



#### Welcome to E-XFL.COM

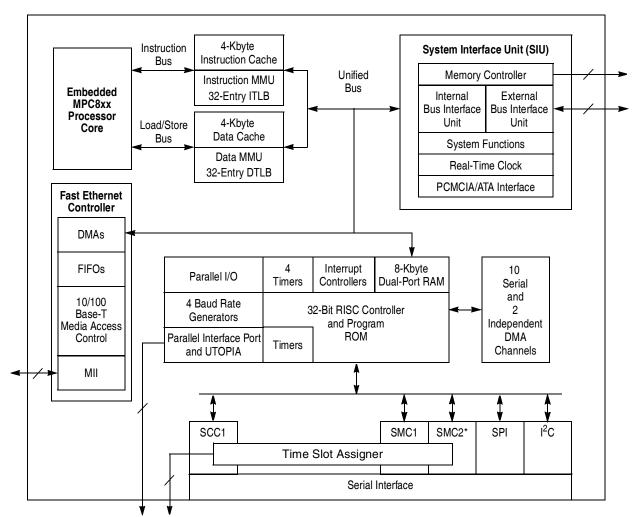
#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details


| Product Status                  | Obsolete                                                              |
|---------------------------------|-----------------------------------------------------------------------|
| Core Processor                  | MPC8xx                                                                |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                        |
| Speed                           | 100MHz                                                                |
| Co-Processors/DSP               | Communications; CPM                                                   |
| RAM Controllers                 | DRAM                                                                  |
| Graphics Acceleration           | No                                                                    |
| Display & Interface Controllers |                                                                       |
| Ethernet                        | 10Mbps (4), 10/100Mbps (1)                                            |
| SATA                            | -                                                                     |
| USB                             |                                                                       |
| Voltage - I/O                   | 3.3V                                                                  |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                      |
| Security Features               | -                                                                     |
| Package / Case                  | 357-BBGA                                                              |
| Supplier Device Package         | 357-PBGA (25x25)                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc862pvr100b |
|                                 |                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



**Maximum Tolerated Ratings** 



\*The MPC857DSL does not contain SMC2 nor the Time Slot Assigner, and provides eight SDMA controllers.

### Figure 2. MPC857T/MPC857DSL Block Diagram

# 3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC862/857T/857DSL. Table 2 provides the maximum ratings.

### Table 2. Maximum Tolerated Ratings

(GND = 0 V)

| Rating                      | Symbol | Value       | Unit | Max Freq<br>(MHz) |
|-----------------------------|--------|-------------|------|-------------------|
| Supply voltage <sup>1</sup> | VDDH   | -0.3 to 4.0 | V    | -                 |
|                             | VDDL   | -0.3 to 4.0 | V    | -                 |
|                             | KAPWR  | -0.3 to 4.0 | V    | -                 |
|                             | VDDSYN | -0.3 to 4.0 | V    | -                 |



**Thermal Calculation and Measurement** 

# 7.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$ 

where:

 $R_{\theta JA}$  = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta IC}$  = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$  = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$  is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance,  $R_{\theta CA}$ . For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

