

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

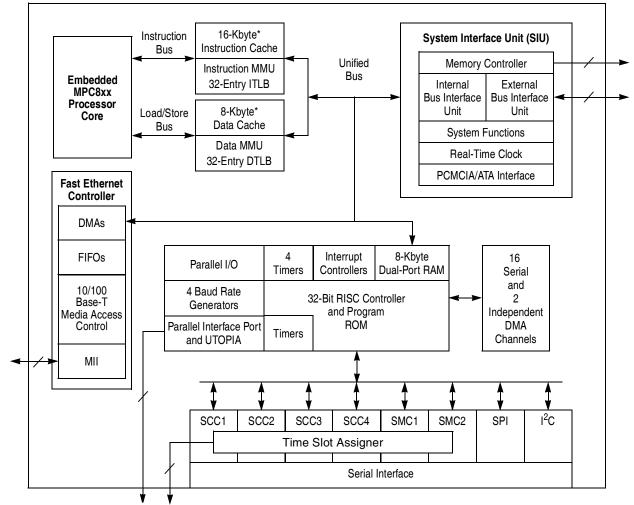
Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XFI


2000	
Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	· ·
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 115°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc857dslcvr66b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

*The MPC862T contains 4-Kbyte instruction cache and 4-Kbyte data cache.

Figure 1. MPC862P/862T Block Diagram

7.6 References

Semiconductor Equipment and Materials International	(415) 964-5111
805 East Middlefield Rd.	
Mountain View, CA 94043	
MIL-SPEC and EIA/JESD (JEDEC) Specifications	800-854-7179 or
(Available from Global Engineering Documents)	303-397-7956
JEDEC Specifications	http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

8 Layout Practices

Each V_{CC} pin on the MPC862/857T/857DSL should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC862/857T/857DSL have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

9 Bus Signal Timing

The maximum bus speed supported by the MPC862/857T/857DSL is 66 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC862/857T/857DSL used at 80MHz must be configured for a 40 MHz bus). Table 6 shows the period ranges for standard part frequencies.

Freq	50 N	/Hz	66 MHz		1Hz 80 MI		100	MHz
rieq	Min	Max	Min	Max	Min	Max	Min	Max
Period	20.00	30.30	15.15	30.30	25.00	30.30	20.00	30.30

Table 6. Period Range for Standard Part Frequencies

Num	m Characteristic		MHz	40 I	MHz	50 I	MHz	66 I	MHz	Unit
Num	Unaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	onn
B37	UPWAIT valid to CLKOUT falling edge 1^2 (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	—	6.00	_	6.00	—	ns
B38	CLKOUT falling edge to UPWAIT valid 12 (MIN = 0.00 x B1 + 1.00)	1.00	—	1.00	—	1.00	_	1.00	—	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ¹³ (MIN = 0.00 x B1 + 7.00)	7.00	—	7.00	—	7.00	_	7.00	—	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00	—	7.00	—	7.00	—	7.00	—	ns
B41	TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	—	7.00	—	7.00	-	7.00	—	ns
B42	CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	—	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)		TBD		TBD		TBD		TBD	ns

Table 7. Bus Operation Timings (continued)

¹ Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.

² If the rate of change of the frequency of EXTAL is slow (I.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (I.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

- ³ The timings specified in B4 and B5 are based on full strength clock.
- ⁴ The timing for BR output is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter.
- ⁵ For part speeds above 50MHz, use 9.80ns for B11a.
- ⁶ The timing required for BR input is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter. The timing for BG input is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter.
- ⁷ For part speeds above 50MHz, use 2ns for B17.
- ⁸ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- ⁹ For part speeds above 50MHz, use 2ns for B19.
- ¹⁰ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
- ¹¹ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.
- ¹² The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 19.
- ¹³ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 22.

Figure 6 provides the timing for the synchronous output signals.

