

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Obsolete
MPC8xx
1 Core, 32-Bit
66MHz
Communications; CPM
DRAM
No
-
10Mbps (4), 10/100Mbps (1)
-
-
3.3V
-40°C ~ 115°C (TA)
-
357-BBGA
357-PBGA (25x25)
https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc862tcvr66b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Thermal Calculation and Measurement

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 T_{B} = board temperature (°C)

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

 Ψ_{IT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

Table 7 provides the bus operation timing for the MPC862/857T/857DSL at 33 MHz, 40 Mhz, 50 MHz and 66 Mhz.

The timing for the MPC862/857T/857DSL bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays.

Num Charactoristia		33 MHz		40 MHz		50 MHz		66 MHz		11
Num	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Max	Unit
B1	CLKOUT period	30.30	30.30	25.00	30.30	20.00	30.30	15.15	30.30	ns
B1a	B1a EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF <= 2)		0.90	-0.90	0.90	-0.90	0.90	-0.90	0.90	ns
B1b	EXTCLK to CLKOUT phase skew (EXTCLK > 10 MHz and MF < 10)	-2.30	2.30	-2.30	2.30	-2.30	2.30	-2.30	2.30	ns
B1c	CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) 1	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	ns
B1d	CLKOUT phase jitter ¹	-2.00	2.00	-2.00	2.00	-2.00	2.00	-2.00	2.00	ns
B1e	CLKOUT frequency jitter (MF < 10) ¹	—	0.50	—	0.50	_	0.50	_	0.50	%
B1f	CLKOUT frequency jitter (10 < MF < 500) ¹	—	2.00	—	2.00	_	2.00	_	2.00	%
B1g	CLKOUT frequency jitter (MF > 500) ¹	—	3.00	—	3.00	—	3.00	_	3.00	%
B1h	Frequency jitter on EXTCLK ²	_	0.50		0.50	_	0.50	_	0.50	%
B2	CLKOUT pulse width low (MIN = 0.040 x B1)	12.10	_	10.00	_	8.00	_	6.10	_	ns
B3	CLKOUT width high (MIN = 0.040 x B1)	12.10	—	10.00	—	8.00	—	6.10	—	ns
B4	CLKOUT rise time ³ (MAX = 0.00 x B1 + 4.00)	—	4.00	—	4.00	—	4.00	—	4.00	ns
B5 ³³	CLKOUT fall time ³ (MAX = $0.00 \times B1 + 4.00$)	—	4.00	—	4.00	—	4.00	—	4.00	ns
B7	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3) invalid (MIN = 0.25 x B1)	7.60	_	6.30		5.00	—	3.80	—	ns
B7a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, AT(0:3), $\overline{\text{BDIP}}$, PTR invalid (MIN = 0.25 x B1)	7.60	—	6.30	_	5.00	_	3.80	—	ns
B7b	CLKOUT to \overline{BR} , \overline{BG} , FRZ, VFLS(0:1), VF(0:2) IWP(0:2), LWP(0:1), \overline{STS} invalid ⁴ (MIN = 0.25 x B1)	7.60	_	6.30	_	5.00	_	3.80	_	ns
B8	CLKOUT to A(0:31), BADDR(28:30) RD/WR, BURST, D(0:31), DP(0:3) valid (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns

