

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	80MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 115°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc862tcvr80b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- System integration unit (SIU)
 - Bus monitor
 - Software watchdog
 - Periodic interrupt timer (PIT)
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture
 - Reset controller
 - IEEE 1149.1 test access port (JTAG)
- Interrupts
 - Seven external interrupt request (IRQ) lines
 - 12 port pins with interrupt capability
 - The MPC862P and MPC862T have 23 internal interrupt sources; the MPC857T and MPC857DSL have 20 internal interrupt sources
 - Programmable priority between SCCs (MPC862P and MPC862T)
 - Programmable highest priority request
- Communications processor module (CPM)
 - RISC controller
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels
 - Up to 8-Kbytes of dual-port RAM
 - The MPC862P and MPC862T have 16 serial DMA (SDMA) channels; the MPC857T and MPC857DSL have 10 serial DMA (SDMA) channels
 - Three parallel I/O registers with open-drain capability
- Four baud rate generators
 - Independent (can be connected to any SCC or SMC)
 - Allow changes during operation
 - Autobaud support option
- The MPC862P and MPC862T have four SCCs (serial communication controller) The MPC857T and MPC857DSL have one SCC, SCC1; the MPC857DSL supports ethernet only
 - Serial ATM capability on all SCCs
 - Optional UTOPIA port on SCC4
 - Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation
 - HDLC/SDLC
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Asynchronous HDLC to support PPP (point-to-point protocol)
 - AppleTalk

Features

- Universal asynchronous receiver transmitter (UART)
- Synchronous UART
- Serial infrared (IrDA)
- Binary synchronous communication (BISYNC)
- Totally transparent (bit streams)
- Totally transparent (frame based with optional cyclic redundancy check (CRC))
- Two SMCs (serial management channels) (The MPC857DSL has one SMC, SMC1 for UART)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division multiplexed (TDM) channels
- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multiple-master operation on the same bus
- One inter-integrated circuit (I²C) port
 - Supports master and slave modes
 - Multiple-master environment support
- Time-slot assigner (TSA) (The MPC857DSL does not have the TSA)
 - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, clocking
 - Allows dynamic changes
 - On the MPC862P and MPC862T, can be internally connected to six serial channels (four SCCs and two SMCs); on the MPC857T, can be connected to three serial channels (one SCC and two SMCs)
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on MPC862/857T/857DSL or MC68360
- PCMCIA interface
 - Master (socket) interface, release 2.1 compliant
 - Supports one or two PCMCIA sockets dependent upon whether ESAR functionality is enabled
 - 8 memory or I/O windows supported
- Low power support
 - Full on—All units fully powered
 - Doze—Core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-power standby

Bus Signal Timing

Num	Characteristic	33	MHz	40 MHz		50	MHz	66	MHz	11
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Мах	Unit
B17a	a CLKOUT to \overline{KR} , \overline{RETRY} , \overline{CR} valid (hold time) (MIN = 0.00 x B1 + 2.00)		_	2.00	—	2.00	—	2.00	—	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) ⁸ (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	—	6.00	_	6.00	—	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) ⁸ (MIN = 0.00 x B1 + 1.00 ⁹)	1.00	_	1.00	—	1.00	_	2.00	—	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) 10 (MIN = 0.00 x B1 + 4.00)	4.00	_	4.00	_	4.00	_	4.00	_	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) ¹⁰ (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	—	2.00	_	2.00	—	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 x B1 + 6.3)		13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22a	CLKOUT falling edge to CS asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 x B1 + 8.00)	—	8.00		8.00	—	8.00		8.00	ns
B22b	CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00)	5.60	—	4.30	—	3.00	—	1.80	—	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11 TRLX = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B25	CLKOUT rising edge to \overline{OE} , $\overline{WE}(0:3)$ asserted (MAX = 0.00 x B1 + 9.00)	—	9.00		9.00		9.00		9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 x B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns

Table 7. Bus Operation Timings (continued)