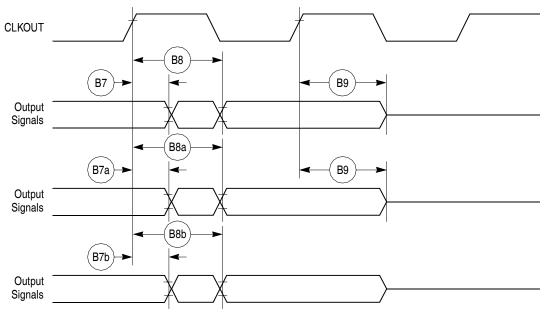


Figure 6. Synchronous Output Signals Timing

Figure 7 provides the timing for the synchronous active pull-up and open-drain output signals.

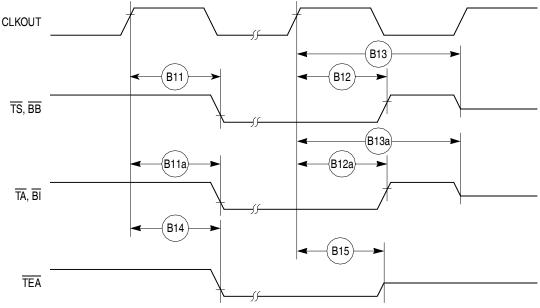


Figure 7. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing

Figure 15 through Figure 17 provide the timing for the external bus write controlled by various GPCM factors.

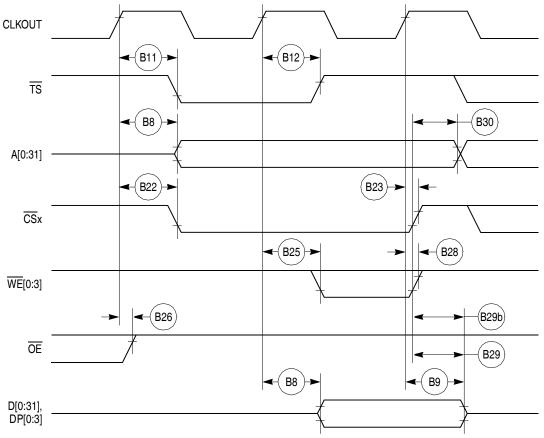


Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0,1 CSNT = 0)



Figure 18 provides the timing for the external bus controlled by the UPM.

Figure 18. External Bus Timing (UPM Controlled Signals)

Figure 26 provides the PCMCIA access cycle timing for the external bus read.

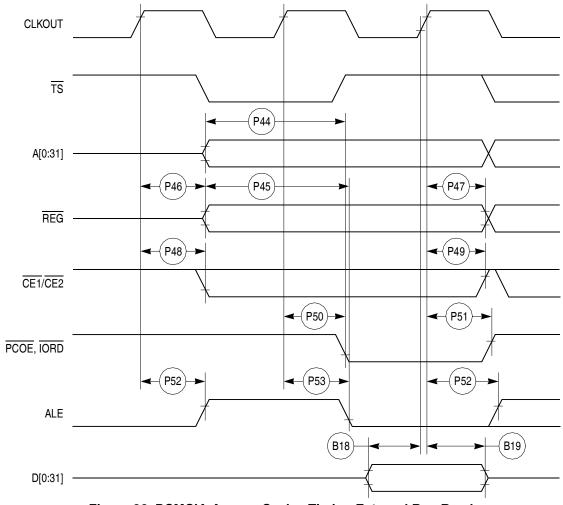


Figure 26. PCMCIA Access Cycles Timing External Bus Read

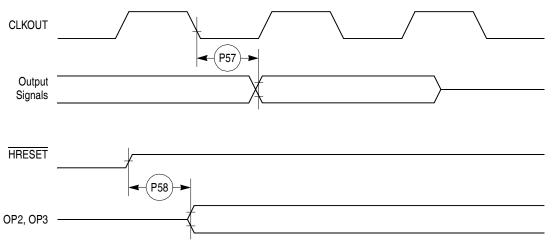

Table 10 shows the PCMCIA port timing for the MPC862/857T/857DSL.