Table 7. Bus Operation Timings

Bus Signal Timing

Num	Chavastavistia	33	MHz	40	MHz	50 MHz		66 MHz		l l m it
NUM	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B29d	$\overline{\text{WE}}(0:3)$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29e	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29f	WE(0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 6.30)	5.00	_	3.00	_	1.10	_	0.00	_	ns
B29g	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 6.30)	5.00		3.00	_	1.10	_	0.00	_	ns
B29h	WE(0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 3.30)	38.40	_	31.10	_	24.20	_	17.50	_	ns
B29i	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 3.30)	38.40	_	31.10	_	24.20	_	17.50	_	ns
B30	30 CS, WE(0:3) negated to A(0:31), BADDR(28:30) Invalid GPCM write access ¹¹ (MIN = 0.25 x B1 - 2.00) 5.60		—	4.30	_	3.00	_	1.80	—	ns
B30a	$\label{eq:weighted} \begin{array}{l} \overline{\text{WE}}(0:3) \mbox{ negated to } A(0:31), \\ \mbox{BADDR}(28:30) \mbox{ Invalid GPCM}, \mbox{ write} \\ \mbox{access}, \mbox{TRLX} = 0, \mbox{ CSNT} = 1, \mbox{ CS} \\ \mbox{negated to } A(0:31) \mbox{ invalid GPCM} \mbox{ write} \\ \mbox{access} \mbox{TRLX} = 0, \mbox{ CSNT} = 1 \mbox{ ACS} = 10, \\ \mbox{or ACS} == 11, \mbox{ EBDF} = 0 \mbox{ (MIN} = 0.50 \\ \mbox{ x B1} - 2.00) \end{array}$	13.20	_	10.50		8.00		5.60	_	ns
B30b	$\overline{WE}(0:3) \text{ negated to } A(0:31) \text{ Invalid} \\ \text{GPCM BADDR}(28:30) \text{ invalid GPCM} \\ \text{write access, TRLX = 1, CSNT = 1.} \\ \overline{CS} \text{ negated to } A(0:31) \text{ Invalid GPCM} \\ \text{write access TRLX = 1, CSNT = 1,} \\ \text{ACS = 10, or ACS == 11 EBDF = 0} \\ (\text{MIN = 1.50 x B1 - 2.00)} \\ \end{array}$	43.50		35.50		28.00	_	20.70		ns

Table 7. Bus Operation Timings (continued)

ACS = 10, ACS = 11)

Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0,1 CSNT = 1)

Bus Signal Timing

Figure 19 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Cycles Timing

Figure 20 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Table 8 provides interrupt timing for the MPC862/857T/857DSL.Table 8. Interrupt Timing

Num	Charaotoriotio 1	All Freq	Unit	
NUIT	Characteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (set up time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
l41	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	4xT _{CLOCKOUT}		_

¹ The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC862/857T/857DSL is able to support.

Figure 24 provides the interrupt detection timing for the external level-sensitive lines.

Figure 24. Interrupt Detection Timing for External Level Sensitive Lines

Figure 25 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 25. Interrupt Detection Timing for External Edge Sensitive Lines

Bus Signal Timing

Figure 26 provides the PCMCIA access cycle timing for the external bus read.

Figure 26. PCMCIA Access Cycles Timing External Bus Read

Figure 27 provides the PCMCIA access cycle timing for the external bus write.

Figure 27. PCMCIA Access Cycles Timing External Bus Write

Figure 28 provides the PCMCIA WAIT signals detection timing.

Figure 28. PCMCIA WAIT Signals Detection Timing

Table 11 shows the debug port timing for the MPC862/857T/857DSL.

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	Unit
D61	DSCK cycle time	3 x T _{CLOCKOUT}		-
D62	DSCK clock pulse width	1.25 x T _{CLOCKOUT}		-
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00		ns
D65	DSDI data hold time	5.00		ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Table 11. Debug Port Timing

Figure 31 provides the input timing for the debug port clock.

Figure 31. Debug Port Clock Input Timing

Figure 32 provides the timing for the debug port.

Figure 32. Debug Port Timings

Figure 33. Reset Timing—Configuration from Data Bus

Figure 34 provides the reset timing for the data bus weak drive during configuration.

Figure 34. Reset Timing—Data Bus Weak Drive during Configuration

IEEE 1149.1 Electrical Specifications

Figure 35 provides the reset timing for the debug port configuration.

Figure 35. Reset Timing—Debug Port Configuration

10 IEEE 1149.1 Electrical Specifications

Table 13 provides the JTAG timings for the MPC862/857T/857DSL shown in Figure 36 though Figure 39.