Bus Signal Timing

N	Characteristic	33	MHz	40 I	MHz	50 I	MHz	66 MHz		11
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B32c	2c CLKOUT rising edge to \overline{BS} valid - as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)		14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to $\overline{\text{BS}}$ valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)		18.00	7.60	16.00	13.30	14.10	11.30	12.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid - as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)		6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ Valid - as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)		14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B35	A(0:31), BADDR(28:30) to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid - As Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to BS valid - as requested by control bit BST2 in the corresponding word in the UPM (MIN = $0.75 \times B1 - 2.00$)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to \overline{GPL} valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns

Table 7. Bus Operation Timings (continued)

Bus Signal Timing

Figure 26 provides the PCMCIA access cycle timing for the external bus read.

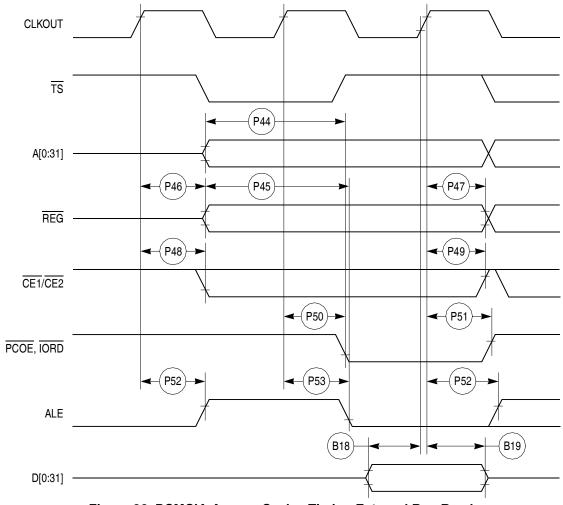


Figure 26. PCMCIA Access Cycles Timing External Bus Read

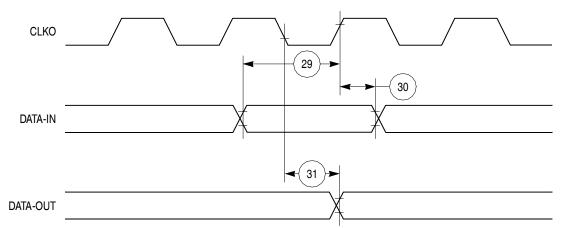


Figure 44. Parallel I/O Data-In/Data-Out Timing Diagram

11.2 Port C Interrupt AC Electrical Specifications

Table 15 provides the timings for port C interrupts.

Table 15. Port C Interrupt Timing

Num	Characteristic	33.34	Unit	
	Characteristic	Min	Max	Onit
35	Port C interrupt pulse width low (edge-triggered mode)	55	_	ns
36	Port C interrupt minimum time between active edges	55	_	ns

Figure 45 shows the port C interrupt detection timing.

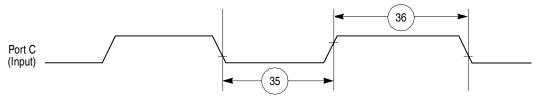


Figure 45. Port C Interrupt Detection Timing

11.3 IDMA Controller AC Electrical Specifications

Table 16 provides the IDMA controller timings as shown in Figure 46 though Figure 49.

Table 16. IDMA Controller Timing

Num	Characteristic	All Freq	Unit	
			Max	onne
40	DREQ setup time to clock high	7	_	ns
41	DREQ hold time from clock high	3	_	ns
42	SDACK assertion delay from clock high	_	12	ns