# 7.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see Figure 3.

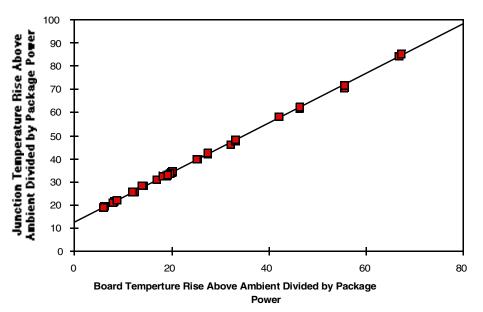



Figure 3. Effect of Board Temperature Rise on Thermal Behavior



|      |                                                                                                                                                                           | 33    | MHz   | 40 1  | MHz   | 50 I  | MHz   | 66 I  | MHz   |      |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Num  | Characteristic                                                                                                                                                            | Min   | Max   | Min   | Max   | Min   | Max   | Min   | Max   | Unit |
| B27  | A(0:31) and BADDR(28:30) to $\overline{CS}$<br>asserted GPCM ACS = 10, TRLX = 1<br>(MIN = 1.25 x B1 - 2.00)                                                               | 35.90 |       | 29.30 | _     | 23.00 |       | 16.90 |       | ns   |
| B27a | A(0:31) and BADDR(28:30) to $\overline{CS}$<br>asserted GPCM ACS = 11, TRLX = 1<br>(MIN = 1.50 x B1 - 2.00)                                                               | 43.50 | _     | 35.50 | _     | 28.00 | —     | 20.70 |       | ns   |
| B28  | CLKOUT rising edge to $\overline{WE}(0:3)$<br>negated GPCM write access CSNT<br>= 0 (MAX = 0.00 x B1 + 9.00)                                                              | —     | 9.00  | —     | 9.00  | —     | 9.00  | —     | 9.00  | ns   |
| B28a | CLKOUT falling edge to $\overline{WE}(0:3)$<br>negated GPCM write access<br>TRLX = 0, 1, CSNT = 1, EBDF = 0<br>(MAX = 0.25 x B1 + 6.80)                                   | 7.60  | 14.30 | 6.30  | 13.00 | 5.00  | 11.80 | 3.80  | 10.50 | ns   |
| B28b | CLKOUT falling edge to $\overline{CS}$ negated<br>GPCM write access TRLX = 0,1,<br>CSNT = 1 ACS = 10 or ACS = 11,<br>EBDF = 0 (MAX = 0.25 x B1 + 6.80)                    | _     | 14.30 | _     | 13.00 | _     | 11.80 | _     | 10.50 | ns   |
| B28c | CLKOUT falling edge to $\overline{WE}(0:3)$<br>negated GPCM write access<br>TRLX = 0, CSNT = 1 write access<br>TRLX = 0,1, CSNT = 1, EBDF = 1<br>(MAX = 0.375 x B1 + 6.6) | 10.90 | 18.00 | 10.90 | 18.00 | 7.00  | 14.30 | 5.20  | 12.30 | ns   |
| B28d | CLKOUT falling edge to $\overline{CS}$ negated<br>GPCM write access TRLX = 0,1,<br>CSNT = 1, ACS = 10, or ACS = 11,<br>EBDF = 1 (MAX = 0.375 x B1 + 6.6)                  | _     | 18.00 | _     | 18.00 | _     | 14.30 | _     | 12.30 | ns   |
| B29  | WE(0:3) negated to D(0:31), DP(0:3)<br>High-Z GPCM write access, CSNT<br>= 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00)                                                           | 5.60  | _     | 4.30  | _     | 3.00  | —     | 1.80  |       | ns   |
| B29a | $\overline{\text{WE}}(0:3)$ negated to D(0:31), DP(0:3)<br>High-Z GPCM write access, TRLX = 0,<br>CSNT = 1, EBDF = 0 (MIN = 0.50 x B1<br>- 2.00)                          | 13.20 | _     | 10.50 | _     | 8.00  | _     | 5.60  | _     | ns   |
| B29b | $\overline{\text{CS}}$ negated to D(0:31), DP(0:3), High<br>Z GPCM write access, ACS = 00,<br>TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x<br>B1 - 2.00)                           | 5.60  | _     | 4.30  | _     | 3.00  | _     | 1.80  | _     | ns   |
| B29c | $\overline{\text{CS}}$ negated to D(0:31), DP(0:3)<br>High-Z GPCM write access, TRLX = 0,<br>CSNT = 1, ACS = 10, or ACS = 11<br>EBDF = 0 (MIN = 0.50 x B1 - 2.00)         | 13.20 |       | 10.50 |       | 8.00  |       | 5.60  |       | ns   |



|      | Oh one stanistic                                                                                                                                                                                                                                                                          | 33    | MHz   | 40    | MHz   | 50 I  | MHz   | 66 I  | MHz   |      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Num  | Characteristic                                                                                                                                                                                                                                                                            | Min   | Max   | Min   | Max   | Min   | Max   | Min   | Max   | Unit |
| B30c | $\overline{WE}(0:3) \text{ negated to } A(0:31),$<br>BADDR(28:30) invalid GPCM write<br>access, TRLX = 0, CSNT = 1.<br>$\overline{CS} \text{ negated to } A(0:31) \text{ invalid GPCM}$<br>write access, TRLX = 0, CSNT = 1<br>ACS = 10, ACS == 11, EBDF = 1<br>(MIN = 0.375 x B1 - 3.00) | 8.40  |       | 6.40  |       | 4.50  |       | 2.70  |       | ns   |
| B30d | $\overline{WE}$ (0:3) negated to A(0:31),<br>BADDR(28:30) invalid GPCM write<br>access TRLX = 1, CSNT =1,<br>$\overline{CS}$ negated to A(0:31) invalid GPCM<br>write access TRLX = 1, CSNT = 1,<br>ACS = 10 or 11, EBDF = 1                                                              | 38.67 | _     | 31.38 |       | 24.50 | _     | 17.83 | _     | ns   |
| B31  | CLKOUT falling edge to $\overline{CS}$ valid - as<br>requested by control bit CST4 in the<br>corresponding word in the UPM<br>(MAX = 0.00 X B1 + 6.00)                                                                                                                                    | 1.50  | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | ns   |
| B31a | CLKOUT falling edge to $\overline{CS}$ valid - as<br>requested by control bit CST1 in the<br>corresponding word in the UPM<br>(MAX = 0.25 x B1 + 6.80)                                                                                                                                    | 7.60  | 14.30 | 6.30  | 13.00 | 5.00  | 11.80 | 3.80  | 10.50 | ns   |
| B31b | CLKOUT rising edge to $\overline{CS}$ valid - as<br>requested by control bit CST2 in the<br>corresponding word in the UPM<br>(MAX = 0.00 x B1 + 8.00)                                                                                                                                     | 1.50  | 8.00  | 1.50  | 8.00  | 1.50  | 8.00  | 1.50  | 8.00  | ns   |
| B31c | CLKOUT rising edge to $\overline{CS}$ valid- as<br>requested by control bit CST3 in the<br>corresponding word in the UPM<br>(MAX = 0.25 x B1 + 6.30)                                                                                                                                      | 7.60  | 13.80 | 6.30  | 12.50 | 5.00  | 11.30 | 3.80  | 10.00 | ns   |
| B31d | CLKOUT falling edge to $\overline{CS}$ valid, as<br>requested by control bit CST1 in the<br>corresponding word in the UPM<br>EBDF = 1 (MAX = 0.375 x B1 + 6.6)                                                                                                                            | 9.40  | 18.00 | 7.60  | 16.00 | 13.30 | 14.10 | 11.30 | 12.30 | ns   |
| B32  | CLKOUT falling edge to $\overline{\text{BS}}$ valid- as<br>requested by control bit BST4 in the<br>corresponding word in the UPM<br>(MAX = 0.00 x B1 + 6.00)                                                                                                                              | 1.50  | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | ns   |
| B32a | CLKOUT falling edge to $\overline{\text{BS}}$ valid - as<br>requested by control bit BST1 in the<br>corresponding word in the UPM,<br>EBDF = 0 (MAX = 0.25 x B1 + 6.80)                                                                                                                   | 7.60  | 14.30 | 6.30  | 13.00 | 5.00  | 11.80 | 3.80  | 10.50 | ns   |
| B32b | CLKOUT rising edge to $\overline{BS}$ valid - as<br>requested by control bit BST2 in the<br>corresponding word in the UPM<br>(MAX = 0.00 x B1 + 8.00)                                                                                                                                     | 1.50  | 8.00  | 1.50  | 8.00  | 1.50  | 8.00  | 1.50  | 8.00  | ns   |