Table	10.	PCMCIA	Port	Timina
10010		1 0 11 0 17		

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Max	Onic
P57	CLKOUT to OPx Valid (MAX = 0.00 x B1 + 19.00)	_	19.00	_	19.00	_	19.00	_	19.00	ns
P58	HRESET negated to OPx drive 1 (MIN = 0.75 x B1 + 3.00)	25.70	_	21.70	—	18.00	_	14.40	_	ns
P59	IP_Xx valid to CLKOUT rising edge (MIN = 0.00 x B1 + 5.00)	5.00	_	5.00	_	5.00	_	5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid (MIN = 0.00 x B1 + 1.00)	1.00	_	1.00	_	1.00	_	1.00	_	ns

¹ OP2 and OP3 only.

Figure 29 provides the PCMCIA output port timing for the MPC862/857T/857DSL.

Figure 29. PCMCIA Output Port Timing

Figure 30 provides the PCMCIA output port timing for the MPC862/857T/857DSL.

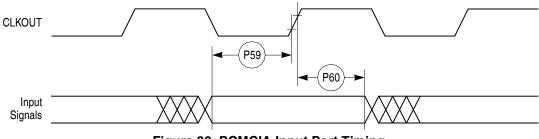


Figure 30. PCMCIA Input Port Timing

Table 12 shows the reset timing for the MPC862/857T/857DSL.

Table 12. Reset Timing

Num	Oberresteristic	33 N	IHz	40 M	lHz	50 N	1Hz	66 N	IHz	Unit
NUM	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
R69	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 x B1 + 20.00)	_	20.00	_	20.00	_	20.00	_	20.00	ns
R70	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 x B1 + 20.00)		20.00	—	20.00	_	20.00	—	20.00	ns
R71	$\overline{\text{RSTCONF}} \text{ pulse width} $ (MIN = 17.00 x B1)	515.20		425.00	_	340.00	—	257.60		ns
R72	—			—		—	—	—	—	—
R73	Configuration data to HRESET rising edge set up time (MIN = 15.00 x B1 + 50.00)	504.50	_	425.00	—	350.00	—	277.30	_	ns
R74	Configuration data to RSTCONF rising edge set up time (MIN = 0.00 x B1 + 350.00)	350.00	_	350.00	—	350.00	—	350.00	_	ns
R75	Configuration data hold time after RSTCONF negation (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	—	0.00	_	ns
R76	Configuration data hold time after HRESET negation (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 x B1 + 25.00)		25.00	—	25.00	_	25.00	_	25.00	ns
R78	RSTCONF negated to data out high impedance. (MAX = 0.00 x B1 + 25.00)	_	25.00	—	25.00	_	25.00	_	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance. (MAX = 0.00 x B1 + 25.00)	_	25.00	_	25.00	_	25.00	—	25.00	ns
R80	DSDI, DSCK set up (MIN = 3.00 x B1)	90.90	_	75.00		60.00	_	45.50	—	ns
R81	DSDI, DSCK hold time (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00		0.00	_	0.00	—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample (MIN = 8.00 x B1)	242.40	_	200.00	—	160.00	—	121.20	—	ns

CPM Electrical Characteristics

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	Onit
43	SDACK negation delay from clock low	_	12	ns
44	SDACK negation delay from TA low	_	20	ns
45	SDACK negation delay from clock high	_	15	ns
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7	—	ns

Table 16. IDMA Controller Timing (continued)

