions. Adjacent LUTs can be used to implement portions 
of the function in parallel; the cascade chain serially connects the 
intermediate values. The cascade chain can use a logical AND or logical 
OR gate (via De Morgan’s inversion) to connect the outputs of adjacent 
LEs. Each additional LE provides four more inputs to the effective width 
of a function, with a delay as low as 0.5 ns per LE. Cascade chain logic can 
be created automatically by the Altera software during design processing, 
or manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
cascade chains for the appropriate functions.

A cascade chain implementing an AND gate can use the register in the last 
LE; a cascade chain implementing an OR gate cannot use this register 
because of the inversion required to implement the OR gate.

Because the first LE of an LAB can generate control signals for that LAB, 
the first LE in each LAB is not included in cascade chains. Moreover, 
cascade chains longer than nine bits are automatically implemented by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from an even-numbered LAB to another even-numbered 
LAB, or from an odd-numbered LAB to another odd-numbered LAB. For 
example, the last LE of the first LAB in a row cascades to the second LE of 
the third LAB. The cascade chain does not cross the center of the row. For 
example, in an EPF6016 device, the cascade chain stops at the 11th LAB in 
a row and a new cascade chain begins at the 12th LAB.

Figure 6 shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in. In this example, functions of 4n variables are 
implemented with n LEs. The cascade chain requires 3.4 ns to decode a 
16-bit address.
12 Altera Corporation



FLEX 6000 Programmable Logic Device Family Data Sheet
Figure 6. Cascade Chain Operation

LE Operating Modes 

The FLEX 6000 LE can operate in one of the following three modes:

■ Normal mode 
■ Arithmetic mode
■ Counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. LAB-wide signals 
provide clock, asynchronous clear, synchronous clear, and synchronous 
load control for the register. The Altera software, in conjunction with 
parameterized functions such as LPM and DesignWare functions, 
automatically chooses the appropriate mode for common functions such 
as counters, adders, and multipliers. If required, the designer can also 
create special-purpose functions to use an LE operating mode for optimal 
performance.

Figure 7 shows the LE operating modes.
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Normal Mode 

The normal mode is suitable for general logic applications, combinatorial 
functions, or wide decoding functions that can take advantage of a 
cascade chain. In normal mode, four data inputs from the LAB local 
interconnect and the carry-in are inputs to a 4-input LUT. The Altera 
software automatically selects the carry-in or the DATA3 signal as one of 
the inputs to the LUT. The LUT output can be combined with the cascade-
in signal to form a cascade chain through the cascade-out signal. 

Arithmetic Mode 

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 7, the first LUT uses the carry-in signal and two data inputs from 
the LAB local interconnect to generate a combinatorial or registered 
output. For example, when implementing an adder, this output is the sum 
of three signals: DATA1, DATA2, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain. 

The Altera software implements logic functions to use the arithmetic 
mode automatically where appropriate; the designer does not have to 
decide how the carry chain will be used.

Counter Mode 

The counter mode offers counter enable, synchronous up/down control, 
synchronous clear, and synchronous load options. The counter enable and 
synchronous up/down control signals are generated from the data inputs 
of the LAB local interconnect. The synchronous clear and synchronous 
load options are LAB-wide signals that affect all registers in the LAB. 
Consequently, if any of the LEs in a LAB use counter mode, other LEs in 
that LAB must be used as part of the same counter or be used for a 
combinatorial function. In addition, the Altera software automatically 
places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data 
and the other generates the fast carry bit. A 2-to-1 multiplexer provides 
synchronous loading, and another AND gate provides synchronous 
clearing. If the cascade function is used by an LE in counter mode, the 
synchronous clear or load will override any signal carried on the cascade 
chain. The synchronous clear overrides the synchronous load.
Altera Corporation  15
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Either the counter enable or the up/down control may be used for a given 
counter. Moreover, the synchronous load can be used as a count enable by 
routing the register output into the data input automatically when 
requested by the designer.

The second LE of each LAB has a special function for counter mode; the 
carry-in of the LE can be driven by a fast feedback path from the register. 
This function gives a faster counter speed for counter carry chains starting 
in the second LE of an LAB. 

The Altera software implements functions to use the counter mode 
automatically where appropriate. The designer does not have to decide 
how the carry chain will be used.

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer.