### Table 7. Bus Operation Timings (continued)

| Num | Characteristic                                                                               | 33 I | MHz | 40 MHz |     | 50 MHz |     | 66 MHz |     | Unit |
|-----|----------------------------------------------------------------------------------------------|------|-----|--------|-----|--------|-----|--------|-----|------|
| Num | Unaracteristic                                                                               | Min  | Max | Min    | Max | Min    | Max | Min    | Max | onn  |
| B37 | UPWAIT valid to CLKOUT falling edge $1^2$ (MIN = 0.00 x B1 + 6.00)                           | 6.00 | _   | 6.00   | —   | 6.00   | _   | 6.00   | —   | ns   |
| B38 | CLKOUT falling edge to UPWAIT valid $^{12}$ (MIN = 0.00 x B1 + 1.00)                         | 1.00 | —   | 1.00   | —   | 1.00   | _   | 1.00   | —   | ns   |
| B39 | $\overline{\text{AS}}$ valid to CLKOUT rising edge <sup>13</sup><br>(MIN = 0.00 x B1 + 7.00) | 7.00 | —   | 7.00   | —   | 7.00   | _   | 7.00   | —   | ns   |
| B40 | A(0:31), TSIZ(0:1), RD/WR, BURST,<br>valid to CLKOUT rising edge<br>(MIN = 0.00 x B1 + 7.00) | 7.00 | —   | 7.00   | —   | 7.00   | —   | 7.00   | —   | ns   |
| B41 | TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)                         | 7.00 | —   | 7.00   | —   | 7.00   | -   | 7.00   | —   | ns   |
| B42 | CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)      | 2.00 | _   | 2.00   | _   | 2.00   | _   | 2.00   | _   | ns   |
| B43 | $\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)            |      | TBD |        | TBD |        | TBD |        | TBD | ns   |

### Table 7. Bus Operation Timings (continued)

<sup>1</sup> Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.

<sup>2</sup> If the rate of change of the frequency of EXTAL is slow (I.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (I.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

- <sup>3</sup> The timings specified in B4 and B5 are based on full strength clock.
- <sup>4</sup> The timing for BR output is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter.
- <sup>5</sup> For part speeds above 50MHz, use 9.80ns for B11a.
- <sup>6</sup> The timing required for BR input is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter. The timing for BG input is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter.
- <sup>7</sup> For part speeds above 50MHz, use 2ns for B17.
- <sup>8</sup> The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- <sup>9</sup> For part speeds above 50MHz, use 2ns for B19.
- <sup>10</sup> The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
- <sup>11</sup> The timing B30 refers to  $\overline{CS}$  when ACS = 00 and to  $\overline{WE}(0:3)$  when CSNT = 0.
- <sup>12</sup> The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 19.
- <sup>13</sup> The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 22.



Figure 21 provides the timing for the synchronous external master access controlled by the GPCM.

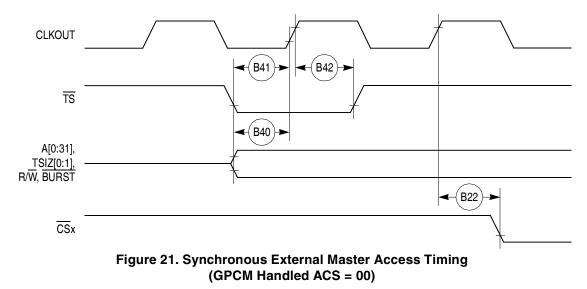
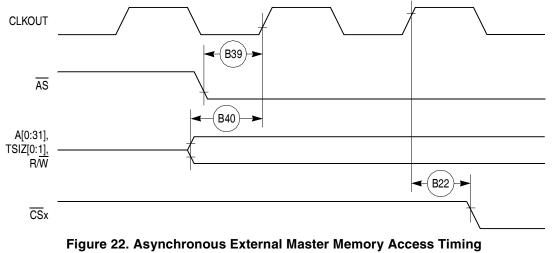




Figure 22 provides the timing for the asynchronous external master memory access controlled by the GPCM.



(GPCM Controlled—ACS = 00)

Figure 23 provides the timing for the asynchronous external master control signals negation.