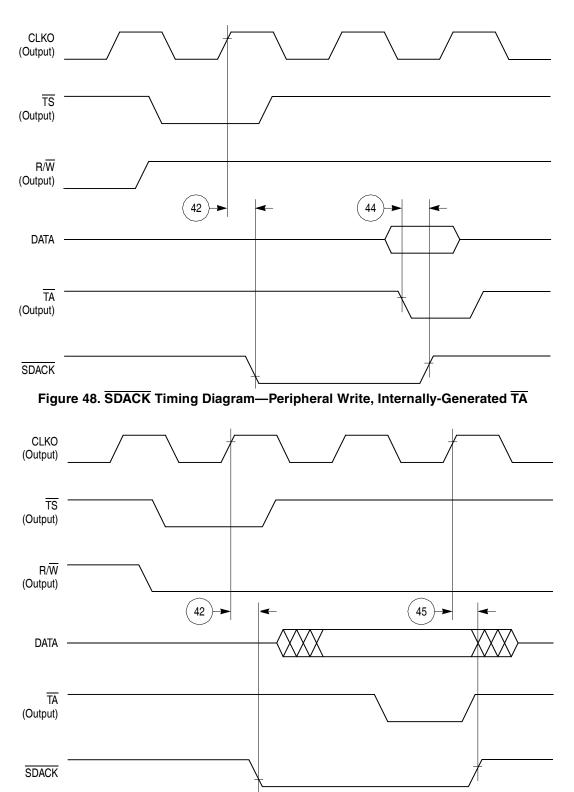


Figure 49. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

Num	Characteristic	All Freq	Unit	
	Characteristic	Min	Max	
83a	L1RCLK, L1TCLK width high $(DSC = 1)^3$	P + 10	_	ns
84	L1CLK edge to L1CLKO valid (DSC = 1)	_	30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	_	L1TCL K
86	L1GR setup time ²	42.00	_	ns
87	L1GR hold time	42.00	_	ns
88	L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

Table 19. SI Timing (continued)

¹ The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

² These specs are valid for IDL mode only.

³ Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.

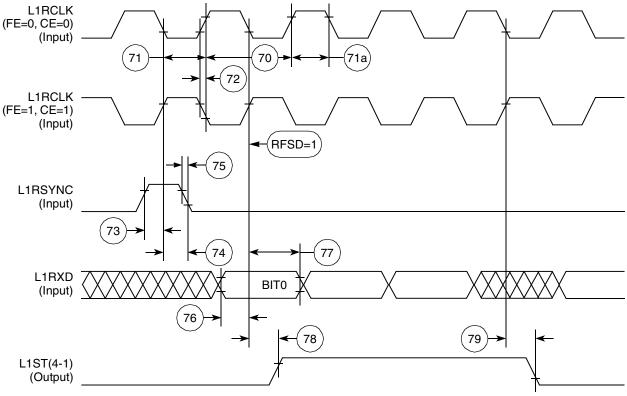
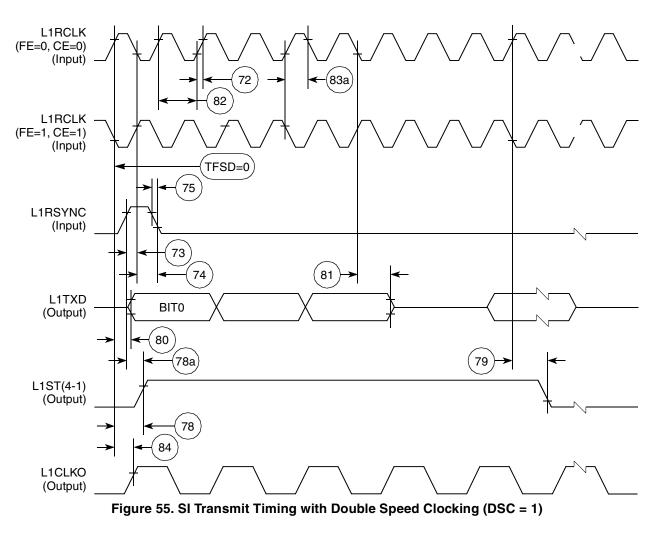



Figure 52. SI Receive Timing Diagram with Normal Clocking (DSC = 0)

11.7 SCC in NMSI Mode Electrical Specifications

Table 20 provides the NMSI external clock timing.

