



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

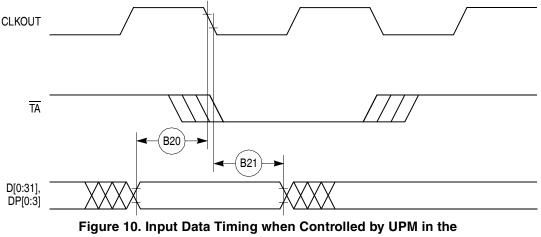
#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                             |
|---------------------------------|----------------------------------------------------------------------|
| Core Processor                  | MPC8xx                                                               |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                       |
| Speed                           | 50MHz                                                                |
| Co-Processors/DSP               | Communications; CPM                                                  |
| RAM Controllers                 | DRAM                                                                 |
| Graphics Acceleration           | No                                                                   |
| Display & Interface Controllers | -                                                                    |
| Ethernet                        | 10Mbps (1), 10/100Mbps (1)                                           |
| SATA                            | -                                                                    |
| USB                             | -                                                                    |
| Voltage - I/O                   | 3.3V                                                                 |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                     |
| Security Features               | -                                                                    |
| Package / Case                  | 357-BBGA                                                             |
| Supplier Device Package         | 357-PBGA (25x25)                                                     |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc857tvr50b |
|                                 |                                                                      |

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



|      |                                                                                                                                                                           | 33    | MHz   | 40 1  | MHz   | 50 I  | MHz   | 66 I  | MHz   |      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Num  | Characteristic                                                                                                                                                            | Min   | Max   | Min   | Max   | Min   | Max   | Min   | Max   | Unit |
| B27  | A(0:31) and BADDR(28:30) to $\overline{CS}$<br>asserted GPCM ACS = 10, TRLX = 1<br>(MIN = 1.25 x B1 - 2.00)                                                               | 35.90 |       | 29.30 | _     | 23.00 |       | 16.90 |       | ns   |
| B27a | A(0:31) and BADDR(28:30) to $\overline{CS}$<br>asserted GPCM ACS = 11, TRLX = 1<br>(MIN = 1.50 x B1 - 2.00)                                                               | 43.50 | _     | 35.50 | _     | 28.00 | —     | 20.70 |       | ns   |
| B28  | CLKOUT rising edge to $\overline{WE}(0:3)$<br>negated GPCM write access CSNT<br>= 0 (MAX = 0.00 x B1 + 9.00)                                                              | —     | 9.00  | —     | 9.00  | —     | 9.00  | —     | 9.00  | ns   |
| B28a | CLKOUT falling edge to $\overline{WE}(0:3)$<br>negated GPCM write access<br>TRLX = 0, 1, CSNT = 1, EBDF = 0<br>(MAX = 0.25 x B1 + 6.80)                                   | 7.60  | 14.30 | 6.30  | 13.00 | 5.00  | 11.80 | 3.80  | 10.50 | ns   |
| B28b | CLKOUT falling edge to $\overline{CS}$ negated<br>GPCM write access TRLX = 0,1,<br>CSNT = 1 ACS = 10 or ACS = 11,<br>EBDF = 0 (MAX = 0.25 x B1 + 6.80)                    | _     | 14.30 | _     | 13.00 | _     | 11.80 | _     | 10.50 | ns   |
| B28c | CLKOUT falling edge to $\overline{WE}(0:3)$<br>negated GPCM write access<br>TRLX = 0, CSNT = 1 write access<br>TRLX = 0,1, CSNT = 1, EBDF = 1<br>(MAX = 0.375 x B1 + 6.6) | 10.90 | 18.00 | 10.90 | 18.00 | 7.00  | 14.30 | 5.20  | 12.30 | ns   |
| B28d | CLKOUT falling edge to $\overline{CS}$ negated<br>GPCM write access TRLX = 0,1,<br>CSNT = 1, ACS = 10, or ACS = 11,<br>EBDF = 1 (MAX = 0.375 x B1 + 6.6)                  | _     | 18.00 | _     | 18.00 | _     | 14.30 | _     | 12.30 | ns   |
| B29  | WE(0:3) negated to D(0:31), DP(0:3)<br>High-Z GPCM write access, CSNT<br>= 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00)                                                           | 5.60  | _     | 4.30  | _     | 3.00  | —     | 1.80  |       | ns   |
| B29a | $\overline{\text{WE}}(0:3)$ negated to D(0:31), DP(0:3)<br>High-Z GPCM write access, TRLX = 0,<br>CSNT = 1, EBDF = 0 (MIN = 0.50 x B1<br>- 2.00)                          | 13.20 | _     | 10.50 | _     | 8.00  | _     | 5.60  | _     | ns   |
| B29b | $\overline{\text{CS}}$ negated to D(0:31), DP(0:3), High<br>Z GPCM write access, ACS = 00,<br>TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x<br>B1 - 2.00)                           | 5.60  | _     | 4.30  | _     | 3.00  | _     | 1.80  | _     | ns   |
| B29c | $\overline{\text{CS}}$ negated to D(0:31), DP(0:3)<br>High-Z GPCM write access, TRLX = 0,<br>CSNT = 1, ACS = 10, or ACS = 11<br>EBDF = 0 (MIN = 0.50 x B1 - 2.00)         | 13.20 |       | 10.50 |       | 8.00  |       | 5.60  |       | ns   |