Clear & Preset Logic Control 

Logic for the programmable register’s clear and preset functions is 
controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE 
register has an asynchronous clear that can implement an asynchronous 
preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear 
or preset. Because the clear and preset functions are active-low, the Altera 
software automatically assigns a logic high to an unused clear or preset 
signal. The clear and preset logic is implemented in either the 
asynchronous clear or asynchronous preset mode, which is chosen during 
design entry (see Figure 8). 
16 Altera Corporation



FLEX 6000 Programmable Logic Device Family Data Sheet
The FastTrack Interconnect consists of column and row interconnect 
channels that span the entire device. Each row of LABs is served by a 
dedicated row interconnect, which routes signals between LABs in the 
same row, and also routes signals from I/O pins to LABs. Additionally, 
the local interconnect routes signals between LEs in the same LAB and in 
adjacent LABs. The column interconnect routes signals between rows and 
routes signals from I/O pins to rows.

LEs 1 through 5 of an LAB drive the local interconnect to the right, while 
LEs 6 through 10 drive the local interconnect to the left. The DATA1 and 
DATA3 inputs of each LE are driven by the local interconnect to the left; 
DATA2 and DATA4 are driven by the local interconnect to the right. The 
local interconnect also routes signals from LEs to I/O pins. Figure 9 shows 
an overview of the FLEX 6000 interconnect architecture. LEs in the first 
and last columns have drivers on both sides so that all LEs in the LAB can 
drive I/O pins via the local interconnect.

Figure 9. FastTrack Interconnect Architecture

Note:
(1) For EPF6010A, EPF6016, and EPF6016A devices, n = 144 channels and m = 20 channels; for EPF6024A devices, 

n = 186 channels and m = 30 channels.
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Table 5 summarizes the FastTrack Interconnect resources available in 
each FLEX 6000 device.

In addition to general-purpose I/O pins, FLEX 6000 devices have four 
dedicated input pins that provide low-skew signal distribution across the 
device. These four inputs can be used for global clock and asynchronous 
clear control signals. These signals are available as control signals for all 
LEs in the device. The dedicated inputs can also be used as general-
purpose data inputs because they can feed the local interconnect of each 
LAB in the device. Using dedicated inputs to route data signals provides 
a fast path for high fan-out signals.

The local interconnect from LABs located at either end of two rows can 
drive a global control signal. For instance, in an EPF6016 device, LABs C1, 
D1, C22, and D22 can all drive global control signals. When an LE drives 
a global control signal, the dedicated input pin that drives that signal 
cannot be used. Any LE in the device can drive a global control signal by 
driving the FastTrack Interconnect into the appropriate LAB. To minimize 
delay, however, the Altera software places the driving LE in the 
appropriate LAB. The LE-driving-global signal feature is optimized for 
speed for control signals; regular data signals are better routed on the 
FastTrack Interconnect and do not receive any advantage from being 
routed on global signals. This LE-driving-global control signal feature is 
controlled by the designer and is not used automatically by the Altera 
software. See Figure 11.

Table 5. FLEX 6000 FastTrack Interconnect Resources

Device Rows Channels per 
Row

Columns Channels per 
Column

EPF6010A 4 144 22 20

EPF6016
EPF6016A

6 144 22 20

EPF6024A 7 186 28 30
Altera Corporation  21
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Figure 11. Global Clock & Clear Distribution       Note (1) 

Notes:
(1) The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, 

LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals.
(2) The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
(3) Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals.
(4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.
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Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-
up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that 
require a VIH of 3.5 V. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. 
The open-drain pin will only drive low or tri-state; it will never drive high. 
The rise time is dependent on the value of the pull-up resistor and load 
impedance. The IOL current specification should be considered when 
selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with VCCIO = 3.3 V or 5.0 V (with 
a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input 
pins. In this case, the pull-up transistor will turn off when the pin voltage 
exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing
Because FLEX 6000 family devices can be used in a mixed-voltage 
environment, they have been designed specifically to tolerate any possible 
power-up sequence. The VCCIO and VCCINT power planes can be powered 
in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during 
power up without damaging the device. Additionally, FLEX 6000 devices 
do not drive out during power up. Once operating conditions are reached, 
FLEX 6000 devices operate as specified by the user.

IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All FLEX 6000 devices provide JTAG BST circuitry that comply with the 
IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for 
FLEX 6000 devices. JTAG BST can be performed before or after 
configuration, but not during configuration (except when you disable 
JTAG support in user mode).

1 See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan 
Testing in Altera Devices) for more information on JTAG BST 
circuitry. 

Table 8. FLEX 6000 JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of the signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a test 
pattern at the output pins and capturing test result at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST 
data to pass synchronously through the selected device to adjacent devices during 
normal device operation.
28 Altera Corporation
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Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V 
FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V VCCIO. When 
VCCIO = 5.0 V on EPF6016 devices, the output driver is compliant with the 
PCI Local Bus Specification, Revision 2.2 for 5.0-V operation. When 
VCCIO = 3.3 V on the EPF6010A and EPF6016A devices, the output driver 
is compliant with the PCI Local Bus Specification, Revision 2.2 for 3.3-V 
operation.