Table 20. NMSI External Clock Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	onn
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK +5	_	ns
102	RCLK1 and TCLK1 rise/fall time	—	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00	_	ns
106	RXD1 setup time to RCLK1 rising edge	5.00	_	ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	_	ns
108	CD1 setup Time to RCLK1 rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

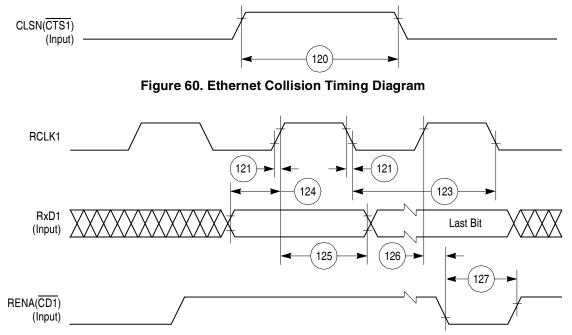
Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Characteristic	All Freq	Unit	
Nulli		Min	Мах	Omit
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK1 and TCLK1 rise/fall time	—	—	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	40.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns
108	CD1 setup time to RCLK1 rising edge	40.00	—	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.



Num	Characteristic		All Frequencies		
num	Characteristic	Min	Мах	Unit	
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns	
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns	
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns	
137	REJECT width low	1	—	CLK	
138	CLKO1 low to SDACK asserted ²	—	20	ns	
139	CLKO1 low to SDACK negated ²		20	ns	

Table 22. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

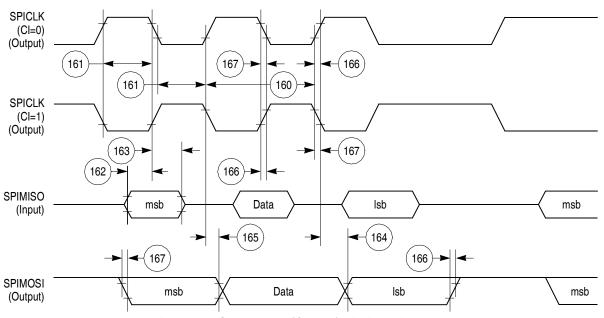


Figure 67. SPI Master (CP = 1) Timing Diagram

11.11 SPI Slave AC Electrical Specifications

Table 25 provides the SPI slave timings as shown in Figure 68 though Figure 69.

Table 25. SPI Slave Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	
170	Slave cycle time	2		t _{cyc}
171	Slave enable lead time		—	ns
172	Slave enable lag time	15	—	ns
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	—	t _{cyc}
175	Slave data setup time (inputs)	20	—	ns
176	Slave data hold time (inputs)	20	—	ns
177	Slave access time	—	50	ns

Num	Characteristic	Min	Max	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	—	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	—	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Figure 76 shows the MII serial management channel timing diagram.

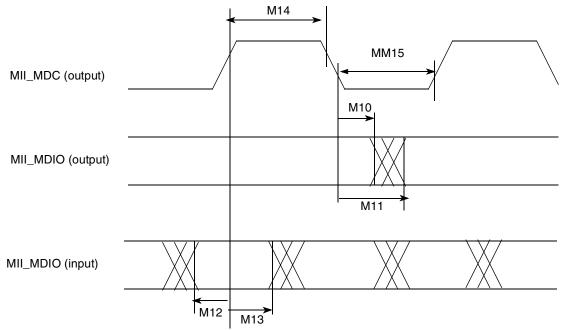


Figure 76. MII Serial Management Channel Timing Diagram

14 Mechanical Data and Ordering Information

Table 33 provides information on the MPC862/857T/857DSL derivative devices.