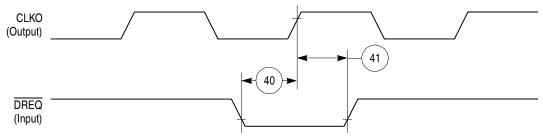


Figure 46. IDMA External Requests Timing Diagram

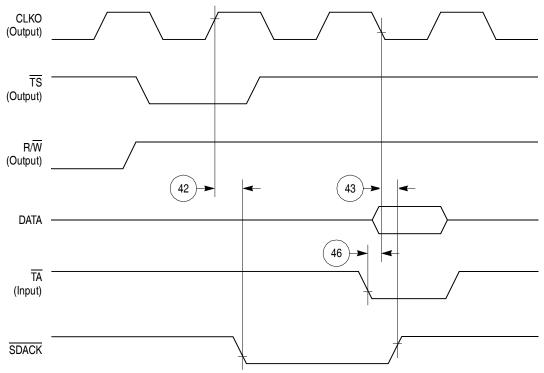
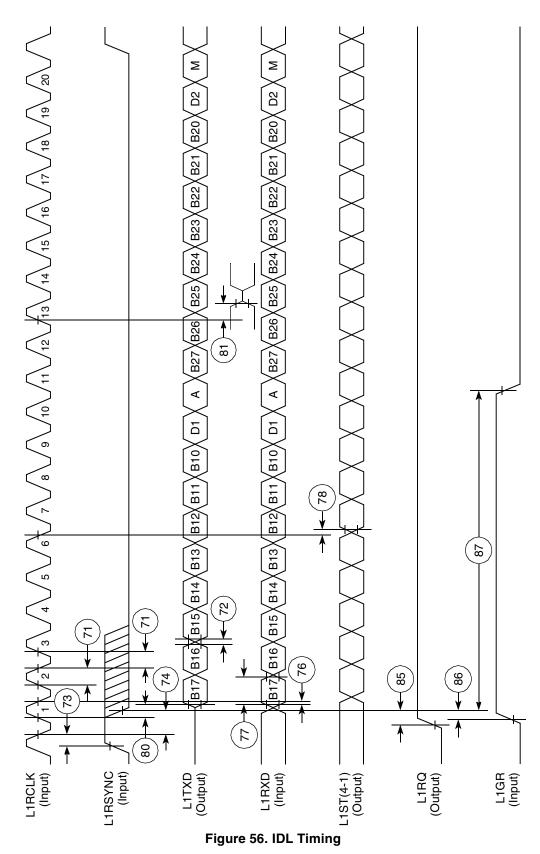



Figure 47. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

CPM Electrical Characteristics

11.7 SCC in NMSI Mode Electrical Specifications

Table 20 provides the NMSI external clock timing.

Table 20. NMSI External Clock Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	onn
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK +5	_	ns
102	RCLK1 and TCLK1 rise/fall time	—	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00	_	ns
106	RXD1 setup time to RCLK1 rising edge	5.00	_	ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	_	ns
108	CD1 setup Time to RCLK1 rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Characteristic	All Freq	Unit	
Nulli		Min	Мах	Omit
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK1 and TCLK1 rise/fall time	—	—	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	40.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns
108	CD1 setup time to RCLK1 rising edge	40.00	—	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

CPM Electrical Characteristics

Num	Characteristic	All Freq	Unit	
num	Characteristic	Min	Мах	Unit
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns
137	REJECT width low	1	_	CLK
138	CLKO1 low to SDACK asserted ²	—	20	ns
139	CLKO1 low to SDACK negated ²	_	20	ns

Table 22. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

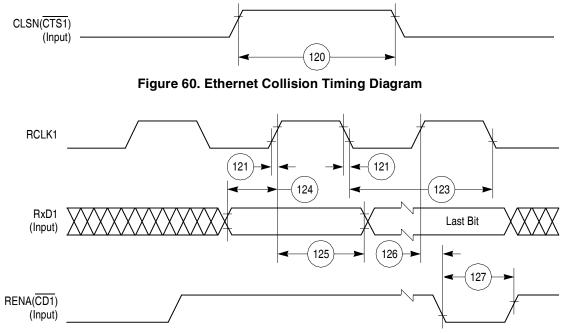


Table 35 contains a list of the MPC862 input and output signals and shows multiplexing and pin assignments.

