

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Obsolete
MPC8xx
1 Core, 32-Bit
80MHz
Communications; CPM
DRAM
No
-
10Mbps (4), 10/100Mbps (1)
-
-
3.3V
-40°C ~ 115°C (TA)
-
357-BBGA
357-PBGA (25x25)
https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc862tczq80b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- The MPC862/857T/857DSL provides enhanced ATM functionality over that of the MPC860SAR. The MPC862/857T/857DSL adds major new features available in "enhanced SAR" (ESAR) mode, including the following:
 - Improved operation, administration and maintenance (OAM) support
 - OAM performance monitoring (PM) support
 - Multiple APC priority levels available to support a range of traffic pace requirements
 - ATM port-to-port switching capability without the need for RAM-based microcode
 - Simultaneous MII (10/100Base-T) and UTOPIA (half-duplex) capability
 - Optional statistical cell counters per PHY
 - UTOPIA level 2 compliant interface with added FIFO buffering to reduce the total cell transmission time. (The earlier UTOPIA level 1 specification is also supported.)
 - Multi-PHY support on the MPC857T
 - Four PHY support on the MPC857DSL
 - Parameter RAM for both SPI and I^2C can be relocated without RAM-based microcode
 - Supports full-duplex UTOPIA both master (ATM side) and slave (PHY side) operation using a "split" bus
 - AAL2/VBR functionality is ROM-resident
- Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
- 32 address lines
- Memory controller (eight banks)
 - Contains complete dynamic RAM (DRAM) controller
 - Each bank can be a chip select or \overline{RAS} to support a DRAM bank
 - Up to 30 wait states programmable per memory bank
 - Glueless interface to Page mode/EDO/SDRAM, SRAM, EPROMs, flash EPROMs, and other memory devices.
 - DRAM controller programmable to support most size and speed memory interfaces
 - Four $\overline{\text{CAS}}$ lines, four $\overline{\text{WE}}$ lines, one $\overline{\text{OE}}$ line
 - Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
 - Variable block sizes (32 Kbyte–256 Mbyte)
 - Selectable write protection
 - On-chip bus arbitration logic
- General-purpose timers
 - Four 16-bit timers cascadable to be two 32-bit timers
 - Gate mode can enable/disable counting
 - Interrupt can be masked on reference match and event capture
- Fast Ethernet controller (FEC)
 - Simultaneous MII (10/100Base-T) and UTOPIA operation when using the UTOPIA multiplexed bus.

Features

- Universal asynchronous receiver transmitter (UART)
- Synchronous UART
- Serial infrared (IrDA)
- Binary synchronous communication (BISYNC)
- Totally transparent (bit streams)
- Totally transparent (frame based with optional cyclic redundancy check (CRC))
- Two SMCs (serial management channels) (The MPC857DSL has one SMC, SMC1 for UART)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division multiplexed (TDM) channels
- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multiple-master operation on the same bus
- One inter-integrated circuit (I²C) port
 - Supports master and slave modes
 - Multiple-master environment support
- Time-slot assigner (TSA) (The MPC857DSL does not have the TSA)
 - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, clocking
 - Allows dynamic changes
 - On the MPC862P and MPC862T, can be internally connected to six serial channels (four SCCs and two SMCs); on the MPC857T, can be connected to three serial channels (one SCC and two SMCs)
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on MPC862/857T/857DSL or MC68360
- PCMCIA interface
 - Master (socket) interface, release 2.1 compliant
 - Supports one or two PCMCIA sockets dependent upon whether ESAR functionality is enabled
 - 8 memory or I/O windows supported
- Low power support
 - Full on—All units fully powered
 - Doze—Core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-power standby

Maximum Tolerated Ratings

*The MPC857DSL does not contain SMC2 nor the Time Slot Assigner, and provides eight SDMA controllers.

Figure 2. MPC857T/MPC857DSL Block Diagram

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC862/857T/857DSL. Table 2 provides the maximum ratings.