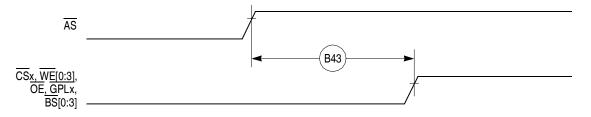



Figure 23. Asynchronous External Master—Control Signals Negation Timing



# Table 8 provides interrupt timing for the MPC862/857T/857DSL.Table 8. Interrupt Timing

| Num | Characteristic <sup>1</sup>                    | All Freq                | All Frequencies |      |  |  |
|-----|------------------------------------------------|-------------------------|-----------------|------|--|--|
|     | Characteristic                                 | Min                     | Мах             | Unit |  |  |
| 139 | IRQx valid to CLKOUT rising edge (set up time) | 6.00                    |                 | ns   |  |  |
| 140 | IRQx hold time after CLKOUT                    | 2.00                    |                 | ns   |  |  |
| 141 | IRQx pulse width low                           | 3.00                    |                 | ns   |  |  |
| 142 | IRQx pulse width high                          | 3.00                    |                 | ns   |  |  |
| 143 | IRQx edge-to-edge time                         | 4xT <sub>CLOCKOUT</sub> |                 |      |  |  |

<sup>1</sup> The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC862/857T/857DSL is able to support.

Figure 24 provides the interrupt detection timing for the external level-sensitive lines.

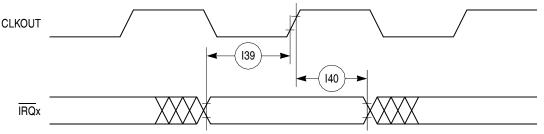



Figure 24. Interrupt Detection Timing for External Level Sensitive Lines

Figure 25 provides the interrupt detection timing for the external edge-sensitive lines.

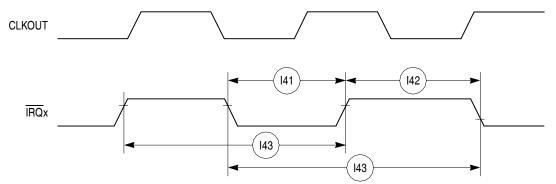



Figure 25. Interrupt Detection Timing for External Edge Sensitive Lines



Table 9 shows the PCMCIA timing for the MPC862/857T/857DSL.

### Table 9. PCMCIA Timing

| Nissaa | Ohavaataviatia                                                                                                                                               | 33    | MHz   | 40 MHz |       | 50 MHz |       | 66 MHz |       | Unit |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|-------|--------|-------|--------|-------|------|
| Num    | Characteristic                                                                                                                                               | Min   | Мах   | Min    | Max   | Min    | Max   | Min    | Max   | Unit |
| P44    | A(0:31), $\overline{\text{REG}}$ valid to PCMCIA<br>Strobe asserted. <sup>1</sup> (MIN = 0.75 x<br>B1 - 2.00)                                                | 20.70 | _     | 16.70  |       | 13.00  |       | 9.40   |       | ns   |
| P45    | A(0:31), $\overline{\text{REG}}$ valid to ALE<br>negation. <sup>1</sup> (MIN = 1.00 x B1 -<br>2.00)                                                          | 28.30 | —     | 23.00  | _     | 18.00  | —     | 13.20  |       | ns   |
| P46    | CLKOUT to REG valid (MAX = 0.25 x B1 + 8.00)                                                                                                                 | 7.60  | 15.60 | 6.30   | 14.30 | 5.00   | 13.00 | 3.80   | 11.80 | ns   |
| P47    | CLKOUT to REG Invalid. (MIN = 0.25 x B1 + 1.00)                                                                                                              | 8.60  | _     | 7.30   | _     | 6.00   | _     | 4.80   | _     | ns   |
| P48    | CLKOUT to $\overline{CE1}$ , $\overline{CE2}$ asserted.<br>(MAX = 0.25 x B1 + 8.00)                                                                          | 7.60  | 15.60 | 6.30   | 14.30 | 5.00   | 13.00 | 3.80   | 11.80 | ns   |
| P49    | CLKOUT to CE1, CE2 negated.<br>(MAX = 0.25 x B1 + 8.00)                                                                                                      | 7.60  | 15.60 | 6.30   | 14.30 | 5.00   | 13.00 | 3.80   | 11.80 | ns   |
| P50    | $\frac{\text{CLKOUT to PCOE, IORD, PCWE,}}{\text{IOWR assert time. (MAX = 0.00 x}}$ B1 + 11.00)                                                              | —     | 11.00 | _      | 11.00 | _      | 11.00 | —      | 11.00 | ns   |
| P51    | CLKOUT to $\overrightarrow{PCOE}$ , $\overrightarrow{IORD}$ , $\overrightarrow{PCWE}$ ,<br>$\overrightarrow{IOWR}$ negate time. (MAX = 0.00 x<br>B1 + 11.00) | 2.00  | 11.00 | 2.00   | 11.00 | 2.00   | 11.00 | 2.00   | 11.00 | ns   |
| P52    | CLKOUT to ALE assert time<br>(MAX = 0.25 x B1 + 6.30)                                                                                                        | 7.60  | 13.80 | 6.30   | 12.50 | 5.00   | 11.30 | 3.80   | 10.00 | ns   |
| P53    | CLKOUT to ALE negate time<br>(MAX = 0.25 x B1 + 8.00)                                                                                                        | —     | 15.60 | —      | 14.30 | —      | 13.00 | —      | 11.80 | ns   |
| P54    | $\overline{\text{PCWE}}, \overline{\text{IOWR}} \text{ negated to } D(0:31)$<br>invalid. <sup>1</sup> (MIN = 0.25 x B1 - 2.00)                               | 5.60  | _     | 4.30   | _     | 3.00   | _     | 1.80   | _     | ns   |
| P55    | WAITA and WAITB valid to<br>CLKOUT rising edge. <sup>1</sup> (MIN = $0.00 \times B1 + 8.00$ )                                                                | 8.00  | —     | 8.00   | _     | 8.00   | —     | 8.00   | _     | ns   |
| P56    | CLKOUT rising edge to $\overline{WAITA}$<br>and $\overline{WAITB}$ invalid. <sup>1</sup> (MIN = 0.00 x<br>B1 + 2.00)                                         | 2.00  | —     | 2.00   | —     | 2.00   | —     | 2.00   | —     | ns   |

<sup>1</sup> PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the  $\overline{WAITx}$  signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The  $\overline{WAITx}$  assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the *MPC862 PowerQUICC User s Manual*.