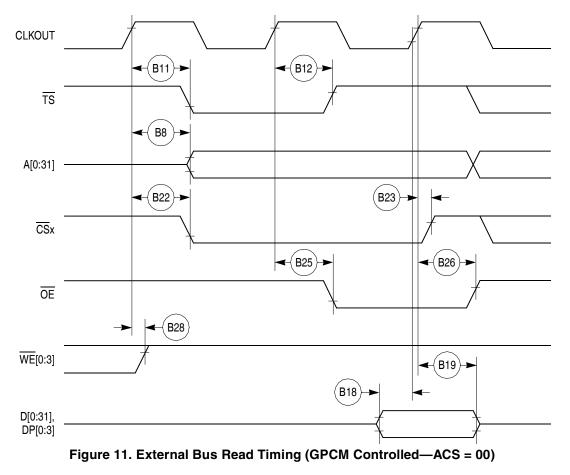



Figure 10 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)



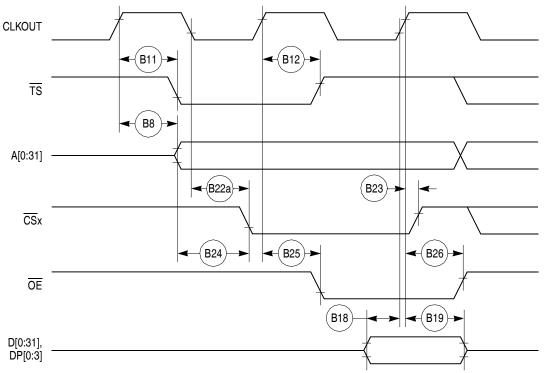

Memory Controller and DLT3 = 1

Figure 11 through Figure 14 provide the timing for the external bus read controlled by various GPCM factors.





**Bus Signal Timing** 





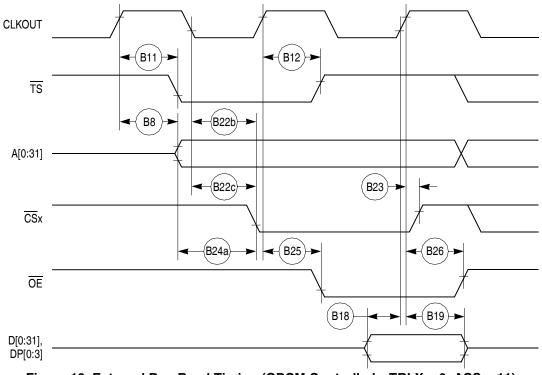



Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)



**Bus Signal Timing** 

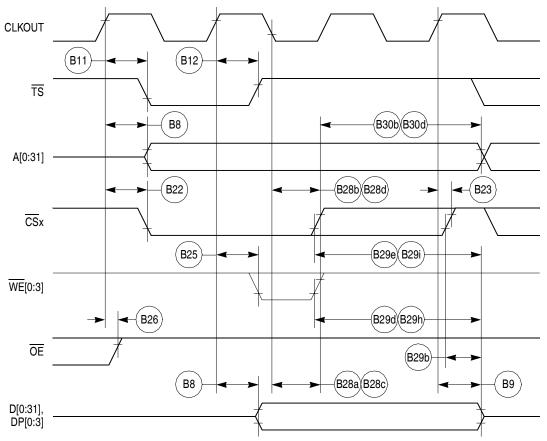



Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0,1, CSNT = 1)



Table 9 shows the PCMCIA timing for the MPC862/857T/857DSL.

