NXP USA Inc. - MPC857DSLZQ66B Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (1), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc857dslzq66b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Maximum Tolerated Ratings (continued)

(GND = 0 V)

Rating	Symbol	Value	Unit	Max Freq (MHz)
Input voltage ²	V _{in}	GND-0.3 to VDDH	V	-
Temperature ³ (standard) ⁴	T _{A(min)}	0	°C	100
	T _{j(max)}	105	°C	100
Temperature ³ (extended)	T _{A(min)}	-40	°C	80
	T _{j(max)}	115	°C	80
Storage temperature range	T _{stg}	-55 to +150	٥	-

¹ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 5. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to power-up and normal operation (that is, if the MPC862/857T/857DSL is unpowered, voltage greater

than 2.5 V must not be applied to its inputs).
 ³ Minimum temperatures are guaranteed as ambient temperature, T_A. Maximum temperatures are guaranteed as

junction temperature, T_j.

⁴ JTAG is tested only at ambient, not at standard maximum or extended maximum.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

Thermal Characteristics

4 Thermal Characteristics

Table 3 shows the thermal characteristics for the MPC862/857T/857DSL.

Rating	Enviro	Symbol	Value	Unit	
Junction to ambient ¹	Natural Convection	Single layer board (1s)	R _{0JA} ²	37	°C/W
		Four layer board (2s2p)	$R_{\theta JMA}^{3}$	23	
	Air flow (200 ft/min)	Single layer board (1s)	$R_{\theta JMA}^{3}$	30	
		Four layer board (2s2p)	$R_{\theta JMA}^{3}$	19	
Junction to board ⁴			$R_{\theta JB}$	13	
Junction to case ⁵			$R_{ extsf{ heta}JC}$	6	
Junction to package top ⁶	Natural Convection		Ψ_{JT}	2	
	Air flow (200 ft/min)		Ψ_{JT}	2	

Table 3. MPC862/857T/857DSL Thermal Resistance Data

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- ² Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- ³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction to case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5 **Power Dissipation**

Table 4 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice bus speed.

Die Revision	Frequency	Typical ¹	Maximum ²	Unit
0 (1.1 Made)	50 MHz	656	735	mW
(TT Mode)	66 MHz	TBD	TBD	mW
A.1, B.0	50 MHz	630	760	mW
(1:1 Mode)	66 MHz	890	1000	mW

Table 4. Power Dissipation (P_D)

Thermal Calculation and Measurement

Characteristic	Symbol	Min	Мах	Unit
Output Low Voltage IOL = 2.0 mA (CLKOUT) IOL = 3.2 mA ³ IOL = 5.3 mA ⁴ IOL = 7.0 mA (TXD1/PA14, TXD2/PA12) IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)	VOL	_	0.5	V

Table 5. DC Electrical Specifications (continued)

¹ $V_{IL}(max)$ for the I²C interface is 0.8 V rather than the 1.5 V as specified in the I²C standard.

² Input capacitance is periodically sampled.

 ³ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB29, BRGO4/SPIMISO/PB28, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1SYNCB/PC7, CD3/L1RSYNCB/PC6, CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB, PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3, PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].

⁴ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (VDD \times IDD) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

 T_A = ambient temperature (°C)

 $R_{\theta IA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity T_J - T_A) are possible.

7.6 References

Semiconductor Equipment and Materials International	(415) 964-5111
805 East Middlefield Rd.	
Mountain View, CA 94043	
MIL-SPEC and EIA/JESD (JEDEC) Specifications	800-854-7179 or
(Available from Global Engineering Documents)	303-397-7956
JEDEC Specifications	http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

8 Layout Practices

Each V_{CC} pin on the MPC862/857T/857DSL should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC862/857T/857DSL have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

9 Bus Signal Timing

The maximum bus speed supported by the MPC862/857T/857DSL is 66 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC862/857T/857DSL used at 80MHz must be configured for a 40 MHz bus). Table 6 shows the period ranges for standard part frequencies.

Erea	50 N	50 MHz		66 MHz		80 MHz		100 MHz	
Tieq	Min	Max	Min	Max	Min	Мах	Min	Max	
Period	20.00	30.30	15.15	30.30	25.00	30.30	20.00	30.30	

Table 6. Period Range for Standard Part Frequencies

Figure 10 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

Memory Controller and DLT3 = 1

Figure 11 through Figure 14 provide the timing for the external bus read controlled by various GPCM factors.

MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3

Bus Signal Timing

Figure 19 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Cycles Timing

Figure 20 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

MPC862/857T/857DSL PowerQUICC[™] Family Hardware Specifications, Rev. 3

Table 8 provides interrupt timing for the MPC862/857T/857DSL.Table 8. Interrupt Timing

Num	Charaotoriotia ¹	All Freq	Unit	
	Characteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (set up time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
l41	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	4xT _{CLOCKOUT}		_

¹ The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC862/857T/857DSL is able to support.

Figure 24 provides the interrupt detection timing for the external level-sensitive lines.

Figure 24. Interrupt Detection Timing for External Level Sensitive Lines

Figure 25 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 25. Interrupt Detection Timing for External Edge Sensitive Lines

Table 9 shows the PCMCIA timing for the MPC862/857T/857DSL.

Table 9. PCMCIA Timing

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Мах	Min	Max	Min	Max	Min	Max	Unit
P44	A(0:31), $\overline{\text{REG}}$ valid to PCMCIA Strobe asserted. ¹ (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
P45	A(0:31), $\overline{\text{REG}}$ valid to ALE negation. ¹ (MIN = 1.00 x B1 - 2.00)	28.30	—	23.00	—	18.00	_	13.20	—	ns
P46	CLKOUT to REG valid (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P47	CLKOUT to REG Invalid. (MIN = 0.25 x B1 + 1.00)	8.60	_	7.30	_	6.00	_	4.80	_	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted. (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated. (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P50	CLKOUT to \overrightarrow{PCOE} , \overrightarrow{IORD} , \overrightarrow{PCWE} , \overrightarrow{IOWR} assert time. (MAX = 0.00 x B1 + 11.00)	_	11.00	_	11.00	_	11.00	_	11.00	ns
P51	$\frac{\text{CLKOUT to } \overline{\text{PCOE}}, \overline{\text{IORD}}, \overline{\text{PCWE}},}{\overline{\text{IOWR}} \text{ negate time.} (MAX = 0.00 \text{ x})}$ $B1 + 11.00)$	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
P53	CLKOUT to ALE negate time (MAX = 0.25 x B1 + 8.00)	_	15.60	—	14.30	—	13.00	_	11.80	ns
P54	$\overline{\text{PCWE}}, \overline{\text{IOWR}} \text{ negated to } D(0:31)$ invalid. ¹ (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
P55	$\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ valid to CLKOUT rising edge. ¹ (MIN = 0.00 x B1 + 8.00)	8.00	—	8.00	—	8.00	_	8.00	—	ns
P56	CLKOUT rising edge to \overline{WAITA} and \overline{WAITB} invalid. ¹ (MIN = 0.00 x B1 + 2.00)	2.00	—	2.00	—	2.00	—	2.00	—	ns

¹ PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the \overline{WAITx} signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The \overline{WAITx} assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the *MPC862 PowerQUICC User s Manual*.

Figure 44. Parallel I/O Data-In/Data-Out Timing Diagram

11.2 Port C Interrupt AC Electrical Specifications

Table 15 provides the timings for port C interrupts.

Table 15. Port C Interrupt Timing

Num	Characteristic	33.34	Unit	
Num	Characteristic	Min	Мах	Unit
35	Port C interrupt pulse width low (edge-triggered mode)	55	—	ns
36	Port C interrupt minimum time between active edges	55	_	ns

Figure 45 shows the port C interrupt detection timing.

Figure 45. Port C Interrupt Detection Timing

11.3 IDMA Controller AC Electrical Specifications

Table 16 provides the IDMA controller timings as shown in Figure 46 though Figure 49.

Table 16. IDMA Controller Timing

Num	Characteristic	All Freq	Unit	
	Characteristic		Max	Onit
40	DREQ setup time to clock high	7	_	ns
41	DREQ hold time from clock high	3	_	ns
42	SDACK assertion delay from clock high	—	12	ns

MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3

Num	Characteristic		All Frequencies		
			Мах	Omt	
43	SDACK negation delay from clock low	_	12	ns	
44	SDACK negation delay from TA low	_	20	ns	
45	SDACK negation delay from clock high	_	15	ns	
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7	—	ns	

Table 16. IDMA Controller Timing (continued)

Figure 46. IDMA External Requests Timing Diagram

Figure 47. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3

11.7 SCC in NMSI Mode Electrical Specifications

Table 20 provides the NMSI external clock timing.

Table 20. NMSI External Clock Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Onit
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK +5	—	ns
102	RCLK1 and TCLK1 rise/fall time	_	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	5.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	_	ns
108	CD1 setup Time to RCLK1 rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Characteristic	All Freq	Unit	
Nulli	Characteristic	Min	Мах	Onit
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK1 and TCLK1 rise/fall time	—	_	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	40.00	_	ns
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns
108	CD1 setup time to RCLK1 rising edge	40.00		ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

CPM Electrical Characteristics

Figure 57 through Figure 59 show the NMSI timings.