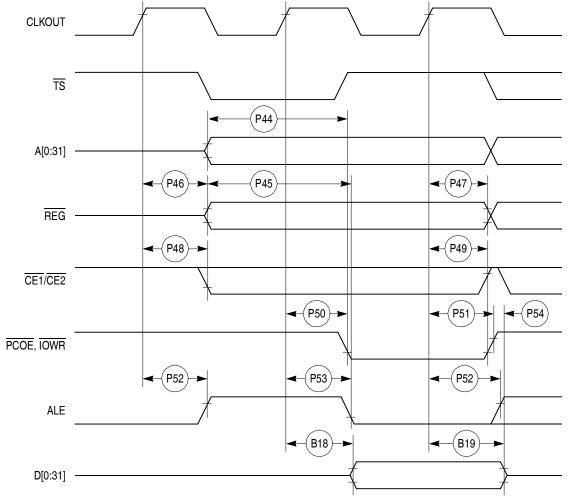



Figure 27 provides the PCMCIA access cycle timing for the external bus write.

Figure 27. PCMCIA Access Cycles Timing External Bus Write

Figure 28 provides the PCMCIA WAIT signals detection timing.

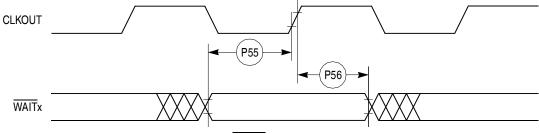
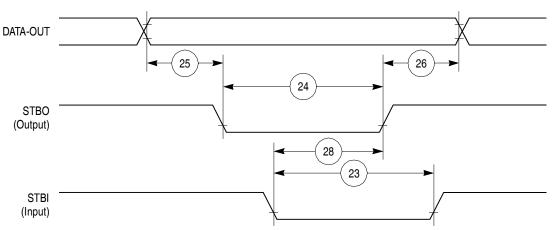




Figure 28. PCMCIA WAIT Signals Detection Timing



**CPM Electrical Characteristics** 





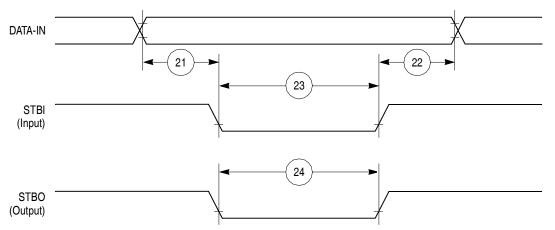



Figure 42. PIP Rx (Pulse Mode) Timing Diagram

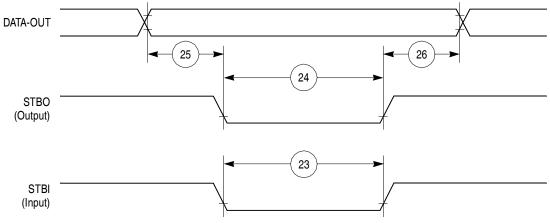
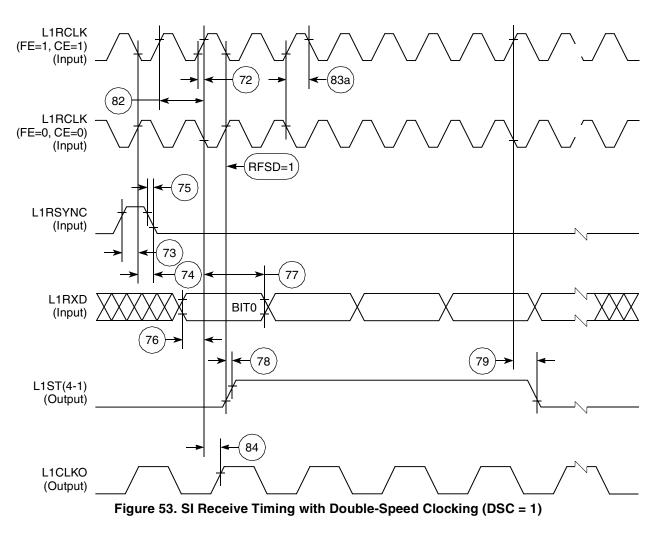




Figure 43. PIP TX (Pulse Mode) Timing Diagram



**CPM Electrical Characteristics** 





**CPM Electrical Characteristics** 

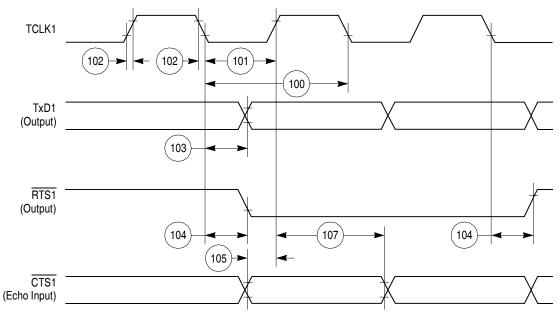



Figure 59. HDLC Bus Timing Diagram

# **11.8 Ethernet Electrical Specifications**

Table 22 provides the Ethernet timings as shown in Figure 60 though Figure 64.