#### Table 9. PCMCIA Timing

| Nissaa | Characteristic                                                                                                                                               | 33 MHz |       | 40 MHz |       | 50 MHz |       | 66 MHz |       | Unit |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|-------|--------|-------|--------|-------|------|
| Num    | Characteristic                                                                                                                                               | Min    | Мах   | Min    | Max   | Min    | Max   | Min    | Max   | Unit |
| P44    | A(0:31), $\overline{\text{REG}}$ valid to PCMCIA<br>Strobe asserted. <sup>1</sup> (MIN = 0.75 x<br>B1 - 2.00)                                                | 20.70  | _     | 16.70  |       | 13.00  |       | 9.40   |       | ns   |
| P45    | A(0:31), $\overline{\text{REG}}$ valid to ALE<br>negation. <sup>1</sup> (MIN = 1.00 x B1 -<br>2.00)                                                          | 28.30  | —     | 23.00  | _     | 18.00  | —     | 13.20  | _     | ns   |
| P46    | CLKOUT to REG valid (MAX = 0.25 x B1 + 8.00)                                                                                                                 | 7.60   | 15.60 | 6.30   | 14.30 | 5.00   | 13.00 | 3.80   | 11.80 | ns   |
| P47    | CLKOUT to REG Invalid. (MIN = 0.25 x B1 + 1.00)                                                                                                              | 8.60   | _     | 7.30   | _     | 6.00   | _     | 4.80   | _     | ns   |
| P48    | CLKOUT to $\overline{CE1}$ , $\overline{CE2}$ asserted.<br>(MAX = 0.25 x B1 + 8.00)                                                                          | 7.60   | 15.60 | 6.30   | 14.30 | 5.00   | 13.00 | 3.80   | 11.80 | ns   |
| P49    | CLKOUT to CE1, CE2 negated.<br>(MAX = 0.25 x B1 + 8.00)                                                                                                      | 7.60   | 15.60 | 6.30   | 14.30 | 5.00   | 13.00 | 3.80   | 11.80 | ns   |
| P50    | $\frac{\text{CLKOUT to PCOE, IORD, PCWE,}}{\text{IOWR assert time. (MAX = 0.00 x}}$ B1 + 11.00)                                                              | _      | 11.00 | _      | 11.00 | _      | 11.00 | —      | 11.00 | ns   |
| P51    | CLKOUT to $\overrightarrow{PCOE}$ , $\overrightarrow{IORD}$ , $\overrightarrow{PCWE}$ ,<br>$\overrightarrow{IOWR}$ negate time. (MAX = 0.00 x<br>B1 + 11.00) | 2.00   | 11.00 | 2.00   | 11.00 | 2.00   | 11.00 | 2.00   | 11.00 | ns   |
| P52    | CLKOUT to ALE assert time<br>(MAX = 0.25 x B1 + 6.30)                                                                                                        | 7.60   | 13.80 | 6.30   | 12.50 | 5.00   | 11.30 | 3.80   | 10.00 | ns   |
| P53    | CLKOUT to ALE negate time<br>(MAX = 0.25 x B1 + 8.00)                                                                                                        | —      | 15.60 | —      | 14.30 | —      | 13.00 | —      | 11.80 | ns   |
| P54    | $\overline{\text{PCWE}}, \overline{\text{IOWR}} \text{ negated to } D(0:31)$ invalid. <sup>1</sup> (MIN = 0.25 x B1 - 2.00)                                  | 5.60   | _     | 4.30   | _     | 3.00   | _     | 1.80   | _     | ns   |
| P55    | WAITA and WAITB valid to<br>CLKOUT rising edge. <sup>1</sup> (MIN = $0.00 \times B1 + 8.00$ )                                                                | 8.00   | —     | 8.00   | _     | 8.00   | —     | 8.00   | _     | ns   |
| P56    | CLKOUT rising edge to $\overline{WAITA}$<br>and $\overline{WAITB}$ invalid. <sup>1</sup> (MIN = 0.00 x<br>B1 + 2.00)                                         | 2.00   | —     | 2.00   | —     | 2.00   | —     | 2.00   | —     | ns   |

<sup>1</sup> PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the  $\overline{WAITx}$  signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The  $\overline{WAITx}$  assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the *MPC862 PowerQUICC User s Manual*.



Table 11 shows the debug port timing for the MPC862/857T/857DSL.

| Num   | Characteristic              | All Freq                     | Unit  |      |
|-------|-----------------------------|------------------------------|-------|------|
| Nulli | Characteristic              | Min                          | Мах   | Unit |
| D61   | DSCK cycle time             | 3 x T <sub>CLOCKOUT</sub>    |       | -    |
| D62   | DSCK clock pulse width      | 1.25 x T <sub>CLOCKOUT</sub> |       | -    |
| D63   | DSCK rise and fall times    | 0.00                         | 3.00  | ns   |
| D64   | DSDI input data setup time  | 8.00                         |       | ns   |
| D65   | DSDI data hold time         | 5.00                         |       | ns   |
| D66   | DSCK low to DSDO data valid | 0.00                         | 15.00 | ns   |
| D67   | DSCK low to DSDO invalid    | 0.00                         | 2.00  | ns   |

#### Table 11. Debug Port Timing

Figure 31 provides the input timing for the debug port clock.

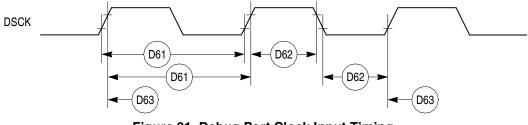



Figure 31. Debug Port Clock Input Timing

Figure 32 provides the timing for the debug port.

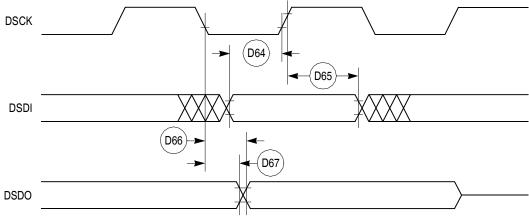
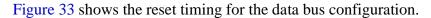



