
Intel - EPF6024ATC144-2N Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 6000 Programmable Logic Device Family Data Sheet
The interleaved LAB structure—an innovative feature of the FLEX 6000 
architecture—allows each LAB to drive two local interconnects. This 
feature minimizes the use of the FastTrack Interconnect, providing higher 
performance. An LAB can drive 20 LEs in adjacent LABs via the local 
interconnect, which maximizes fitting flexibility while minimizing die 
size. See Figure 2.

Figure 2. Logic Array Block

In most designs, the registers only use global clock and clear signals. 
However, in some cases, other clock or asynchronous clear signals are 
needed. In addition, counters may also have synchronous clear or load 
signals. In a design that uses non-global clock and clear signals, inputs 
from the first LE in an LAB are re-routed to drive the control signals for 
that LAB. See Figure 3.
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local interconnect areas. The LAB can drive
two local interconnect areas.
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FLEX 6000 Programmable Logic Device Family Data Sheet
Figure 3. LAB Control Signals

Logic Element 
An LE, the smallest unit of logic in the FLEX 6000 architecture, has a 
compact size that provides efficient logic usage. Each LE contains a four-
input LUT, which is a function generator that can quickly implement any 
function of four variables. An LE contains a programmable flipflop, carry 
and cascade chains. Additionally, each LE drives both the local and the 
FastTrack Interconnect. See Figure 4.
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Carry Chain 

The carry chain provides a very fast (0.1 ns) carry-forward function 
between LEs. The carry-in signal from a lower-order bit drives forward 
into the higher-order bit via the carry chain, and feeds into both the LUT 
and the next portion of the carry chain. This feature allows the FLEX 6000 
architecture to implement high-speed counters, adders, and comparators 
of arbitrary width. Carry chain logic can be created automatically by the 
Altera software during design processing, or manually by the designer 
during design entry. Parameterized functions such as LPM and 
DesignWare functions automatically take advantage of carry chains for 
the appropriate functions.

Because the first LE of each LAB can generate control signals for that LAB, 
the first LE in each LAB is not included in carry chains. In addition, the 
inputs of the first LE in each LAB may be used to generate synchronous 
clear and load enable signals for counters implemented with carry chains. 

Carry chains longer than nine LEs are implemented automatically by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from an even-numbered LAB to another even-numbered LAB, or from an 
odd-numbered LAB to another odd-numbered LAB. For example, the last 
LE of the first LAB in a row carries to the second LE of the third LAB in 
the row. In addition, the carry chain does not cross the middle of the row. 
For instance, in the EPF6016 device, the carry chain stops at the 11th LAB 
in a row and a new carry chain begins at the 12th LAB.

Figure 5 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. Although the register can be bypassed for simple adders, 
it can be used for an accumulator function. Another portion of the LUT 
and the carry chain logic generates the carry-out signal, which is routed 
directly to the carry-in signal of the next-higher-order bit. The final 
carry-out signal is routed to an LE, where it is driven onto the FastTrack 
Interconnect. 
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Figure 5. Carry Chain Operation
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Normal Mode 

The normal mode is suitable for general logic applications, combinatorial 
functions, or wide decoding functions that can take advantage of a 
cascade chain. In normal mode, four data inputs from the LAB local 
interconnect and the carry-in are inputs to a 4-input LUT. The Altera 
software automatically selects the carry-in or the DATA3 signal as one of 
the inputs to the LUT. The LUT output can be combined with the cascade-
in signal to form a cascade chain through the cascade-out signal. 

Arithmetic Mode 

The arithmetic mode is ideal for implementing adders, accumulators, and 
comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT 
computes a 3-input function; the other generates a carry output. As shown 
in Figure 7, the first LUT uses the carry-in signal and two data inputs from 
the LAB local interconnect to generate a combinatorial or registered 
output. For example, when implementing an adder, this output is the sum 
of three signals: DATA1, DATA2, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain. 

The Altera software implements logic functions to use the arithmetic 
mode automatically where appropriate; the designer does not have to 
decide how the carry chain will be used.

Counter Mode 

The counter mode offers counter enable, synchronous up/down control, 
synchronous clear, and synchronous load options. The counter enable and 
synchronous up/down control signals are generated from the data inputs 
of the LAB local interconnect. The synchronous clear and synchronous 
load options are LAB-wide signals that affect all registers in the LAB. 
Consequently, if any of the LEs in a LAB use counter mode, other LEs in 
that LAB must be used as part of the same counter or be used for a 
combinatorial function. In addition, the Altera software automatically 
places registers that are not in the counter into other LABs.