Table 33. MPC862/857T/857DSL Derivatives

Device	Number of	Ethernet	Multi-Channel	ATM Support	Cache	e Size
	SCCs ¹	Support	HDLC Support		Instruction	Data
MPC862T	Four	10/100 Mbps	Yes	Yes	4 Kbytes	4 Kbytes
MPC862P	Four	10/100 Mbps	Yes	Yes	16 Kbytes	8 Kbytes

Device	Number of	Ethernet	Multi-Channel	ATM Support	Cache Size	
Device	SCCs ¹	Support	HDLC Support		Instruction	Data
MPC857T	One (SCC1)	10/100 Mbps	Yes	Yes	4 Kbytes	4 Kbytes
MPC857DSL	One (SCC1)	10/100 Mbps	No	Up to 4 addresses	4 Kbytes	4 Kbytes

Table 33. MPC862/857T/857DSL Derivatives (continued)

¹ Serial communications controller (SCC)

Table 34 identifies the packages and operating frequencies orderable for the MPC862/857T/857DSL derivative devices.

Temperature (Tj) Frequency (MHz) Package Type **Order Number** Plastic ball grid array 0°C to 105°C 50 XPC862PZP50B (ZP suffix) XPC862TZP50B XPC857TZP50B XPC857DSLZP50B 66 XPC862PZP66B XPC862TZP66B XPC857TZP66B XPC857DSLZP66B 80 XPC862PZP80B XPC862TZP80B XPC857TZP80B 100 XPC862PZP100B XPC862TZP100B XPC857TZP100B Plastic ball grid array -40°C to 115°C 66 ¹ XPC862PCZP66B (CZP suffix) XPC857TCZP66B

Table 34. MPC862/857T/857DSL Package/Frequency Orderable

Additional extended temperature devices can be made available at 50MHz, 66MHz, and 80MHz

14.1 Pin Assignments

Figure 77 shows the top view pinout of the PBGA package. For additional information, see the *MPC862 PowerQUICC Family User s Manual*.

Name	Pin Number	Туре
BR	G4	Bidirectional
BG	E2	Bidirectional
BB	E1	Bidirectional Active Pull-up
FRZ IRQ6	G3	Bidirectional
IRQ0	V14	Input
IRQ1	U14	Input
M_TX_CLK IRQ7	W15	Input
<u>CS</u> [0:5]	C3, A2, D4, E4, A4, B4	Output
CS6 CE1_B	D5	Output
CS7 CE2_B	C4	Output
WE0 BS_B0 IORD	C7	Output
WE1 BS_B1 IOWR	A6	Output
WE2 BS_B2 PCOE	B6	Output
WE3 BS_B3 PCWE	A5	Output
BS_A[0:3]	D8, C8, A7, B8	Output
GPL_A0 GPL_B0	D7	Output
OE GPL_A1 GPL_B1	C6	Output
GPL_A[2:3] GPL_B[2:3] CS[2–3]	B5, C5	Output
UPWAITA GPL_A4	C1	Bidirectional
UPWAITB GPL_B4	B1	Bidirectional

Name	Pin Number	Туре
PA15 RXD1 RXD4	C18	Bidirectional
PA14 TXD1 TXD4	D17	Bidirectional (Optional: Open-drain)
PA13 RXD2	E17	Bidirectional
PA12 TXD2	F17	Bidirectional (Optional: Open-drain)
PA11 L1TXDB RXD3	G16	Bidirectional (Optional: Open-drain)
PA10 L1RXDB TXD3	J17	Bidirectional (Optional: Open-drain)
PA9 L1TXDA	К18	Bidirectional (Optional: Open-drain)
RXD4		
PA8 L1RXDA TXD4	L17	Bidirectional (Optional: Open-drain)
PA7 CLK1 L1RCLKA BRGO1 TIN1	M19	Bidirectional
PA6 CLK2 TOUT1	M17	Bidirectional
PA5 CLK3 L1TCLKA BRGO2 TIN2	N18	Bidirectional
PA4 CLK4 TOUT2	P19	Bidirectional
PA3 CLK5 BRGO3 TIN3	P17	Bidirectional