Figure 32. Debug Port Timings




**Bus Signal Timing** 

## Table 12 shows the reset timing for the MPC862/857T/857DSL.

Table 12. Reset Timing

| Num | Characteristic                                                                                                                                   | 33 N   | IHz   | 40 MHz |       | 50 N   | 1Hz   | 66 N   | IHz   | Unit |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|-------|--------|-------|--------|-------|------|
| NUM |                                                                                                                                                  |        | Max   | Min    | Мах   | Min    | Max   | Min    | Max   | Unit |
| R69 | CLKOUT to $\overline{\text{HRESET}}$ high impedance<br>(MAX = 0.00 x B1 + 20.00)                                                                 | _      | 20.00 | _      | 20.00 | _      | 20.00 | _      | 20.00 | ns   |
| R70 | CLKOUT to $\overline{\text{SRESET}}$ high impedance<br>(MAX = 0.00 x B1 + 20.00)                                                                 |        | 20.00 | —      | 20.00 | _      | 20.00 | —      | 20.00 | ns   |
| R71 | $\overline{\text{RSTCONF}} \text{ pulse width} $ (MIN = 17.00 x B1)                                                                              | 515.20 |       | 425.00 | _     | 340.00 | —     | 257.60 |       | ns   |
| R72 | —                                                                                                                                                |        |       | —      |       | —      | —     | —      | —     | —    |
| R73 | Configuration data to HRESET rising<br>edge set up time<br>(MIN = 15.00 x B1 + 50.00)                                                            | 504.50 | _     | 425.00 | —     | 350.00 | —     | 277.30 | _     | ns   |
| R74 | Configuration data to RSTCONF rising<br>edge set up time<br>(MIN = 0.00 x B1 + 350.00)                                                           | 350.00 | _     | 350.00 | —     | 350.00 | —     | 350.00 | _     | ns   |
| R75 | Configuration data hold time after<br>RSTCONF negation<br>(MIN = 0.00 x B1 + 0.00)                                                               | 0.00   | _     | 0.00   | _     | 0.00   | —     | 0.00   | _     | ns   |
| R76 | Configuration data hold time after<br>HRESET negation<br>(MIN = 0.00 x B1 + 0.00)                                                                | 0.00   | _     | 0.00   | _     | 0.00   | _     | 0.00   | _     | ns   |
| R77 | HRESET and RSTCONF asserted to data out drive (MAX = 0.00 x B1 + 25.00)                                                                          |        | 25.00 | —      | 25.00 | _      | 25.00 | _      | 25.00 | ns   |
| R78 | RSTCONF negated to data out high impedance. (MAX = 0.00 x B1 + 25.00)                                                                            | _      | 25.00 | —      | 25.00 | _      | 25.00 | _      | 25.00 | ns   |
| R79 | CLKOUT of last rising edge before chip<br>three-states $\overrightarrow{\text{HRESET}}$ to data out high<br>impedance. (MAX = 0.00 x B1 + 25.00) | _      | 25.00 | _      | 25.00 | _      | 25.00 | —      | 25.00 | ns   |
| R80 | DSDI, DSCK set up (MIN = 3.00 x B1)                                                                                                              | 90.90  | _     | 75.00  |       | 60.00  | _     | 45.50  | —     | ns   |
| R81 | DSDI, DSCK hold time<br>(MIN = 0.00 x B1 + 0.00)                                                                                                 | 0.00   | _     | 0.00   |       | 0.00   | _     | 0.00   | —     | ns   |
| R82 | SRESET negated to CLKOUT rising<br>edge for DSDI and DSCK sample<br>(MIN = 8.00 x B1)                                                            | 242.40 | —     | 200.00 | —     | 160.00 | —     | 121.20 | —     | ns   |





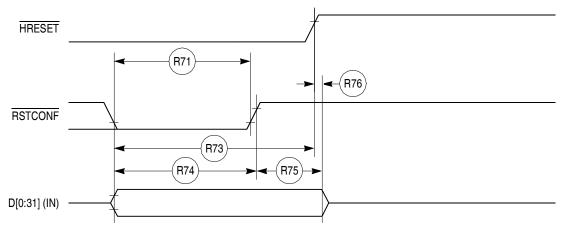



Figure 33. Reset Timing—Configuration from Data Bus

Figure 34 provides the reset timing for the data bus weak drive during configuration.