Name	Pin Number	Туре
A[0:31]	B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15, C14, B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10, C10, A13, A10, A12, A11, A9	Bidirectional Three-state
TSIZ0 REG	В9	Bidirectional Three-state
TSIZ1	C9	Bidirectional Three-state
RD/WR	B2	Bidirectional Three-state
BURST	F1	Bidirectional Three-state
BDIP GPL_B5	D2	Output
TS	F3	Bidirectional Active Pull-up
TA	C2	Bidirectional Active Pull-up
TEA	D1	Open-drain
BI	E3	Bidirectional Active Pull-up
IRQ2 RSV	НЗ	Bidirectional Three-state
IRQ4 KR RETRY SPKROUT	К1	Bidirectional Three-state
CR IRQ3	F2	Input
D[0:31]	W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11, T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, V12, V6, W5, U6, T7	Bidirectional Three-state
DP0 IRQ3	V3	Bidirectional Three-state
DP1 IRQ4	V5	Bidirectional Three-state
DP2 IRQ5	W4	Bidirectional Three-state
DP3 IRQ6	V4	Bidirectional Three-state

Table 35. Pin Assignments

Name	Pin Number	Туре
PA2 CLK6 TOUT3 L1RCLKB	R18	Bidirectional
PA1 CLK7 BRGO4 TIN4	T19	Bidirectional
PA0 CLK8 TOUT4 L1TCLKB	U19	Bidirectional
PB31 SPISEL REJECT1	C17	Bidirectional (Optional: Open-drain)
PB30 SPICLK RSTRT2	C19	Bidirectional (Optional: Open-drain)
PB29 SPIMOSI	E16	Bidirectional (Optional: Open-drain)
PB28 SPIMISO BRGO4	D19	Bidirectional (Optional: Open-drain)
PB27 I2CSDA BRGO1	E19	Bidirectional (Optional: Open-drain)
PB26 I2CSCL BRGO2	F19	Bidirectional (Optional: Open-drain)
PB25 RXADDR3 ² SMTXD1	J16	Bidirectional (Optional: Open-drain)
PB24 TXADDR3 ² SMRXD1	J18	Bidirectional (Optional: Open-drain)
PB23 TXADDR2 ² SDACK1 SMSYN1	K17	Bidirectional (Optional: Open-drain)
PB22 TXADDR4 ² SDACK2 SMSYN2	L19	Bidirectional (Optional: Open-drain)

Table 35. Pin Assignments (continued)

Table 35. Pin Assignments	(continued)
---------------------------	-------------

Name	Pin Number	Туре
PB21 SMTXD2 L1CLKOB PHSEL1 ¹ TXADDR1 ²	К16	Bidirectional (Optional: Open-drain)
PB20 SMRXD2 L1CLKOA PHSEL0 ¹ TXADDR0 ²	L16	Bidirectional (Optional: Open-drain)
PB19 RTS1 L1ST1	N19	Bidirectional (Optional: Open-drain)
PB18 RXADDR4 ² RTS2 L1ST2	N17	Bidirectional (Optional: Open-drain)
PB17 L1RQb L1ST3 RTS3 PHREQ1 ¹ RXADDR1 ²	P18	Bidirectional (Optional: Open-drain)
PB16 L1RQa L1ST4 RTS4 PHREQ0 ¹ RXADDR0 ²	N16	Bidirectional (Optional: Open-drain)
PB15 BRGO3 TxClav	R17	Bidirectional
PB14 RXADDR2 ² RSTRT1	U18	Bidirectional
PC15 DREQ0 RTS1 L1ST1 RxClav	D16	Bidirectional
PC14 DREQ1 RTS2 L1ST2	D18	Bidirectional