Figure 18. Output Drive Characteristics 
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Tables 19 through 21 describe the FLEX 6000 internal timing 
microparameters, which are expressed as worst-case values. Using hand 
calculations, these parameters can be used to estimate design 
performance. However, before committing designs to silicon, actual 
worst-case performance should be modeled using timing simulation and 
timing analysis. Tables 22 and 23 describe FLEX 6000 external timing 
parameters.

Table 19. LE Timing Microparameters Note (1)

Symbol Parameter Conditions

tREG_TO_REG LUT delay for LE register feedback in carry chain

tCASC_TO_REG Cascade-in to register delay

tCARRY_TO_REG Carry-in to register delay

tDATA_TO_REG LE input to register delay

tCASC_TO_OUT Cascade-in to LE output delay

tCARRY_TO_OUT Carry-in to LE output delay

tDATA_TO_OUT LE input to LE output delay

tREG_TO_OUT Register output to LE output delay

tSU LE register setup time before clock; LE register recovery time after 
asynchronous clear

tH LE register hold time after clock

tCO LE register clock-to-output delay

tCLR LE register clear delay

tC LE register control signal delay

tLD_CLR Synchronous load or clear delay in counter mode

tCARRY_TO_CARRY Carry-in to carry-out delay

tREG_TO_CARRY Register output to carry-out delay

tDATA_TO_CARRY LE input to carry-out delay

tCARRY_TO_CASC Carry-in to cascade-out delay

tCASC_TO_CASC Cascade-in to cascade-out delay

tREG_TO_CASC Register-out to cascade-out delay

tDATA_TO_CASC LE input to cascade-out delay

tCH LE register clock high time

tCL LE register clock low time
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tCO 0.3 0.4 0.4 ns

tCLR 0.4 0.4 0.5 ns

tC 1.8 2.1 2.6 ns

tLD_CLR 1.8 2.1 2.6 ns

tCARRY_TO_CARRY 0.1 0.1 0.1 ns

tREG_TO_CARRY 1.6 1.9 2.3 ns

tDATA_TO_CARRY 2.1 2.5 3.0 ns

tCARRY_TO_CASC 1.0 1.1 1.4 ns

tCASC_TO_CASC 0.5 0.6 0.7 ns

tREG_TO_CASC 1.4 1.7 2.1 ns

tDATA_TO_CASC 1.1 1.2 1.5 ns

tCH 2.5 3.0 3.5 ns

tCL 2.5 3.0 3.5 ns

Table 25. IOE Timing Microparameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tOD1 1.9 2.2 2.7 ns

tOD2 4.1 4.8 5.8 ns

tOD3 5.8 6.8 8.3 ns

tXZ 1.4 1.7 2.1 ns

tXZ1 1.4 1.7 2.1 ns

tXZ2 3.6 4.3 5.2 ns

tXZ3 5.3 6.3 7.7 ns

tIOE 0.5 0.6 0.7 ns

tIN 3.6 4.1 5.1 ns

tIN_DELAY 4.8 5.4 6.7 ns

Table 24. LE Timing Microparameters for EPF6010A & EPF6016A Devices  (Part 2 of 2)

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max
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Notes:
(1) Setup times are longer when the Increase Input Delay option is turned on. The setup time values are shown with the 

Increase Input Delay option turned off.
(2) Hold time is zero when the Increase Input Delay option is turned on.

Table 26. Interconnect Timing Microparameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLOCAL 0.7 0.7 1.0 ns

tROW 2.9 3.2 3.2 ns

tCOL 1.2 1.3 1.4 ns

tDIN_D 5.4 5.7 6.4 ns

tDIN_C 4.3 5.0 6.1 ns

tLEGLOBAL 2.6 3.0 3.7 ns

tLABCARRY 0.7 0.8 0.9 ns

tLABCASC 1.3 1.4 1.8 ns

Table 27. External Reference Timing Parameters for EPF6010A & EPF6016A Devices

Parameter Device Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

t1 EPF6010A 37.6 43.6 53.7 ns

EPF6016A 38.0 44.0 54.1 ns

Table 28. External Timing Parameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSU 2.1 (1) 2.4 (1) 3.3 (1) ns

tINH 0.2 (2) 0.3 (2) 0.1 (2) ns

tOUTCO 2.0 7.1 2.0 8.2 2.0 10.1 ns
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Figure 20.  ICCACTIVE vs. Operating Frequency  

Device 
Configuration & 
Operation

The FLEX 6000 architecture supports several configuration schemes to 
load a design into the device(s) on the circuit board. This section 
summarizes the device operating modes and available device 
configuration schemes. 

f See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 
Devices) for detailed information on configuring FLEX 6000 devices, 
including sample schematics, timing diagrams, configuration options, 
pins names, and timing parameters.
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