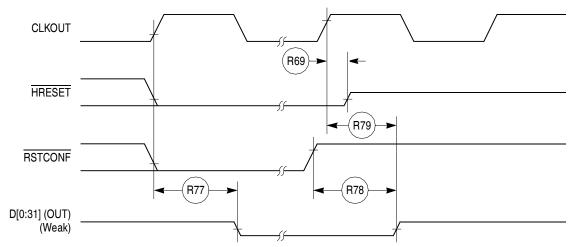



Figure 34. Reset Timing—Data Bus Weak Drive during Configuration



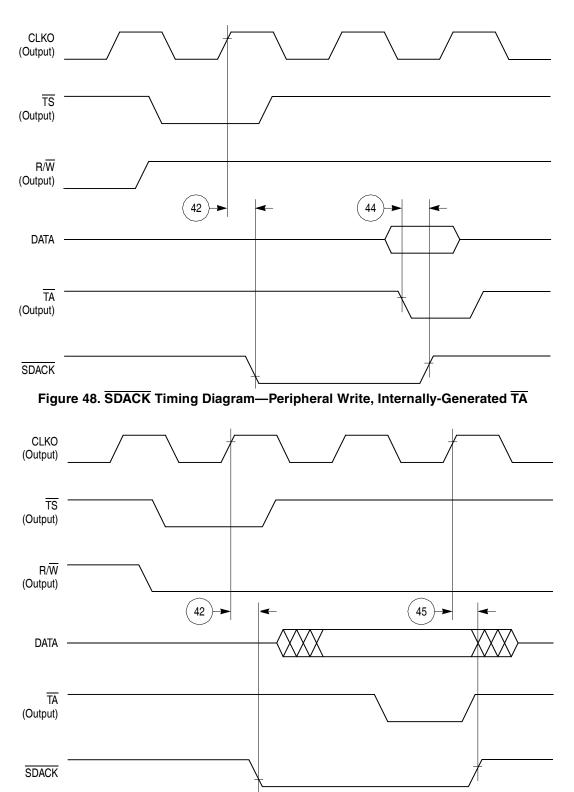



Figure 49. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA



| Num | Characteristic                                                      | All Freq | Unit  |            |
|-----|---------------------------------------------------------------------|----------|-------|------------|
|     | Characteristic                                                      | Min      | Max   |            |
| 83a | L1RCLK, L1TCLK width high $(DSC = 1)^3$                             | P + 10   | _     | ns         |
| 84  | L1CLK edge to L1CLKO valid (DSC = 1)                                | _        | 30.00 | ns         |
| 85  | L1RQ valid before falling edge of L1TSYNC <sup>4</sup>              | 1.00     | _     | L1TCL<br>K |
| 86  | L1GR setup time <sup>2</sup>                                        | 42.00    | _     | ns         |
| 87  | L1GR hold time                                                      | 42.00    | _     | ns         |
| 88  | L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0) | _        | 0.00  | ns         |

#### Table 19. SI Timing (continued)

<sup>1</sup> The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

<sup>2</sup> These specs are valid for IDL mode only.

<sup>3</sup> Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

<sup>4</sup> These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.

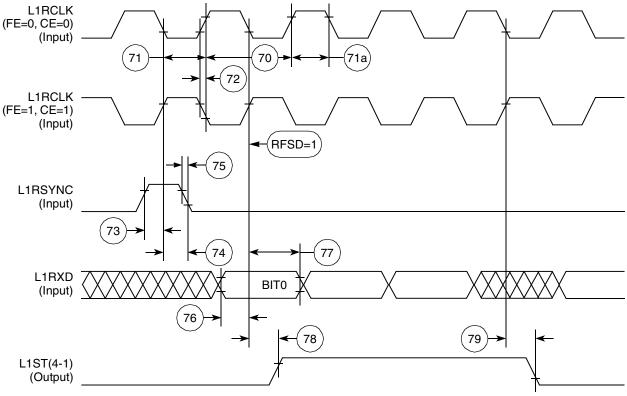
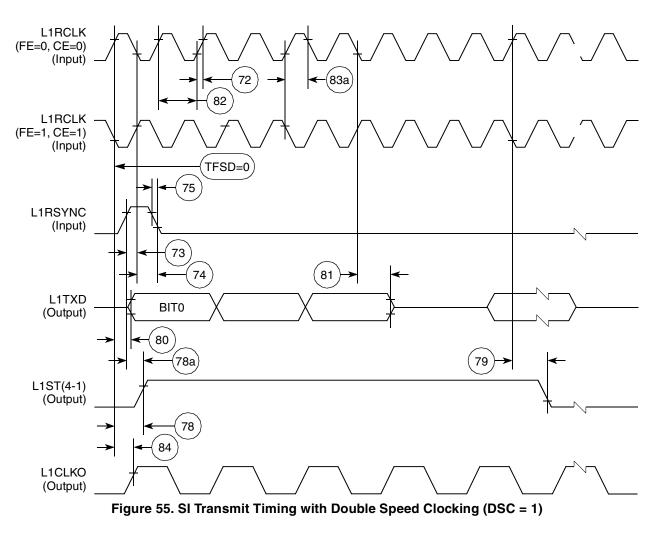
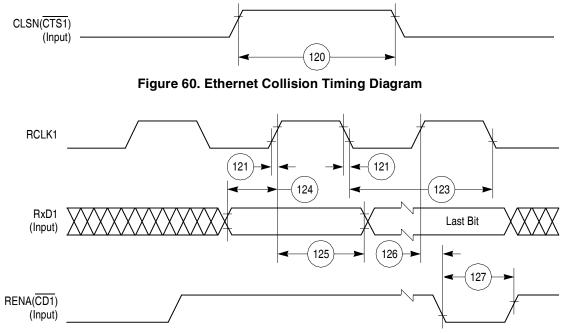




Figure 52. SI Receive Timing Diagram with Normal Clocking (DSC = 0)








| Num | Characteristic                                 |     | All Frequencies |      |  |
|-----|------------------------------------------------|-----|-----------------|------|--|
| num | Characteristic                                 | Min | Мах             | Unit |  |
| 134 | TENA inactive delay (from TCLK1 rising edge)   | 10  | 50              | ns   |  |
| 135 | RSTRT active delay (from TCLK1 falling edge)   | 10  | 50              | ns   |  |
| 136 | RSTRT inactive delay (from TCLK1 falling edge) | 10  | 50              | ns   |  |
| 137 | REJECT width low                               | 1   | _               | CLK  |  |
| 138 | CLKO1 low to SDACK asserted <sup>2</sup>       | —   | 20              | ns   |  |
| 139 | CLKO1 low to SDACK negated <sup>2</sup>        | _   | 20              | ns   |  |

#### Table 22. Ethernet Timing (continued)

<sup>1</sup> The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.