Num	Characteristic	All Freq	Unit	
Num	Gharacteristic	Min	Мах	Onic
J82	TCK cycle time	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	ns
J86	J86 TMS, TDI data hold time		_	ns
J87	TCK low to TDO data valid	—	27.00	ns
J88	TCK low to TDO data invalid	0.00	—	ns
J89	TCK low to TDO high impedance	—	20.00	ns
J90	TRST assert time	100.00	—	ns
J91	TRST setup time to TCK low	40.00	_	ns
J92	TCK falling edge to output valid	—	50.00	ns
J93	TCK falling edge to output valid out of high impedance	—	50.00	ns
J94	TCK falling edge to output high impedance	—	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	—	ns
J96	TCK rising edge to boundary scan input invalid	50.00	_	ns

Table 13. JTAG Timing

CPM Electrical Characteristics

Figure 67. SPI Master (CP = 1) Timing Diagram

11.11 SPI Slave AC Electrical Specifications

Table 25 provides the SPI slave timings as shown in Figure 68 though Figure 69.

Table 25. SPI Slave Timing

Num	Charactoristic	All Freq	Unit	
Num	onaracteristic		Мах	Omit
170	Slave cycle time		—	t _{cyc}
171	Slave enable lead time		—	ns
172	Slave enable lag time	15	—	ns
173	Slave clock (SPICLK) high or low time		—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)		—	t _{cyc}
175	Slave data setup time (inputs)		—	ns
176	Slave data hold time (inputs)		—	ns
177	Slave access time		50	ns

FEC Electrical Characteristics

13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency - 1%.

Table 29 provides information on the MII receive signal timing.

Num	Characteristic	Min	Мах	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	—	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	—	ns
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 29. MII Receive Signal Timing

Figure 73 shows MII receive signal timing.

Figure 73. MII Receive Signal Timing Diagram

13.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, MII_TX_ER, MII_TX_CLK)

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency - 1%.

Table 30 provides information on the MII transmit signal timing.

Table 30. MII Transmit Signal Timing

Num	Characteristic	Min	Мах	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	—	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid	_	25	

Name	Pin Number	Туре
GPL_A5	D3	Output
PORESET	R2	Input
RSTCONF	Р3	Input
HRESET	N4	Open-drain
SRESET	P2	Open-drain
XTAL	P1	Analog Output
EXTAL	N1	Analog Input (3.3 V only)
XFC	Т2	Analog Input
CLKOUT	W3	Output
EXTCLK	N2	Input (3.3 V only)
TEXP	N3	Output
ALE_A MII-TXD1	К2	Output
CE1_A MII-TXD2	B3	Output
CE2_A MII-TXD3	A3	Output
WAIT_A SOC_Split ²	R3	Input
WAIT_B	R4	Input
IP_A0 UTPB_Split0 ² MII-RXD3	Т5	Input
IP_A1 UTPB_Split1 ² MII-RXD2	Т4	Input
IP_A2 IOIS16_A UTPB_Split2 ² MII-RXD1	U3	Input
IP_A3 UTPB_Split3 ² MII-RXD0	W2	Input
IP_A4 UTPB_Split4 ² MII-RXCLK	U4	Input
IP_A5 UTPB_Split5 ² MII-RXERR	U5	Input

Table 35. Pin Assignments (continued)

Name	Pin Number	Туре
PA15 RXD1 RXD4	C18	Bidirectional
PA14 TXD1 TXD4	D17	Bidirectional (Optional: Open-drain)
PA13 RXD2	E17	Bidirectional
PA12 TXD2	F17	Bidirectional (Optional: Open-drain)
PA11 L1TXDB RXD3	G16	Bidirectional (Optional: Open-drain)
PA10 L1RXDB TXD3	J17	Bidirectional (Optional: Open-drain)
PA9 L1TXDA	К18	Bidirectional (Optional: Open-drain)
RXD4		
PA8 L1RXDA TXD4	L17	Bidirectional (Optional: Open-drain)
PA7 CLK1 L1RCLKA BRGO1 TIN1	M19	Bidirectional
PA6 CLK2 TOUT1	M17	Bidirectional
PA5 CLK3 L1TCLKA BRGO2 TIN2	N18	Bidirectional
PA4 CLK4 TOUT2	P19	Bidirectional
PA3 CLK5 BRGO3 TIN3	P17	Bidirectional