Table 2. Maximum Tolerated Ratings

(GND = 0 V)

Rating	Symbol	Value	Unit	Max Freq (MHz)
Supply voltage ¹	VDDH	-0.3 to 4.0	V	-
	VDDL	-0.3 to 4.0	V	-
	KAPWR	-0.3 to 4.0	V	-
	VDDSYN	-0.3 to 4.0	V	-

Thermal Characteristics

4 Thermal Characteristics

Table 3 shows the thermal characteristics for the MPC862/857T/857DSL.

Rating	Enviro	Symbol	Value	Unit	
Junction to ambient ¹	Natural Convection	Single layer board (1s)	R _{0JA} ²	37	°C/W
		Four layer board (2s2p)	$R_{\theta JMA}^{3}$	23	
	Air flow (200 ft/min)	Single layer board (1s)	$R_{\theta JMA}^{3}$	30	
		Four layer board (2s2p)	$R_{\theta JMA}^{3}$	19	
Junction to board ⁴			$R_{\theta JB}$	13	
Junction to case ⁵			$R_{ extsf{ heta}JC}$	6	
Junction to package top ⁶	Natural Convection		Ψ_{JT}	2	
	Air flow (200 ft/min)		Ψ_{JT}	2	

Table 3. MPC862/857T/857DSL Thermal Resistance Data

¹ Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- ² Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- ³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction to case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5 **Power Dissipation**

Table 4 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1 mode, where CPU frequency is twice bus speed.

Die Revision	Frequency	Typical ¹	Maximum ²	Unit
0 50 MHz		656	735	mW
(T:T Mode)	66 MHz	TBD	TBD	mW
A.1, B.0	50 MHz	630	760	mW
(1:1 Mode)	66 MHz	890	1000	mW

Table 4. Power Dissipation (P_D)

Num	Ohavastavistis	Characteristic 33 MHz 40 MHz 50 MHz 66 MHz Uni	33 MHz		33 MHz 40 MHz		50 MHz		66 MHz	
NUM	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Max	Unit
B8a	CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3) BDIP, PTR valid (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B8b	CLKOUT to \overline{BR} , \overline{BG} , VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), STS Valid ⁴ (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B11	CLKOUT to $\overline{\text{TS}}$, $\overline{\text{BB}}$ assertion (MAX = 0.25 x B1 + 6.0)	7.60	13.60	6.30	12.30	5.00	11.00	3.80	11.30	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.30 ⁵)	2.50	9.30	2.50	9.30	2.50	9.30	2.50	9.80	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation (MAX = 0.25 x B1 + 4.8)	7.60	12.30	6.30	11.00	5.00	9.80	3.80	8.50	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B13	CLKOUT to $\overline{\text{TS}}$, $\overline{\text{BB}}$ High-Z (MIN = 0.25 x B1)	7.60	21.60	6.30	20.30	5.00	19.00	3.80	14.00	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 x B1 + 2.5)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to TEA assertion (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 x B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	\overline{TA} , \overline{BI} valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 6.00)	6.00	—	6.00	—	6.00	—	6.00	—	ns
B16a	TEA, KR, RETRY, CR valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 4.5)	4.50	_	4.50	_	4.50	_	4.50	_	ns
B16b	$\overline{\text{BB}}$, $\overline{\text{BG}}$, $\overline{\text{BR}}$, valid to CLKOUT (setup time) ⁶ (4MIN = 0.00 x B1 + 0.00)	4.00	-	4.00	—	4.00	—	4.00	—	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time) (MIN = 0.00 x B1 + 1.00 ⁷)	1.00	_	1.00	_	1.00	_	2.00	_	ns

Table 7. Bus Operation Timings (continued)