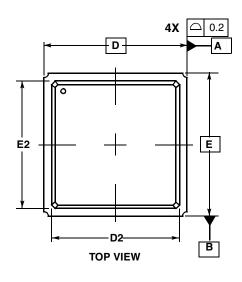
Name	Pin Number	Туре
PC13 L1RQb L1ST3 RTS3	E18	Bidirectional
PC12 L1RQa L1ST4 RTS4	F18	Bidirectional
PC11 CTS1	J19	Bidirectional
PC10 CD1 TGATE1	K19	Bidirectional
PC9 CTS2	L18	Bidirectional
PC8 CD2 TGATE2	M18	Bidirectional
PC7 CTS3 L1TSYNCB SDACK2	M16	Bidirectional
PC6 CD3 L1RSYNCB	R19	Bidirectional
PC5 CTS4 L1TSYNCA SDACK1	T18	Bidirectional
PC4 CD4 L1RSYNCA	T17	Bidirectional
PD15 L1TSYNCA MII-RXD3 UTPB0	U17	Bidirectional
PD14 L1RSYNCA MII-RXD2 UTPB1	V19	Bidirectional
PD13 L1TSYNCB MII-RXD1 UTPB2	V18	Bidirectional

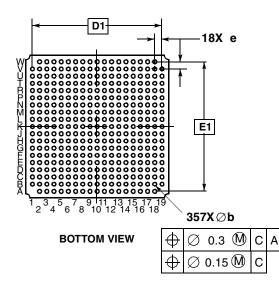
Table 35. Pin Assignments	(continued)
---------------------------	-------------

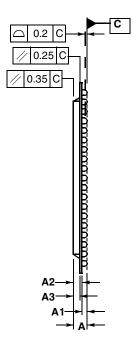
Name	Pin Number	Туре
PD12 L1RSYNCB MII-MDC UTPB3	R16	Bidirectional
PD11 RXD3 MII-TXERR RXENB	T16	Bidirectional
PD10 TXD3 MII-RXD0 TXENB	W18	Bidirectional
PD9 RXD4 MII-TXD0 UTPCLK	V17	Bidirectional
PD8 TXD4 MII-MDC MII-RXCLK	W17	Bidirectional
PD7 RTS3 MII-RXERR UTPB4	T15	Bidirectional
PD6 RTS4 MII-RXDV UTPB5	V16	Bidirectional
PD5 REJECT2 MII-TXD3 UTPB6	U15	Bidirectional
PD4 REJECT3 MII-TXD2 UTPB7	U16	Bidirectional
PD3 REJECT4 MII-TXD1 SOC	W16	Bidirectional
TMS	G18	Input
TDI DSDI	H17	Input
TCK DSCK	H16	Input

Name	Pin Number	Туре
TRST	G19	Input
TDO DSDO	G17	Output
M_CRS	B7	Input
M_MDIO	H18	Bidirectional
M_TXEN	V15	Output
M_COL	H4	Input
KAPWR	R1	Power
GND	F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10, G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14, J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11, K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14	Power
VDDL	A8, M1, W8, H19, F4, F16, P4, P16	Power
VDDH	E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5, P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14	Power
N/C	D6, D13, D14, U2, V2	No-connect

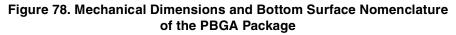
¹ Classic SAR mode only


² ESAR mode only


14.2 Mechanical Dimensions of the PBGA Package


For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to *Plastic Ball Grid Array Application Note* (order number: AN1231/D) available from your local Freescale sales office. Figure 78 shows the mechanical dimensions of the PBGA package.

Mechanical Data and Ordering Information


SIDE VIEW

NOTES:

- 1. Dimensions and tolerancing per ASME Y14.5M, 1994.
- 2. Dimensions in millimeters.
- 3. Dimension b is the maximum solder ball diameter measured parallel to datum C.

	MILLIMETERS	
DIM	MIN	MAX
Α		2.05
A1	0.50	0.70
A2	0.95	1.35
A3	0.70	0.90
b	0.60	0.90
D	25.00 BSC	
D1	22.86 BSC	
D2	22.40	22.60
е	1.27 BSC	
Е	25.00 BSC	
E1	22.86 BSC	
E2	22.40	22.60

Case No. 1103-01

В