The counter mode uses two 3-input LUTs: one generates the counter data 
and the other generates the fast carry bit. A 2-to-1 multiplexer provides 
synchronous loading, and another AND gate provides synchronous 
clearing. If the cascade function is used by an LE in counter mode, the 
synchronous clear or load will override any signal carried on the cascade 
chain. The synchronous clear overrides the synchronous load.
Altera Corporation  15
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Either the counter enable or the up/down control may be used for a given 
counter. Moreover, the synchronous load can be used as a count enable by 
routing the register output into the data input automatically when 
requested by the designer.

The second LE of each LAB has a special function for counter mode; the 
carry-in of the LE can be driven by a fast feedback path from the register. 
This function gives a faster counter speed for counter carry chains starting 
in the second LE of an LAB. 

The Altera software implements functions to use the counter mode 
automatically where appropriate. The designer does not have to decide 
how the carry chain will be used.

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-states without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer.

Clear & Preset Logic Control 

Logic for the programmable register’s clear and preset functions is 
controlled by the LAB-wide signals LABCTRL1 and LABCTRL2. The LE 
register has an asynchronous clear that can implement an asynchronous 
preset. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear 
or preset. Because the clear and preset functions are active-low, the Altera 
software automatically assigns a logic high to an unused clear or preset 
signal. The clear and preset logic is implemented in either the 
asynchronous clear or asynchronous preset mode, which is chosen during 
design entry (see Figure 8). 
16 Altera Corporation
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Figure 8. LE Clear & Preset Modes

Asynchronous Clear 

The flipflop can be cleared by either LABCTRL1 or LABCTRL2.

Asynchronous Preset 

An asynchronous preset is implemented with an asynchronous clear. The 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Inversion control is available for the 
inputs to both LEs and IOEs. Therefore, this technique can be used when 
a register drives logic or drives a pin.

In addition to the two clear and preset modes, FLEX 6000 devices provide 
a chip-wide reset pin (DEV_CLRn) that can reset all registers in the device. 
The option to use this pin is set in the Altera software before compilation. 
The chip-wide reset overrides all other control signals. Any register with 
an asynchronous preset will be preset when the chip-wide reset is asserted 
because of the inversion technique used to implement the asynchronous 
preset.

The Altera software can use a programmable NOT-gate push-back 
technique to emulate simultaneous preset and clear or asynchronous load. 
However, this technique uses an additional three LEs per register.

FastTrack Interconnect
In the FLEX 6000 OptiFLEX architecture, connections between LEs and 
device I/O pins are provided by the FastTrack Interconnect, a series of 
continuous horizontal and vertical routing channels that traverse the 
device. This global routing structure provides predictable performance, 
even for complex designs. In contrast, the segmented routing in FPGAs 
requires switch matrices to connect a variable number of routing paths, 
increasing the delays between logic resources and reducing performance.

PRN
D Q

labctrl1 or
labctrl2

Asynchronous Clear Asynchronous Preset

CLRN

D Q Chip-Wide Reset

labctrl1 or
labctrl2

Chip-Wide Reset
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The FastTrack Interconnect consists of column and row interconnect 
channels that span the entire device. Each row of LABs is served by a 
dedicated row interconnect, which routes signals between LABs in the 
same row, and also routes signals from I/O pins to LABs. Additionally, 
the local interconnect routes signals between LEs in the same LAB and in 
adjacent LABs. The column interconnect routes signals between rows and 
routes signals from I/O pins to rows.

LEs 1 through 5 of an LAB drive the local interconnect to the right, while 
LEs 6 through 10 drive the local interconnect to the left. The DATA1 and 
DATA3 inputs of each LE are driven by the local interconnect to the left; 
DATA2 and DATA4 are driven by the local interconnect to the right. The 
local interconnect also routes signals from LEs to I/O pins. Figure 9 shows 
an overview of the FLEX 6000 interconnect architecture. LEs in the first 
and last columns have drivers on both sides so that all LEs in the LAB can 
drive I/O pins via the local interconnect.