Num	Characteristic	33	33 MHz		40 MHz		50 MHz		66 MHz	
NUM	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Мах	Unit
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00)	35.90		29.30		23.00		16.90		ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00)	43.50	—	35.50	—	28.00	_	20.70	_	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)$ negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00)	—	9.00	—	9.00	—	9.00	—	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, 1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	_	14.30	_	13.00	_	11.80	_	10.50	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	_	18.00	_	18.00	_	14.30	_	12.30	ns
B29	WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, CSNT = 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00)	5.60	—	4.30	—	3.00	_	1.80	—	ns
B29a	WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B29b	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3), High Z GPCM write access, ACS = 00, TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	—	1.80	_	ns
B29c	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns

Table 7. Bus Operation	i Timings	(continued)
------------------------	-----------	-------------

Num	Characteristic	33	33 MHz		40 MHz		50 MHz		66 MHz	
NUM	Characteristic	Min	Max	Min	Мах	Min	Мах	Min	Max	Unit
B30c	$\overline{WE}(0:3) \text{ negated to } A(0:31),$ BADDR(28:30) invalid GPCM write access, TRLX = 0, CSNT = 1. $\overline{CS} \text{ negated to } A(0:31) \text{ invalid GPCM}$ write access, TRLX = 0, CSNT = 1 ACS = 10, ACS == 11, EBDF = 1 (MIN = 0.375 x B1 - 3.00)	8.40		6.40		4.50		2.70		ns
B30d	$\overline{WE}(0:3) \text{ negated to } A(0:31),$ BADDR(28:30) invalid GPCM write access TRLX = 1, CSNT =1, $\overline{CS} \text{ negated to } A(0:31) \text{ invalid GPCM}$ write access TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1	38.67	_	31.38	_	24.50	_	17.83	_	ns
B31	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B31a	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B31b	CLKOUT rising edge to \overline{CS} valid - as requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid- as requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B31d	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6)	9.40	18.00	7.60	16.00	13.30	14.10	11.30	12.30	ns
B32	CLKOUT falling edge to $\overline{\text{BS}}$ valid- as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32b	CLKOUT rising edge to \overline{BS} valid - as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns

Table 7. Bus Operation Timings (continued)

Nium	Characteristic	33	MHz	40 I	MHz	50 I	MHz	66 MHz		11
NUM	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Max	Unit
B32c	CLKOUT rising edge to $\overline{\text{BS}}$ valid - as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to \overline{BS} valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)	9.40	18.00	7.60	16.00	13.30	14.10	11.30	12.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid - as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ Valid - as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B35	A(0:31), BADDR(28:30) to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to BS valid - As Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to BS valid - as requested by control bit BST2 in the corresponding word in the UPM (MIN = $0.75 \times B1 - 2.00$)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to \overline{GPL} valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns

Table 7. Bus Operation Timings (continued)

Figure 4 is the control timing diagram.

Figure 5 provides the timing for the external clock.

Figure 5. External Clock Timing

Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

ACS = 10, ACS = 11)

Table 12 shows the reset timing for the MPC862/857T/857DSL.

Table 12. Reset Timing

Num	Characteristic	33 N	/IHz	40 MHz		50 MHz		66 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to HRESET high impedance (MAX = 0.00 x B1 + 20.00)		20.00	_	20.00	—	20.00	—	20.00	ns
R70	CLKOUT to SRESET high impedance (MAX = 0.00 x B1 + 20.00)	_	20.00		20.00	_	20.00	_	20.00	ns
R71	RSTCONF pulse width (MIN = 17.00 x B1)	515.20	—	425.00	_	340.00	_	257.60		ns
R72	_		—		—	—	—	—	_	—
R73	Configuration data to HRESET rising edge set up time (MIN = 15.00 x B1 + 50.00)	504.50		425.00	_	350.00	_	277.30	-	ns
R74	Configuration data to RSTCONF rising edge set up time (MIN = 0.00 x B1 + 350.00)	350.00	—	350.00	_	350.00	_	350.00	_	ns
R75	Configuration data hold time after RSTCONF negation (MIN = 0.00 x B1 + 0.00)	0.00		0.00	—	0.00	—	0.00		ns
R76	Configuration data hold time after HRESET negation (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	—	0.00		ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 x B1 + 25.00)		25.00		25.00	_	25.00	—	25.00	ns
R78	RSTCONF negated to data out high impedance. (MAX = 0.00 x B1 + 25.00)	_	25.00	_	25.00	_	25.00	_	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance. (MAX = 0.00 x B1 + 25.00)	_	25.00	_	25.00	—	25.00	—	25.00	ns
R80	DSDI, DSCK set up (MIN = 3.00 x B1)	90.90	_	75.00	—	60.00	—	45.50	_	ns
R81	DSDI, DSCK hold time (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample (MIN = 8.00 x B1)	242.40		200.00	_	160.00	_	121.20	_	ns