## Table 22. Ethernet Timing

| Num   | Characteristic                                                  | All Freq | uencies | Unit |
|-------|-----------------------------------------------------------------|----------|---------|------|
| Nulli | Characteristic                                                  | Min      | Мах     | Omt  |
| 120   | CLSN width high                                                 | 40       | —       | ns   |
| 121   | RCLK1 rise/fall time                                            | _        | 15      | ns   |
| 122   | RCLK1 width low                                                 | 40       | —       | ns   |
| 123   | RCLK1 clock period <sup>1</sup>                                 | 80       | 120     | ns   |
| 124   | RXD1 setup time                                                 | 20       | —       | ns   |
| 125   | RXD1 hold time                                                  | 5        | —       | ns   |
| 126   | RENA active delay (from RCLK1 rising edge of the last data bit) | 10       | —       | ns   |
| 127   | RENA width low                                                  | 100      | —       | ns   |
| 128   | TCLK1 rise/fall time                                            | —        | 15      | ns   |
| 129   | TCLK1 width low                                                 | 40       | —       | ns   |
| 130   | TCLK1 clock period <sup>1</sup>                                 | 99       | 101     | ns   |
| 131   | TXD1 active delay (from TCLK1 rising edge)                      | 10       | 50      | ns   |
| 132   | TXD1 inactive delay (from TCLK1 rising edge)                    | 10       | 50      | ns   |
| 133   | TENA active delay (from TCLK1 rising edge)                      | 10       | 50      | ns   |





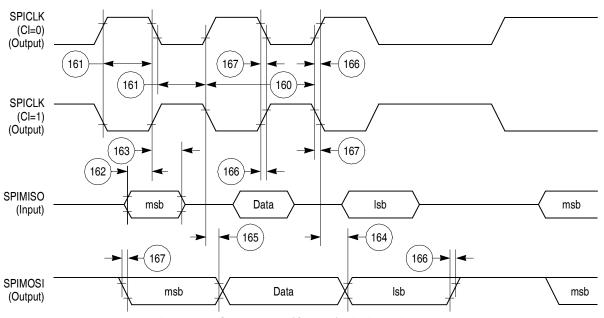



Figure 67. SPI Master (CP = 1) Timing Diagram

# **11.11 SPI Slave AC Electrical Specifications**

Table 25 provides the SPI slave timings as shown in Figure 68 though Figure 69.

### Table 25. SPI Slave Timing

| Num   | Characteristic                                              | All Freq | Unit |                  |
|-------|-------------------------------------------------------------|----------|------|------------------|
| Nulli | Characteristic                                              | Min      | Мах  |                  |
| 170   | Slave cycle time                                            | 2        |      | t <sub>cyc</sub> |
| 171   | Slave enable lead time                                      | 15       | —    | ns               |
| 172   | Slave enable lag time                                       | 15       | —    | ns               |
| 173   | Slave clock (SPICLK) high or low time                       | 1        | —    | t <sub>cyc</sub> |
| 174   | Slave sequential transfer delay (does not require deselect) | 1        | —    | t <sub>cyc</sub> |
| 175   | Slave data setup time (inputs)                              | 20       | —    | ns               |
| 176   | Slave data hold time (inputs)                               | 20       | —    | ns               |
| 177   | Slave access time                                           | —        | 50   | ns               |



# 11.12 I<sup>2</sup>C AC Electrical Specifications

Table 26 provides the  $I^2C$  (SCL < 100 KHz) timings.

| Table 26. | I <sup>2</sup> C | Timing | (SCL < | 100 KHz) |
|-----------|------------------|--------|--------|----------|
|-----------|------------------|--------|--------|----------|

| Num | Characteristic                            | All Freq | uencies | Unit |
|-----|-------------------------------------------|----------|---------|------|
| Num | Characteristic                            | Min      | Мах     | Unit |
| 200 | SCL clock frequency (slave)               | 0        | 100     | kHz  |
| 200 | SCL clock frequency (master) <sup>1</sup> | 1.5      | 100     | kHz  |
| 202 | Bus free time between transmissions       | 4.7      | —       | μs   |
| 203 | Low period of SCL                         | 4.7      | —       | μs   |
| 204 | High period of SCL                        | 4.0      | —       | μs   |
| 205 | Start condition setup time                | 4.7      | —       | μs   |
| 206 | Start condition hold time                 | 4.0      | —       | μs   |
| 207 | Data hold time                            | 0        | —       | μs   |
| 208 | Data setup time                           | 250      | —       | ns   |
| 209 | SDL/SCL rise time                         | —        | 1       | μs   |
| 210 | SDL/SCL fall time                         | —        | 300     | ns   |
| 211 | Stop condition setup time                 | 4.7      | —       | μs   |

SCL frequency is given by SCL = BRGCLK\_frequency / ((BRG register + 3) \* pre\_scaler \* 2). The ratio SyncClk/(BRGCLK/pre\_scaler) must be greater or equal to 4/1.