Figure 64. CAM Interface REJECT Timing Diagram

MPC862/857T/857DSL PowerQUICC[™] Family Hardware Specifications, Rev. 3

11.12 I²C AC Electrical Specifications

Table 26 provides the I^2C (SCL < 100 KHz) timings.

Num	Characteristic	All Frequencies		Unit
Num	Characteristic	Min	Max	Omit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	—	μs
203	Low period of SCL	4.7	_	μs
204	High period of SCL	4.0	_	μs
205	Start condition setup time	4.7	_	μs
206	Start condition hold time	4.0	—	μs
207	Data hold time	0	—	μs
208	Data setup time	250	_	ns
209	SDL/SCL rise time	_	1	μs
210	SDL/SCL fall time	_	300	ns
211	Stop condition setup time	4.7	—	μs

SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 27 provides the I^2C (SCL > 100 kHz) timings.

Table 27. I^2C Timing (SCL > 100 kHz)

Num	Characteristic	Expression	All Freq	Unit	
Nulli	Characteristic	Expression	Min	Max	Onit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	_	1/(2.2 * fSCL)	_	S
203	Low period of SCL	—	1/(2.2 * fSCL)	_	S
204	High period of SCL	—	1/(2.2 * fSCL)	_	S
205	Start condition setup time	—	1/(2.2 * fSCL)	_	S
206	Start condition hold time	—	1/(2.2 * fSCL)	_	S
207	Data hold time	—	0	_	S
208	Data setup time	—	1/(40 * fSCL)	_	S
209	SDL/SCL rise time	_	_	1/(10 * fSCL)	S
210	SDL/SCL fall time	—	—	1/(33 * fSCL)	S
211	Stop condition setup time	—	1/2(2.2 * fSCL)	_	S

SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3

1

Device	Number Ethernet	Multi-Channel	ATM Support	Cache Size		
Device	SCCs ¹	Support HDLC Support		Instruction	Data	
MPC857T	One (SCC1)	10/100 Mbps	Yes	Yes	4 Kbytes	4 Kbytes
MPC857DSL	One (SCC1)	10/100 Mbps	No	Up to 4 addresses	4 Kbytes	4 Kbytes

Table 33. MPC862/857T/857DSL Derivatives (continued)

¹ Serial communications controller (SCC)

Table 34 identifies the packages and operating frequencies orderable for the MPC862/857T/857DSL derivative devices.

Temperature (Tj) Frequency (MHz) Package Type **Order Number** Plastic ball grid array 0°C to 105°C 50 XPC862PZP50B (ZP suffix) XPC862TZP50B XPC857TZP50B XPC857DSLZP50B 66 XPC862PZP66B XPC862TZP66B XPC857TZP66B XPC857DSLZP66B 80 XPC862PZP80B XPC862TZP80B XPC857TZP80B 100 XPC862PZP100B XPC862TZP100B XPC857TZP100B Plastic ball grid array -40°C to 115°C 66 ¹ XPC862PCZP66B (CZP suffix) XPC857TCZP66B

Table 34. MPC862/857T/857DSL Package/Frequency Orderable

Additional extended temperature devices can be made available at 50MHz, 66MHz, and 80MHz

14.1 Pin Assignments

Figure 77 shows the top view pinout of the PBGA package. For additional information, see the *MPC862 PowerQUICC Family User s Manual*.

Name	Pin Number	Туре
BR	G4	Bidirectional
BG	E2	Bidirectional
BB	E1	Bidirectional Active Pull-up
FRZ IRQ6	G3	Bidirectional
IRQ0	V14	Input
IRQ1	U14	Input
M_TX_CLK IRQ7	W15	Input
<u>CS</u> [0:5]	C3, A2, D4, E4, A4, B4	Output
CS6 CE1_B	D5	Output
CS7 CE2_B	C4	Output
WE0 BS_B0 IORD	C7	Output
WE1 BS_B1 IOWR	A6	Output
WE2 BS_B2 PCOE	B6	Output
WE3 BS_B3 PCWE	A5	Output
BS_A[0:3]	D8, C8, A7, B8	Output
GPL_A0 GPL_B0	D7	Output
OE GPL_A1 GPL_B1	C6	Output
GPL_A[2:3] GPL_B[2:3] CS[2-3]	B5, C5	Output
UPWAITA GPL_A4	C1	Bidirectional
UPWAITB GPL_B4	B1	Bidirectional