11 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC862/857T/857DSL.

11.1 PIP/PIO AC Electrical Specifications

Table 14 provides the PIP/PIO AC timings as shown in Figure 40 though Figure 44.

Table 14. PIP/PIO Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Onit
21	Data-in setup time to STBI low	0	_	ns
22	Data-in hold time to STBI high	2.5 – t3 ¹	_	clk
23	STBI pulse width	1.5	-	clk
24	STBO pulse width	1 clk – 5 ns	-	ns
25	Data-out setup time to STBO low	2	-	clk
26	Data-out hold time from STBO high	5	-	clk
27	STBI low to STBO low (Rx interlock)	—	2	clk
28	STBI low to STBO high (Tx interlock)	2	-	clk
29	Data-in setup time to clock high	15	-	ns
30	Data-in hold time from clock high	7.5	_	ns
31	Clock low to data-out valid (CPU writes data, control, or direction)	_	25	ns

¹ t3 = Specification 23

Figure 40. PIP Rx (Interlock Mode) Timing Diagram

Figure 42. PIP Rx (Pulse Mode) Timing Diagram

Figure 43. PIP TX (Pulse Mode) Timing Diagram

Figure 51. CPM General-Purpose Timers Timing Diagram

11.6 Serial Interface AC Electrical Specifications

Table 19 provides the serial interface timings as shown in Figure 52 though Figure 56.

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Мах	Onit
70	L1RCLK, L1TCLK frequency (DSC = 0) ^{1, 2}	_	SYNCCLK/2.5	MHz
71	L1RCLK, L1TCLK width low (DSC = 0) 2	P + 10	—	ns
71a	L1RCLK, L1TCLK width high (DSC = 0) 3	P + 10	—	ns
72	L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time	_	15.00	ns
73	L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)	20.00	—	ns
74	L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)	35.00	_	ns
75	L1RSYNC, L1TSYNC rise/fall time	_	15.00	ns
76	L1RXD valid to L1CLK edge (L1RXD setup time)	17.00	—	ns
77	L1CLK edge to L1RXD invalid (L1RXD hold time)	13.00	—	ns
78	L1CLK edge to L1ST(1-4) valid ⁴	10.00	45.00	ns
78A	L1SYNC valid to L1ST(1-4) valid	10.00	45.00	ns
79	L1CLK edge to L1ST(1-4) invalid	10.00	45.00	ns
80	L1CLK edge to L1TXD valid	10.00	55.00	ns
80A	L1TSYNC valid to L1TXD valid ⁴	10.00	55.00	ns
81	L1CLK edge to L1TXD high impedance	0.00	42.00	ns
82	L1RCLK, L1TCLK frequency (DSC =1)	_	16.00 or SYNCCLK/2	MHz
83	L1RCLK, L1TCLK width low (DSC =1)	P + 10	—	ns

Table 19. SI Timing

11.7 SCC in NMSI Mode Electrical Specifications

Table 20 provides the NMSI external clock timing.