<sup>2</sup> SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.







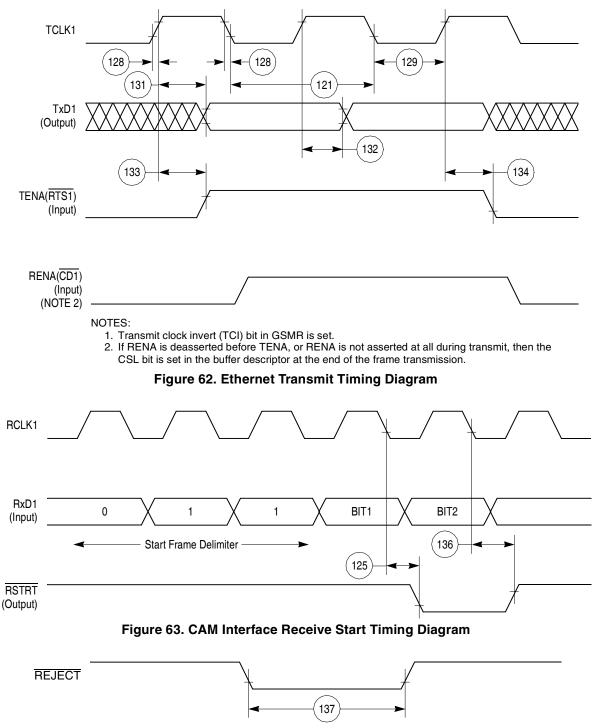



Figure 64. CAM Interface REJECT Timing Diagram



# 11.12 I<sup>2</sup>C AC Electrical Specifications

Table 26 provides the  $I^2C$  (SCL < 100 KHz) timings.

| Table 26. | I <sup>2</sup> C | Timing | (SCL < | 100 KHz) |
|-----------|------------------|--------|--------|----------|
|-----------|------------------|--------|--------|----------|

| Num | Characteristic                            | All Freq | uencies | Unit |
|-----|-------------------------------------------|----------|---------|------|
| Num | Characteristic                            | Min      | Мах     | Unit |
| 200 | SCL clock frequency (slave)               | 0        | 100     | kHz  |
| 200 | SCL clock frequency (master) <sup>1</sup> | 1.5      | 100     | kHz  |
| 202 | Bus free time between transmissions       | 4.7      | —       | μs   |
| 203 | Low period of SCL                         | 4.7      | —       | μs   |
| 204 | High period of SCL                        | 4.0      | —       | μs   |
| 205 | Start condition setup time                | 4.7      | —       | μs   |
| 206 | Start condition hold time                 | 4.0      | —       | μs   |
| 207 | Data hold time                            | 0        | —       | μs   |
| 208 | Data setup time                           | 250      | —       | ns   |
| 209 | SDL/SCL rise time                         | —        | 1       | μs   |
| 210 | SDL/SCL fall time                         | —        | 300     | ns   |
| 211 | Stop condition setup time                 | 4.7      | —       | μs   |

SCL frequency is given by SCL = BRGCLK\_frequency / ((BRG register + 3) \* pre\_scaler \* 2). The ratio SyncClk/(BRGCLK/pre\_scaler) must be greater or equal to 4/1.

## Table 27 provides the $I^2C$ (SCL > 100 kHz) timings.

Table 27.  $I^2C$  Timing (SCL > 100 kHz)

| Num | Characteristic                            | Expression | All Freq        | Unit          |      |
|-----|-------------------------------------------|------------|-----------------|---------------|------|
| Num | Characteristic                            | Lyression  | Min             | Мах           | Onit |
| 200 | SCL clock frequency (slave)               | fSCL       | 0               | BRGCLK/48     | Hz   |
| 200 | SCL clock frequency (master) <sup>1</sup> | fSCL       | BRGCLK/16512    | BRGCLK/48     | Hz   |
| 202 | Bus free time between transmissions       | —          | 1/(2.2 * fSCL)  | _             | S    |
| 203 | Low period of SCL                         | —          | 1/(2.2 * fSCL)  | _             | S    |
| 204 | High period of SCL                        | —          | 1/(2.2 * fSCL)  | _             | S    |
| 205 | Start condition setup time                | —          | 1/(2.2 * fSCL)  | _             | S    |
| 206 | Start condition hold time                 | —          | 1/(2.2 * fSCL)  | _             | S    |
| 207 | Data hold time                            | —          | 0               | _             | S    |
| 208 | Data setup time                           | —          | 1/(40 * fSCL)   | _             | S    |
| 209 | SDL/SCL rise time                         | —          | —               | 1/(10 * fSCL) | s    |
| 210 | SDL/SCL fall time                         | —          | —               | 1/(33 * fSCL) | S    |
| 211 | Stop condition setup time                 | —          | 1/2(2.2 * fSCL) | _             | S    |

SCL frequency is given by SCL = BrgClk\_frequency / ((BRG register + 3) \* pre\_scaler \* 2). The ratio SyncClk/(Brg\_Clk/pre\_scaler) must be greater or equal to 4/1.

#### MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3

1



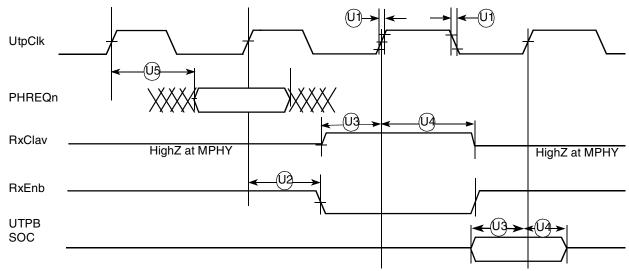



Figure 71 shows signal timings during UTOPIA receive operations.



Figure 72 shows signal timings during UTOPIA transmit operations.

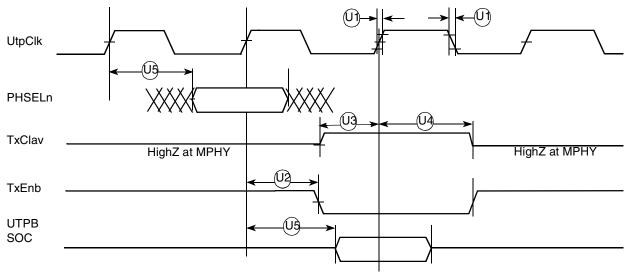



Figure 72. UTOPIA Transmit Timing

# **13 FEC Electrical Characteristics**

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Furthermore, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.



# 13.1 MII Receive Signal Timing (MII\_RXD[3:0], MII\_RX\_DV, MII\_RX\_ER, MII\_RX\_CLK)

The receiver functions correctly up to a MII\_RX\_CLK maximum frequency of 25MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII\_RX\_CLK frequency - 1%.

Table 29 provides information on the MII receive signal timing.

| Num | Characteristic                                         | Min | Мах | Unit              |
|-----|--------------------------------------------------------|-----|-----|-------------------|
| M1  | MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup | 5   | _   | ns                |
| M2  | MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  | 5   | _   | ns                |
| М3  | MII_RX_CLK pulse width high                            | 35% | 65% | MII_RX_CLK period |
| M4  | MII_RX_CLK pulse width low                             | 35% | 65% | MII_RX_CLK period |

### Table 29. MII Receive Signal Timing

Figure 73 shows MII receive signal timing.

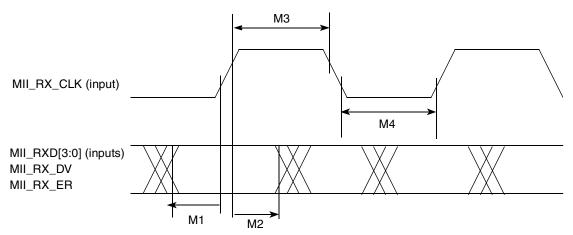



Figure 73. MII Receive Signal Timing Diagram

# 13.2 MII Transmit Signal Timing (MII\_TXD[3:0], MII\_TX\_EN, MII\_TX\_ER, MII\_TX\_CLK)

The transmitter functions correctly up to a MII\_TX\_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII\_TX\_CLK frequency - 1%.

Table 30 provides information on the MII transmit signal timing.

Table 30. MII Transmit Signal Timing

| Num | Characteristic                                           | Min | Мах | Unit |
|-----|----------------------------------------------------------|-----|-----|------|
| M5  | MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid | 5   | _   | ns   |
| M6  | MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid   | _   | 25  |      |



| Name                                    | Pin Number | Туре                                    |
|-----------------------------------------|------------|-----------------------------------------|
| PA15<br>RXD1<br>RXD4                    | C18        | Bidirectional                           |
| PA14<br>TXD1<br>TXD4                    | D17        | Bidirectional<br>(Optional: Open-drain) |
| PA13<br>RXD2                            | E17        | Bidirectional                           |
| PA12<br>TXD2                            | F17        | Bidirectional<br>(Optional: Open-drain) |
| PA11<br>L1TXDB<br>RXD3                  | G16        | Bidirectional<br>(Optional: Open-drain) |
| PA10<br>L1RXDB<br>TXD3                  | J17        | Bidirectional<br>(Optional: Open-drain) |
| PA9<br>L1TXDA                           | К18        | Bidirectional<br>(Optional: Open-drain) |
| RXD4                                    |            |                                         |
| PA8<br>L1RXDA<br>TXD4                   | L17        | Bidirectional<br>(Optional: Open-drain) |
| PA7<br>CLK1<br>L1RCLKA<br>BRGO1<br>TIN1 | M19        | Bidirectional                           |
| PA6<br>CLK2<br>TOUT1                    | M17        | Bidirectional                           |
| PA5<br>CLK3<br>L1TCLKA<br>BRGO2<br>TIN2 | N18        | Bidirectional                           |
| PA4<br>CLK4<br>TOUT2                    | P19        | Bidirectional                           |
| PA3<br>CLK5<br>BRGO3<br>TIN3            | P17        | Bidirectional                           |