Figure 9. FastTrack Interconnect Architecture

Note:
(1) For EPF6010A, EPF6016, and EPF6016A devices, n = 144 channels and m = 20 channels; for EPF6024A devices, 

n = 186 channels and m = 30 channels.
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Figure 11. Global Clock & Clear Distribution       Note (1) 

Notes:
(1) The global clock and clear distribution signals are shown for EPF6016 and EPF6016A devices. In EPF6010A devices, 

LABs in rows B and C drive global signals. In EPF6024A devices, LABs in rows C and E drive global signals.
(2) The local interconnect from LABs C1 and D1 can drive two global control signals on the left side.
(3) Global signals drive into every LAB as clock, asynchronous clear, preset, and data signals.
(4) The local interconnect from LABs C22 and D22 can drive two global control signals on the right side.
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Figure 15. SameFrame Pin-Out Example

Table 6 lists the 3.3-V FLEX 6000 devices with the SameFrame pin-out 
feature.

Output 
Configuration

This section discusses slew-rate control, the MultiVolt I/O interface, 
power sequencing, and hot-socketing for FLEX 6000 devices.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew-rate that can 
be configured for low-noise or high-speed performance. A slower 
slew-rate reduces system noise and adds a maximum delay of 6.8 ns. The 
fast slew-rate should be used for speed-critical outputs in systems that are 
adequately protected against noise. Designers can specify the slew-rate on 
a pin-by-pin basis during design entry or assign a default slew rate to all 
pins on a device-wide basis. The slew-rate setting affects only the falling 
edge of the output.

Designed for 256-Pin FineLine BGA Package
Printed Circuit Board

100-Pin FineLine BGA Package
(Reduced I/O Count or
Logic Requirements)

256-Pin FineLine BGA Package
(Increased I/O Count or

Logic Requirements)

100-Pin
FineLine

BGA

256-Pin
FineLine

BGA

Table 6. 3.3-V FLEX 6000 Devices with SameFrame Pin-Outs

Device 100-Pin FineLine BGA 256-Pin FineLine BGA

EPF6016A v v
EPF6024A v
26 Altera Corporation
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Open-drain output pins on 5.0-V or 3.3-V FLEX 6000 devices (with a pull-
up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that 
require a VIH of 3.5 V. When the open-drain pin is active, it will drive low. 
When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. 
The open-drain pin will only drive low or tri-state; it will never drive high. 
The rise time is dependent on the value of the pull-up resistor and load 
impedance. The IOL current specification should be considered when 
selecting a pull-up resistor.

Output pins on 5.0-V FLEX 6000 devices with VCCIO = 3.3 V or 5.0 V (with 
a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input 
pins. In this case, the pull-up transistor will turn off when the pin voltage 
exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

Power Sequencing & Hot-Socketing
Because FLEX 6000 family devices can be used in a mixed-voltage 
environment, they have been designed specifically to tolerate any possible 
power-up sequence. The VCCIO and VCCINT power planes can be powered 
in any order.

Signals can be driven into 3.3-V FLEX 6000 devices before and during 
power up without damaging the device. Additionally, FLEX 6000 devices 
do not drive out during power up. Once operating conditions are reached, 
FLEX 6000 devices operate as specified by the user.

IEEE Std. 
1149.1 (JTAG) 
Boundary-Scan 
Support

All FLEX 6000 devices provide JTAG BST circuitry that comply with the 
IEEE Std. 1149.1-1990 specification. Table 8 shows JTAG instructions for 
FLEX 6000 devices. JTAG BST can be performed before or after 
configuration, but not during configuration (except when you disable 
JTAG support in user mode).

1 See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan 
Testing in Altera Devices) for more information on JTAG BST 
circuitry. 

Table 8. FLEX 6000 JTAG Instructions

JTAG Instruction Description

SAMPLE/PRELOAD Allows a snapshot of the signals at the device pins to be captured and examined during 
normal device operation, and permits an initial data pattern to be output at the device pins.

EXTEST Allows the external circuitry and board-level interconnections to be tested by forcing a test 
pattern at the output pins and capturing test result at the input pins.

BYPASS Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST 
data to pass synchronously through the selected device to adjacent devices during 
normal device operation.
28 Altera Corporation
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Operating 
Conditions

Tables 11 through 18 provide information on absolute maximum ratings, 
recommended operating conditions, operating conditions, and 
capacitance for 5.0-V and 3.3-V FLEX 6000 devices.