# Table 27 provides the $I^2C$ (SCL > 100 kHz) timings.

Table 27.  $I^2C$  Timing (SCL > 100 kHz)

| Num | Characteristic                            | Expression | All Freq        | Unit          |    |
|-----|-------------------------------------------|------------|-----------------|---------------|----|
| Num | Characteristic                            | Lyression  | Min             | lin Max       |    |
| 200 | SCL clock frequency (slave)               | fSCL       | 0               | BRGCLK/48     | Hz |
| 200 | SCL clock frequency (master) <sup>1</sup> | fSCL       | BRGCLK/16512    | BRGCLK/48     | Hz |
| 202 | Bus free time between transmissions       | —          | 1/(2.2 * fSCL)  | _             | S  |
| 203 | Low period of SCL                         | —          | 1/(2.2 * fSCL)  | _             | S  |
| 204 | High period of SCL                        | —          | 1/(2.2 * fSCL)  | _             | S  |
| 205 | Start condition setup time                | —          | 1/(2.2 * fSCL)  | _             | S  |
| 206 | Start condition hold time                 | —          | 1/(2.2 * fSCL)  | _             | S  |
| 207 | Data hold time                            | —          | 0               | _             | S  |
| 208 | Data setup time                           | —          | 1/(40 * fSCL)   | _             | S  |
| 209 | SDL/SCL rise time                         | —          | —               | 1/(10 * fSCL) | s  |
| 210 | SDL/SCL fall time                         | —          | —               | 1/(33 * fSCL) | S  |
| 211 | Stop condition setup time                 | —          | 1/2(2.2 * fSCL) | _             | S  |

SCL frequency is given by SCL = BrgClk\_frequency / ((BRG register + 3) \* pre\_scaler \* 2). The ratio SyncClk/(Brg\_Clk/pre\_scaler) must be greater or equal to 4/1.

### MPC862/857T/857DSL PowerQUICC™ Family Hardware Specifications, Rev. 3

1

| Num | Characteristic                                                              | Min | Max | Unit           |
|-----|-----------------------------------------------------------------------------|-----|-----|----------------|
| M10 | MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay) | 0   | _   | ns             |
| M11 | MII_MDC falling edge to MII_MDIO output valid (max prop delay)              |     | 25  | ns             |
| M12 | MII_MDIO (input) to MII_MDC rising edge setup                               | 10  | —   | ns             |
| M13 | MII_MDIO (input) to MII_MDC rising edge hold                                | 0   | —   | ns             |
| M14 | MII_MDC pulse width high                                                    | 40% | 60% | MII_MDC period |
| M15 | MII_MDC pulse width low                                                     | 40% | 60% | MII_MDC period |



Figure 76 shows the MII serial management channel timing diagram.

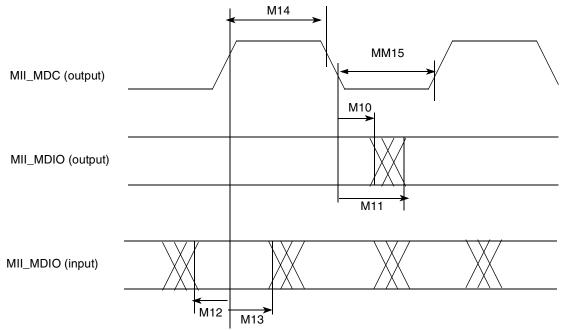



Figure 76. MII Serial Management Channel Timing Diagram

# 14 Mechanical Data and Ordering Information

Table 33 provides information on the MPC862/857T/857DSL derivative devices.

### Table 33. MPC862/857T/857DSL Derivatives

| Device  | Number Ethernet Mul |             | Multi-Channel | ATM Support | Cache Size  |          |
|---------|---------------------|-------------|---------------|-------------|-------------|----------|
| Devide  | SCCs <sup>1</sup>   | Support     | HDLC Support  |             | Instruction | Data     |
| MPC862T | Four                | 10/100 Mbps | Yes           | Yes         | 4 Kbytes    | 4 Kbytes |
| MPC862P | Four                | 10/100 Mbps | Yes           | Yes         | 16 Kbytes   | 8 Kbytes |



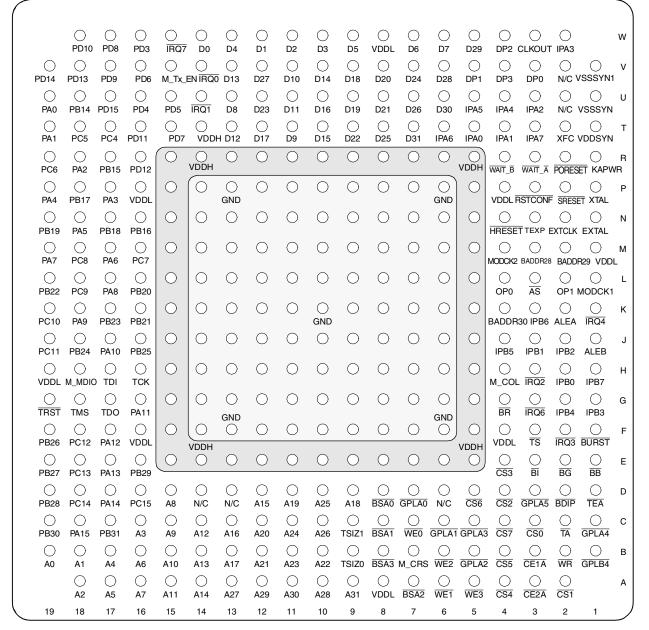



Figure 77. Pinout of the PBGA Package



Table 35 contains a list of the MPC862 input and output signals and shows multiplexing and pin assignments.