Name	Pin Number	Туре
PC13 L1RQb L1ST3 RTS3	E18	Bidirectional
PC12 L1RQa L1ST4 RTS4	F18	Bidirectional
PC11 CTS1	J19	Bidirectional
PC10 CD1 TGATE1	K19	Bidirectional
PC9 CTS2	L18	Bidirectional
PC8 CD2 TGATE2	M18	Bidirectional
PC7 CTS3 L1TSYNCB SDACK2	M16	Bidirectional
PC6 CD3 L1RSYNCB	R19	Bidirectional
PC5 CTS4 L1TSYNCA SDACK1	T18	Bidirectional
PC4 CD4 L1RSYNCA	T17	Bidirectional
PD15 L1TSYNCA MII-RXD3 UTPB0	U17	Bidirectional
PD14 L1RSYNCA MII-RXD2 UTPB1	V19	Bidirectional
PD13 L1TSYNCB MII-RXD1 UTPB2	V18	Bidirectional

Table 35. Pin Assignments (continued)

Table 35. Pin Assignments	(continued)
---------------------------	-------------

Name	Pin Number	Туре
PD12 L1RSYNCB MII-MDC UTPB3	R16	Bidirectional
PD11 RXD3 MII-TXERR RXENB	T16	Bidirectional
PD10 TXD3 MII-RXD0 TXENB	W18	Bidirectional
PD9 RXD4 MII-TXD0 UTPCLK	V17	Bidirectional
PD8 TXD4 MII-MDC MII-RXCLK	W17	Bidirectional
PD7 RTS3 MII-RXERR UTPB4	T15	Bidirectional
PD6 RTS4 MII-RXDV UTPB5	V16	Bidirectional
PD5 REJECT2 MII-TXD3 UTPB6	U15	Bidirectional
PD4 REJECT3 MII-TXD2 UTPB7	U16	Bidirectional
PD3 REJECT4 MII-TXD1 SOC	W16	Bidirectional
TMS	G18	Input
TDI DSDI	H17	Input
TCK DSCK	H16	Input

Name	Pin Number	Туре
TRST	G19	Input
TDO DSDO	G17	Output
M_CRS	B7	Input
M_MDIO	H18	Bidirectional
M_TXEN	V15	Output
M_COL	H4	Input
KAPWR	R1	Power
GND	F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14	Power
VDDL	A8, M1, W8, H19, F4, F16, P4, P16	Power
VDDH	E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14	Power
N/C	D6, D13, D14, U2, V2	No-connect

Table 35. Pin Assignments (continued)

¹ Classic SAR mode only

² ESAR mode only

14.2 Mechanical Dimensions of the PBGA Package

For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to *Plastic Ball Grid Array Application Note* (order number: AN1231/D) available from your local Freescale sales office. Figure 78 shows the mechanical dimensions of the PBGA package.

Document Revision History

15 Document Revision History

Table 36 lists significant changes between revisions of this document.

Rev. No.	Date	Substantive Changes
0	2001	Initial revision
0.1	9/2001	Change extended temperature from 95 to 105
0.2	11/2001	Revised for new template, changed Table 7 B23 max value @ 66 MHz from 2 ns to 8 ns.
0.3	4/2002	 Timing modified and equations added, for Rev. A and B devices. Modified power numbers and temperature ranges. Added ESAR UTOPIA timing.
1.0	9/2002	 Specification changed to include the MPC857T and MPC857DSL. Changed maximum operating frequency from 80 MHz to 100 MHz. Removed MPC862DP, DT, and SR derivatives and part numbers. Corrected power dissipation numbers. Changed UTOPIA maximum frequency from 50 MHz to 33 MHz. Changed part number ordering information to Rev. B devices only. To maximum ratings for temperature, added frequency ranges.
1.1	5/2003	Changed SPI Master Timing Specs. 162 and 164
1.2	8/2003	 Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. Non-technical reformatting
2.0	11/2004	 Added a table footnote to Table 5 DC Electrical Specifications about meeting the VIL Max of the I2C Standard. Updated document template.
3.0	2/2006	Changed Tj from 95C to 105C in table 34

Table 36. Document Revision History