Table 11. FLEX 6000 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit
VCC Supply voltage With respect to ground (2) –2.0 7.0 V

VI DC input voltage –2.0 7.0 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, TQFP, and BGA packages 135 ° C

Table 12. FLEX 6000 5.0-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit
VCCINT Supply voltage for internal logic 

and input buffers
(3), (4) 4.75 (4.50) 5.25 (5.50) V

VCCIO Supply voltage for output buffers, 
5.0-V operation

(3), (4) 4.75 (4.50) 5.25 (5.50) V

Supply voltage for output buffers, 
3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

VI Input voltage –0.5 VCCINT + 0.5 V

VO Output voltage 0 VCCIO V

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
Altera Corporation  31
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) The minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 

5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms. VCC must rise monotonically.
(5) Typical values are for TA = 25°  C and VCC = 3.3 V.
(6) These values are specified under Table 16 on page 33.
(7) The IOH parameter refers to high-level TTL or CMOS output current. 
(8) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(9) Capacitance is sample-tested only.

Table 17. FLEX 6000 3.3-V Device DC Operating Conditions Notes (5), (6)

Symbol Parameter Conditions Min Typ Max Unit
VIH High-level input voltage 1.7 5.75 V

VIL Low-level input voltage –0.5 0.8 V

VOH 3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, VCCIO = 3.00 V (7) 2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, VCCIO = 3.00 V (7) VCCIO – 0.2 V

2.5-V high-level output voltage IOH = –100 µA DC, VCCIO = 2.30 V (7) 2.1 V

IOH = –1 mA DC, VCCIO = 2.30 V (7) 2.0 V

IOH = –2 mA DC, VCCIO = 2.30 V (7) 1.7 V

VOL 3.3-V low-level TTL output 
voltage

IOL = 8 mA DC, VCCIO = 3.00 V (8) 0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, VCCIO = 3.00 V (8) 0.2 V

2.5-V low-level output voltage IOL = 100 µA DC, VCCIO = 2.30 V (8) 0.2 V

IOL = 1 mA DC, VCCIO = 2.30 V (8) 0.4 V

IOL = 2 mA DC, VCCIO = 2.30 V (8) 0.7 V

II Input pin leakage current VI = 5.3 V to ground (8) –10 10 µA

IOZ Tri-stated I/O pin leakage current VO = 5.3 V to ground (8) –10 10 µA

ICC0 VCC supply current (standby) VI = ground, no load 0.5 5 mA

Table 18. FLEX 6000 3.3-V Device Capacitance Note (9)

Symbol Parameter Conditions Min Max Unit
CIN Input capacitance for I/O pin VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance for dedicated input VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
34 Altera Corporation
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Figure 18 shows the typical output drive characteristics of 5.0-V and 3.3-V 
FLEX 6000 devices with 5.0-V, 3.3-V, and 2.5-V VCCIO. When 
VCCIO = 5.0 V on EPF6016 devices, the output driver is compliant with the 
PCI Local Bus Specification, Revision 2.2 for 5.0-V operation. When 
VCCIO = 3.3 V on the EPF6010A and EPF6016A devices, the output driver 
is compliant with the PCI Local Bus Specification, Revision 2.2 for 3.3-V 
operation.

Figure 18. Output Drive Characteristics 
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Figure 19. FLEX 6000 Timing Model
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements and cannot be measured 

explicitly.
(2) Operating conditions:

VCCIO = 5.0 V ± 5% for commercial use in 5.0-V FLEX 6000 devices.
VCCIO = 5.0 V ± 10% for industrial use in 5.0-V FLEX 6000 devices.
VCCIO = 3.3 V ± 10% for commercial or industrial use in 3.3-V FLEX 6000 devices.

(3) Operating conditions:
VCCIO = 3.3 V ± 10% for commercial or industrial use in 5.0-V FLEX 6000 devices.
VCCIO = 2.5 V ± 0.2 V for commercial or industrial use in 3.3-V FLEX 6000 devices.

(4) Operating conditions:
VCCIO = 2.5 V, 3.3 V, or 5.0 V.

(5) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 
analysis are required to determine actual worst-case performance.

(6) This timing parameter shows the delay of a register-to-register test pattern and is used to determine speed grades. 
There are 12 LEs, including source and destination registers. The row and column interconnects between the 
registers vary in length.