| Name                           | Pin Number                                                                                                                                                         | Туре                            |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| A[0:31]                        | B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15, C14,<br>B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10,<br>C10, A13, A10, A12, A11, A9 | Bidirectional<br>Three-state    |
| TSIZ0<br>REG                   | В9                                                                                                                                                                 | Bidirectional<br>Three-state    |
| TSIZ1                          | C9                                                                                                                                                                 | Bidirectional<br>Three-state    |
| RD/WR                          | B2                                                                                                                                                                 | Bidirectional<br>Three-state    |
| BURST                          | F1                                                                                                                                                                 | Bidirectional<br>Three-state    |
| BDIP<br>GPL_B5                 | D2                                                                                                                                                                 | Output                          |
| TS                             | F3                                                                                                                                                                 | Bidirectional<br>Active Pull-up |
| TA                             | C2                                                                                                                                                                 | Bidirectional<br>Active Pull-up |
| TEA                            | D1                                                                                                                                                                 | Open-drain                      |
| BI                             | E3                                                                                                                                                                 | Bidirectional<br>Active Pull-up |
| IRQ2<br>RSV                    | НЗ                                                                                                                                                                 | Bidirectional<br>Three-state    |
| IRQ4<br>KR<br>RETRY<br>SPKROUT | К1                                                                                                                                                                 | Bidirectional<br>Three-state    |
| CR<br>IRQ3                     | F2                                                                                                                                                                 | Input                           |
| D[0:31]                        | W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11, T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, V12, V6, W5, U6, T7                    | Bidirectional<br>Three-state    |
| DP0<br>IRQ3                    | V3                                                                                                                                                                 | Bidirectional<br>Three-state    |
| DP1<br>IRQ4                    | V5                                                                                                                                                                 | Bidirectional<br>Three-state    |
| DP2<br>IRQ5                    | W4                                                                                                                                                                 | Bidirectional<br>Three-state    |
| DP3<br>IRQ6                    | V4                                                                                                                                                                 | Bidirectional<br>Three-state    |

### Table 35. Pin Assignments



| Name                                           | Pin Number | Туре                         |
|------------------------------------------------|------------|------------------------------|
| IP_A6<br>UTPB_Split6 <sup>2</sup><br>MII-TXERR | Тб         | Input                        |
| IP_A7<br>UTPB_Split7 <sup>2</sup><br>MII-RXDV  | ТЗ         | Input                        |
| ALE_B<br>DSCK/AT1                              | J1         | Bidirectional<br>Three-state |
| IP_B[0:1]<br>IWP[0:1]<br>VFLS[0:1]             | H2, J3     | Bidirectional                |
| IP_B2<br>IOIS16_B<br>AT2                       | J2         | Bidirectional<br>Three-state |
| IP_B3<br>IWP2<br>VF2                           | G1         | Bidirectional                |
| IP_B4<br>LWP0<br>VF0                           | G2         | Bidirectional                |
| IP_B5<br>LWP1<br>VF1                           | J4         | Bidirectional                |
| IP_B6<br>DSDI<br>AT0                           | КЗ         | Bidirectional<br>Three-state |
| IP_B7<br>PTR<br>AT3                            | H1         | Bidirectional<br>Three-state |
| OP0<br>MII-TXD0<br>UtpClk_Split <sup>2</sup>   | L4         | Bidirectional                |
| OP1                                            | L2         | Output                       |
| OP2<br>MODCK1<br>STS                           | L1         | Bidirectional                |
| OP3<br>MODCK2<br>DSDO                          | M4         | Bidirectional                |
| BADDR30<br>REG                                 | K4         | Output                       |
| BADDR[28:29]                                   | M3, M2     | Output                       |
| ĀS                                             | L3         | Input                        |

### Table 35. Pin Assignments (continued)



| Name                                  | Pin Number | Туре          |
|---------------------------------------|------------|---------------|
| PC13<br>L1RQb<br>L1ST3<br>RTS3        | E18        | Bidirectional |
| PC12<br>L1RQa<br>L1ST4<br>RTS4        | F18        | Bidirectional |
| PC11<br>CTS1                          | J19        | Bidirectional |
| PC10<br>CD1<br>TGATE1                 | K19        | Bidirectional |
| PC9<br>CTS2                           | L18        | Bidirectional |
| PC8<br>CD2<br>TGATE2                  | M18        | Bidirectional |
| PC7<br>CTS3<br>L1TSYNCB<br>SDACK2     | M16        | Bidirectional |
| PC6<br>CD3<br>L1RSYNCB                | R19        | Bidirectional |
| PC5<br>CTS4<br>L1TSYNCA<br>SDACK1     | T18        | Bidirectional |
| PC4<br>CD4<br>L1RSYNCA                | T17        | Bidirectional |
| PD15<br>L1TSYNCA<br>MII-RXD3<br>UTPB0 | U17        | Bidirectional |
| PD14<br>L1RSYNCA<br>MII-RXD2<br>UTPB1 | V19        | Bidirectional |
| PD13<br>L1TSYNCB<br>MII-RXD1<br>UTPB2 | V18        | Bidirectional |

### Table 35. Pin Assignments (continued)

#### How to Reach Us:

Home Page: www.freescale.com email:

support@freescale.com

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC862EC Rev. 3 2/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale<sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2006.