Name	Pin Number	Туре
GPL_A5	D3	Output
PORESET	R2	Input
RSTCONF	Р3	Input
HRESET	N4	Open-drain
SRESET	P2	Open-drain
XTAL	P1	Analog Output
EXTAL	N1	Analog Input (3.3 V only)
XFC	Т2	Analog Input
CLKOUT	W3	Output
EXTCLK	N2	Input (3.3 V only)
TEXP	N3	Output
ALE_A MII-TXD1	К2	Output
CE1_A MII-TXD2	B3	Output
CE2_A MII-TXD3	A3	Output
WAIT_A SOC_Split ²	R3	Input
WAIT_B	R4	Input
IP_A0 UTPB_Split0 ² MII-RXD3	Т5	Input
IP_A1 UTPB_Split1 ² MII-RXD2	Т4	Input
IP_A2 IOIS16_A UTPB_Split2 ² MII-RXD1	U3	Input
IP_A3 UTPB_Split3 ² MII-RXD0	W2	Input
IP_A4 UTPB_Split4 ² MII-RXCLK	U4	Input
IP_A5 UTPB_Split5 ² MII-RXERR	U5	Input

MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3

Name	Pin Number	Туре
PA15 RXD1 RXD4	C18	Bidirectional
PA14 TXD1 TXD4	D17	Bidirectional (Optional: Open-drain)
PA13 RXD2	E17	Bidirectional
PA12 TXD2	F17	Bidirectional (Optional: Open-drain)
PA11 L1TXDB RXD3	G16	Bidirectional (Optional: Open-drain)
PA10 L1RXDB TXD3	J17	Bidirectional (Optional: Open-drain)
PA9 L1TXDA	K18	Bidirectional (Optional: Open-drain)
RXD4		
PA8 L1RXDA TXD4	L17	Bidirectional (Optional: Open-drain)
PA7 CLK1 L1RCLKA BRGO1 TIN1	M19	Bidirectional
PA6 CLK2 TOUT1	M17	Bidirectional
PA5 CLK3 L1TCLKA BRGO2 TIN2	N18	Bidirectional
PA4 CLK4 TOUT2	P19	Bidirectional
PA3 CLK5 BRGO3 TIN3	P17	Bidirectional

Name	Pin Number	Туре
PA2 CLK6 TOUT3 L1RCLKB	R18	Bidirectional
PA1 CLK7 BRGO4 TIN4	T19	Bidirectional
PA0 CLK8 TOUT4 L1TCLKB	U19	Bidirectional
PB31 SPISEL REJECT1	C17	Bidirectional (Optional: Open-drain)
PB30 SPICLK RSTRT2	C19	Bidirectional (Optional: Open-drain)
PB29 SPIMOSI	E16	Bidirectional (Optional: Open-drain)
PB28 SPIMISO BRGO4	D19	Bidirectional (Optional: Open-drain)
PB27 I2CSDA BRGO1	E19	Bidirectional (Optional: Open-drain)
PB26 I2CSCL BRGO2	F19	Bidirectional (Optional: Open-drain)
PB25 RXADDR3 ² SMTXD1	J16	Bidirectional (Optional: Open-drain)
PB24 TXADDR3 ² SMRXD1	J18	Bidirectional (Optional: Open-drain)
PB23 TXADDR2 ² SDACK1 SMSYN1	K17	Bidirectional (Optional: Open-drain)
PB22 TXADDR4 ² SDACK2 SMSYN2	L19	Bidirectional (Optional: Open-drain)

Name	Pin Number	Туре
PC13 L1RQb L1ST3 RTS3	E18	Bidirectional
PC12 L1RQa L1ST4 RTS4	F18	Bidirectional
PC11 CTS1	J19	Bidirectional
PC10 CD1 TGATE1	K19	Bidirectional
PC9 CTS2	L18	Bidirectional
PC8 CD2 TGATE2	M18	Bidirectional
PC7 CTS3 L1TSYNCB SDACK2	M16	Bidirectional
PC6 CD3 L1RSYNCB	R19	Bidirectional
PC5 CTS4 L1TSYNCA SDACK1	T18	Bidirectional
PC4 CD4 L1RSYNCA	T17	Bidirectional
PD15 L1TSYNCA MII-RXD3 UTPB0	U17	Bidirectional
PD14 L1RSYNCA MII-RXD2 UTPB1	V19	Bidirectional
PD13 L1TSYNCB MII-RXD1 UTPB2	V18	Bidirectional