(7) This timing parameter is shown for reference and is specified by characterization.
(8) This timing parameter is specified by characterization.

Tables 24 through 28 show the timing information for EPF6010A and 
EPF6016A devices.

Table 23. External Timing Parameters

Symbol Parameter Conditions

tINSU Setup time with global clock at LE register (8)

tINH Hold time with global clock at LE register (8)

tOUTCO Clock-to-output delay with global clock with LE register using FastFLEX I/O 
pin

(8)

Table 24. LE Timing Microparameters for EPF6010A & EPF6016A Devices  (Part 1 of 2)

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tREG_TO_REG 1.2 1.3 1.7 ns

tCASC_TO_REG 0.9 1.0 1.2 ns

tCARRY_TO_REG 0.9 1.0 1.2 ns

tDATA_TO_REG 1.1 1.2 1.5 ns

tCASC_TO_OUT 1.3 1.4 1.8 ns

tCARRY_TO_OUT 1.6 1.8 2.3 ns

tDATA_TO_OUT 1.7 2.0 2.5 ns

tREG_TO_OUT 0.4 0.4 0.5 ns

tSU 0.9 1.0 1.3 ns

tH 1.4 1.7 2.1 ns
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Notes:
(1) Setup times are longer when the Increase Input Delay option is turned on. The setup time values are shown with the 

Increase Input Delay option turned off.
(2) Hold time is zero when the Increase Input Delay option is turned on.

Table 26. Interconnect Timing Microparameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tLOCAL 0.7 0.7 1.0 ns

tROW 2.9 3.2 3.2 ns

tCOL 1.2 1.3 1.4 ns

tDIN_D 5.4 5.7 6.4 ns

tDIN_C 4.3 5.0 6.1 ns

tLEGLOBAL 2.6 3.0 3.7 ns

tLABCARRY 0.7 0.8 0.9 ns

tLABCASC 1.3 1.4 1.8 ns

Table 27. External Reference Timing Parameters for EPF6010A & EPF6016A Devices

Parameter Device Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

t1 EPF6010A 37.6 43.6 53.7 ns

EPF6016A 38.0 44.0 54.1 ns

Table 28. External Timing Parameters for EPF6010A & EPF6016A Devices

Parameter Speed Grade Unit

-1 -2 -3

Min Max Min Max Min Max

tINSU 2.1 (1) 2.4 (1) 3.3 (1) ns

tINH 0.2 (2) 0.3 (2) 0.1 (2) ns

tOUTCO 2.0 7.1 2.0 8.2 2.0 10.1 ns
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tOD3 4.7 5.2 ns

tXZ 2.3 2.8 ns

tZX1 2.3 2.8 ns

tZX2 4.6 5.1 ns

tZX3 4.7 5.2 ns

tIOE 0.5 0.6 ns

tIN 3.3 4.0 ns

tIN_DELAY 4.6 5.6 ns

Table 31. Interconnect Timing Microparameters for EPF6016 Devices 

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

tLOCAL 0.8 1.0 ns

tROW 2.9 3.3 ns

tCOL 2.3 2.5 ns

tDIN_D 4.9 6.0 ns

tDIN_C 4.8 6.0 ns

tLEGLOBAL 3.1 3.9 ns

tLABCARRY 0.4 0.5 ns

tLABCASC 0.8 1.0 ns

Table 32. External Reference Timing Parameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max

t1 53.0 65.0 ns

tDRR 16.0 20.0 ns

Table 30. IOE Timing Microparameters for EPF6016 Devices

Parameter Speed Grade Unit

-2 -3

Min Max Min Max
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This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions. 

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations shown above) for continuous 
interconnect FLEX devices assumes that LEs drive FastTrack Interconnect 
channels. In contrast, the power model of segmented FPGAs assumes that 
all LEs drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 20 shows the relationship between the current and operating 
frequency for EPF6010A, EPF6016, EPF6016A, and EPF6024A devices.
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Figure 20.  ICCACTIVE vs. Operating Frequency  

Device 
Configuration & 
Operation

The FLEX 6000 architecture supports several configuration schemes to 
load a design into the device(s) on the circuit board. This section 
summarizes the device operating modes and available device 
configuration schemes. 

f See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 
Devices) for detailed information on configuring FLEX 6000 devices, 
including sample schematics, timing diagrams, configuration options, 
pins names, and timing parameters.
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