Table 35. Pin Assignments (continued)

Name	Pin Number	Туре
PC13 L1RQb L1ST3 RTS3	E18	Bidirectional
PC12 L1RQa L1ST4 RTS4	F18	Bidirectional
PC11 CTS1	J19	Bidirectional
PC10 CD1 TGATE1	K19	Bidirectional
PC9 CTS2	L18	Bidirectional
PC8 CD2 TGATE2	M18	Bidirectional
PC7 CTS3 L1TSYNCB SDACK2	M16	Bidirectional
PC6 CD3 L1RSYNCB	R19	Bidirectional
PC5 CTS4 L1TSYNCA SDACK1	T18	Bidirectional
PC4 CD4 L1RSYNCA	T17	Bidirectional
PD15 L1TSYNCA MII-RXD3 UTPB0	U17	Bidirectional
PD14 L1RSYNCA MII-RXD2 UTPB1	V19	Bidirectional
PD13 L1TSYNCB MII-RXD1 UTPB2	V18	Bidirectional

Table 35. Pin Assignments (continued)

Table 35. Pin Assignment	ts (continued)
--------------------------	----------------

Name	Pin Number	Туре
PD12 L1RSYNCB MII-MDC UTPB3	R16	Bidirectional
PD11 RXD3 MII-TXERR RXENB	T16	Bidirectional
PD10 TXD3 MII-RXD0 TXENB	W18	Bidirectional
PD9 RXD4 MII-TXD0 UTPCLK	V17	Bidirectional
PD8 TXD4 MII-MDC MII-RXCLK	W17	Bidirectional
PD7 RTS3 MII-RXERR UTPB4	T15	Bidirectional
PD6 RTS4 MII-RXDV UTPB5	V16	Bidirectional
PD5 REJECT2 MII-TXD3 UTPB6	U15	Bidirectional
PD4 REJECT3 MII-TXD2 UTPB7	U16	Bidirectional
PD3 REJECT4 MII-TXD1 SOC	W16	Bidirectional
TMS	G18	Input
TDI DSDI	H17	Input
TCK DSCK	H16	Input

Document Revision History

15 Document Revision History

Table 36 lists significant changes between revisions of this document.

Rev. No.	Date	Substantive Changes
0	2001	Initial revision
0.1	9/2001	Change extended temperature from 95 to 105
0.2	11/2001	Revised for new template, changed Table 7 B23 max value @ 66 MHz from 2 ns to 8 ns.
0.3	4/2002	 Timing modified and equations added, for Rev. A and B devices. Modified power numbers and temperature ranges. Added ESAR UTOPIA timing.
1.0	9/2002	 Specification changed to include the MPC857T and MPC857DSL. Changed maximum operating frequency from 80 MHz to 100 MHz. Removed MPC862DP, DT, and SR derivatives and part numbers. Corrected power dissipation numbers. Changed UTOPIA maximum frequency from 50 MHz to 33 MHz. Changed part number ordering information to Rev. B devices only. To maximum ratings for temperature, added frequency ranges.
1.1	5/2003	Changed SPI Master Timing Specs. 162 and 164
1.2	8/2003	 Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. Non-technical reformatting
2.0	11/2004	 Added a table footnote to Table 5 DC Electrical Specifications about meeting the VIL Max of the I2C Standard. Updated document template.
3.0	2/2006	Changed Tj from 95C to 105C in table 34

Table 36. Document Revision History