## Table 35. Pin Assignments (continued)



| Table 35. Pin Assignments | (continued) |
|---------------------------|-------------|
|---------------------------|-------------|

| Name                                                                          | Pin Number | Туре                                    |
|-------------------------------------------------------------------------------|------------|-----------------------------------------|
| PB21<br>SMTXD2<br>L1CLKOB<br>PHSEL1 <sup>1</sup><br>TXADDR1 <sup>2</sup>      | К16        | Bidirectional<br>(Optional: Open-drain) |
| PB20<br>SMRXD2<br>L1CLKOA<br>PHSEL0 <sup>1</sup><br>TXADDR0 <sup>2</sup>      | L16        | Bidirectional<br>(Optional: Open-drain) |
| PB19<br>RTS1<br>L1ST1                                                         | N19        | Bidirectional<br>(Optional: Open-drain) |
| PB18<br>RXADDR4 <sup>2</sup><br>RTS2<br>L1ST2                                 | N17        | Bidirectional<br>(Optional: Open-drain) |
| PB17<br>L1RQb<br>L1ST3<br>RTS3<br>PHREQ1 <sup>1</sup><br>RXADDR1 <sup>2</sup> | P18        | Bidirectional<br>(Optional: Open-drain) |
| PB16<br>L1RQa<br>L1ST4<br>RTS4<br>PHREQ0 <sup>1</sup><br>RXADDR0 <sup>2</sup> | N16        | Bidirectional<br>(Optional: Open-drain) |
| PB15<br>BRGO3<br>TxClav                                                       | R17        | Bidirectional                           |
| PB14<br>RXADDR2 <sup>2</sup><br>RSTRT1                                        | U18        | Bidirectional                           |
| PC15<br>DREQ0<br>RTS1<br>L1ST1<br>RxClav                                      | D16        | Bidirectional                           |
| PC14<br>DREQ1<br>RTS2<br>L1ST2                                                | D18        | Bidirectional                           |

| Name        | Pin Number                                                                                                                                                                                                                                                                                                                                                                      | Туре          |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| TRST        | G19                                                                                                                                                                                                                                                                                                                                                                             | Input         |
| TDO<br>DSDO | G17                                                                                                                                                                                                                                                                                                                                                                             | Output        |
| M_CRS       | B7                                                                                                                                                                                                                                                                                                                                                                              | Input         |
| M_MDIO      | H18                                                                                                                                                                                                                                                                                                                                                                             | Bidirectional |
| M_TXEN      | V15                                                                                                                                                                                                                                                                                                                                                                             | Output        |
| M_COL       | H4                                                                                                                                                                                                                                                                                                                                                                              | Input         |
| KAPWR       | R1                                                                                                                                                                                                                                                                                                                                                                              | Power         |
| GND         | F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14 | Power         |
| VDDL        | A8, M1, W8, H19, F4, F16, P4, P16                                                                                                                                                                                                                                                                                                                                               | Power         |
| VDDH        | E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5,<br>G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5,<br>P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14                                                                                                                                                                                  | Power         |
| N/C         | D6, D13, D14, U2, V2                                                                                                                                                                                                                                                                                                                                                            | No-connect    |

#### Table 35. Pin Assignments (continued)

<sup>1</sup> Classic SAR mode only

<sup>2</sup> ESAR mode only

# 14.2 Mechanical Dimensions of the PBGA Package

For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to *Plastic Ball Grid Array Application Note* (order number: AN1231/D) available from your local Freescale sales office. Figure 78 shows the mechanical dimensions of the PBGA package.



**Document Revision History** 

# **15 Document Revision History**

Table 36 lists significant changes between revisions of this document.

| Rev. No. | Date    | Substantive Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | 2001    | Initial revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.1      | 9/2001  | Change extended temperature from 95 to 105                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.2      | 11/2001 | Revised for new template, changed Table 7 B23 max value @ 66 MHz from 2 ns to 8 ns.                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.3      | 4/2002  | <ul> <li>Timing modified and equations added, for Rev. A and B devices.</li> <li>Modified power numbers and temperature ranges. Added ESAR UTOPIA timing.</li> </ul>                                                                                                                                                                                                                                                                                                                   |
| 1.0      | 9/2002  | <ul> <li>Specification changed to include the MPC857T and MPC857DSL.</li> <li>Changed maximum operating frequency from 80 MHz to 100 MHz.</li> <li>Removed MPC862DP, DT, and SR derivatives and part numbers.</li> <li>Corrected power dissipation numbers.</li> <li>Changed UTOPIA maximum frequency from 50 MHz to 33 MHz.</li> <li>Changed part number ordering information to Rev. B devices only.</li> <li>To maximum ratings for temperature, added frequency ranges.</li> </ul> |
| 1.1      | 5/2003  | Changed SPI Master Timing Specs. 162 and 164                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.2      | 8/2003  | <ul> <li>Changed B28a through B28d and B29b to show that TRLX can be 0 or 1.</li> <li>Non-technical reformatting</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |
| 2.0      | 11/2004 | <ul> <li>Added a table footnote to Table 5 DC Electrical Specifications about meeting the VIL Max of the I2C Standard.</li> <li>Updated document template.</li> </ul>                                                                                                                                                                                                                                                                                                                  |
| 3.0      | 2/2006  | Changed Tj from 95C to 105C in table 34                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Table 36. Document Revision History