Table 20. NMSI External Clock Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Om
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK +5	_	ns
102	RCLK1 and TCLK1 rise/fall time	_	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00		ns
106	RXD1 setup time to RCLK1 rising edge	5.00		ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	_	ns
108	CD1 setup Time to RCLK1 rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Onit
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK1 and TCLK1 rise/fall time	—	_	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	40.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns
108	CD1 setup time to RCLK1 rising edge	40.00	_	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

UTOPIA AC Electrical Specifications

Figure 70 shows the I^2C bus timing.

12 UTOPIA AC Electrical Specifications

Table 28 shows the AC electrical specifications for the UTOPIA interface.

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output		4 ns	ns
	Duty cycle		50	50	%
	Frequency			33	MHz
U1a	UtpClk rise/fall time (external clock option)	Input		4ns	ns
	Duty cycle		40	60	%
	Frequency			33	MHz
U2	RxEnb and TxEnb active delay	Output	2 ns	16 ns	ns
U3	UTPB, SOC, Rxclav and Txclav setup time	Input	4 ns		ns
U4	UTPB, SOC, Rxclav and Txclav hold time	Input	1 ns		ns
U5	UTPB, SOC active delay (and PHREQ and PHSEL active delay in MPHY mode)	Output	2 ns	16 ns	ns

Table 28. UTOPIA AC Electrical Specifications

Device	Number	Ethernet	Multi-Channel ATM Support		Cache	ne Size	
Device	SCCs ¹	Support	HDLC Support		Instruction	Data	
MPC857T	One (SCC1)	10/100 Mbps	Yes	Yes	4 Kbytes	4 Kbytes	
MPC857DSL	One (SCC1)	10/100 Mbps	No	Up to 4 addresses	4 Kbytes	4 Kbytes	

Table 33. MPC862/857T/857DSL Derivatives (continued)

¹ Serial communications controller (SCC)

Table 34 identifies the packages and operating frequencies orderable for the MPC862/857T/857DSL derivative devices.

Temperature (Tj) Frequency (MHz) Package Type **Order Number** Plastic ball grid array 0°C to 105°C 50 XPC862PZP50B (ZP suffix) XPC862TZP50B XPC857TZP50B XPC857DSLZP50B 66 XPC862PZP66B XPC862TZP66B XPC857TZP66B XPC857DSLZP66B 80 XPC862PZP80B XPC862TZP80B XPC857TZP80B 100 XPC862PZP100B XPC862TZP100B XPC857TZP100B Plastic ball grid array -40°C to 115°C 66 ¹ XPC862PCZP66B (CZP suffix) XPC857TCZP66B

Table 34. MPC862/857T/857DSL Package/Frequency Orderable

Additional extended temperature devices can be made available at 50MHz, 66MHz, and 80MHz

14.1 Pin Assignments

Figure 77 shows the top view pinout of the PBGA package. For additional information, see the *MPC862 PowerQUICC Family User s Manual*.

Name	Pin Number	Туре
PC13 L1RQb L1ST3 RTS3	E18	Bidirectional
PC12 L1RQa L1ST4 RTS4	F18	Bidirectional
PC11 CTS1	J19	Bidirectional
PC10 CD1 TGATE1	K19	Bidirectional
PC9 CTS2	L18	Bidirectional
PC8 CD2 TGATE2	M18	Bidirectional
PC7 CTS3 L1TSYNCB SDACK2	M16	Bidirectional
PC6 CD3 L1RSYNCB	R19	Bidirectional
PC5 CTS4 L1TSYNCA SDACK1	T18	Bidirectional
PC4 CD4 L1RSYNCA	T17	Bidirectional
PD15 L1TSYNCA MII-RXD3 UTPB0	U17	Bidirectional
PD14 L1RSYNCA MII-RXD2 UTPB1	V19	Bidirectional
PD13 L1TSYNCB MII-RXD1 UTPB2	V18	Bidirectional

Table 35. Pin Assignments (continued)