

EXF

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Active
Core Processor	-
Number of Cores/Bus Width	-
Speed	-
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	-
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	-
Operating Temperature	-
Security Features	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc862tvr50b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- Sleep—All units disabled except RTC, PIT, time base, and decrementer with PLL active for fast wake up
- Deep sleep—All units disabled including PLL except RTC, PIT, time base, and decrementer.
- Power down mode- All units powered down except PLL, RTC, PIT, time base and
- decrementerDebug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: $= \neq < >$
 - Each watchpoint can generate a break point internally
- 3.3 V operation with 5-V TTL compatibility except EXTAL and EXTCLK
- 357-pin plastic ball grid array (PBGA) package
- Operation up to 100MHz

The MPC862/857T/857DSL is comprised of three modules that each use the 32-bit internal bus: the MPC8xx core, the system integration unit (SIU), and the communication processor module (CPM). The MPC862P/862T block diagram is shown in Figure 1. The MPC857T/857DSL block diagram is shown in Figure 2.

Die Revision	Frequency	Typical ¹	Maximum ²	Unit
A.1, B.0	66 MHz	910	1060	mW
(2:1 Mode)	80 MHz	1.06	1.20	W
B.0 (2:1 Mode)	100 MHz	1.35	1.54	W

Table 4. Power Dissipation (P_D) (continued)

¹ Typical power dissipation is measured at 3.3 V.

² Maximum power dissipation is measured at 3.5 V.

NOTE

Values in Table 4 represent VDDL based power dissipation and do not include I/O power dissipation over VDDH. I/O power dissipation varies widely by application due to buffer current, depending on external circuitry.

6 DC Characteristics

Table 5 provides the DC electrical characteristics for the MPC862/857T/857DSL.

Characteristic	Symbol	Min	Мах	Unit
Operating voltage	VDDH, VDDL, KAPWR, VDDSYN	3.135	3.465	V
	KAPWR (power-down mode)	2.0	3.6	V
	KAPWR (all other operating modes)	VDDH – 0.4	VDDH	V
Input High Voltage (all inputs except EXTAL and EXTCLK)	VIH	2.0	5.5	V
Input Low Voltage ¹	VIL	GND	0.8	V
EXTAL, EXTCLK Input High Voltage	VIHC	0.7*(VCC)	VCC+0.3	V
Input Leakage Current, Vin = 5.5 V (Except TMS, TRST, DSCK and DSDI pins)	l _{in}	—	100	μA
Input Leakage Current, Vin = 3.6 V (Except TMS, TRST, DSCK, and DSDI)	I _{In}	—	10	μA
Input Leakage Current, Vin = 0 V (Except TMS, $\overline{\text{TRST}}$, DSCK, and DSDI pins)	I _{In}	—	10	μA
Input Capacitance ²	C _{in}	_	20	pF
Output High Voltage, IOH = -2.0 mA, VDDH = 3.0 V (Except XTAL, XFC, and Open drain pins)	VOH	2.4	_	V

Table 5. DC Electrical Specifications

Thermal Calculation and Measurement

Characteristic	Symbol	Min	Мах	Unit
Output Low Voltage IOL = 2.0 mA (CLKOUT) IOL = 3.2 mA ³ IOL = 5.3 mA ⁴ IOL = 7.0 mA (TXD1/PA14, TXD2/PA12) IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)	VOL	_	0.5	V

Table 5. DC Electrical Specifications (continued)

¹ $V_{IL}(max)$ for the I²C interface is 0.8 V rather than the 1.5 V as specified in the I²C standard.

² Input capacitance is periodically sampled.

 ³ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB29, BRGO4/SPIMISO/PB28, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1SYNCB/PC7, CD3/L1RSYNCB/PC6, CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB, PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3, PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].

⁴ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (VDD \times IDD) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

 T_A = ambient temperature (°C)

 $R_{\theta IA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity T_J - T_A) are possible.

7.6 References

Semiconductor Equipment and Materials International	(415) 964-5111
805 East Middlefield Rd.	
Mountain View, CA 94043	
MIL-SPEC and EIA/JESD (JEDEC) Specifications	800-854-7179 or
(Available from Global Engineering Documents)	303-397-7956
JEDEC Specifications	http://www.jedec.org

1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.

2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

8 Layout Practices

Each V_{CC} pin on the MPC862/857T/857DSL should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MPC862/857T/857DSL have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

9 Bus Signal Timing

The maximum bus speed supported by the MPC862/857T/857DSL is 66 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC862/857T/857DSL used at 80MHz must be configured for a 40 MHz bus). Table 6 shows the period ranges for standard part frequencies.

Freq	50 N	ЛНz	66 I	MHz	80 MHz		80 MHz 100 MHz	
	Min	Max	Min	Max	Min	Мах	Min	Max
Period	20.00	30.30	15.15	30.30	25.00	30.30	20.00	30.30

Table 6. Period Range for Standard Part Frequencies

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		11
NUM	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Max	Unit
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 x B1 - 2.00)	35.90		29.30		23.00		16.90		ns
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 x B1 - 2.00)	43.50	—	35.50	—	28.00	_	20.70	_	ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)$ negated GPCM write access CSNT = 0 (MAX = 0.00 x B1 + 9.00)	—	9.00	—	9.00	—	9.00	—	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, 1, CSNT = 1, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	_	14.30	_	13.00	_	11.80	_	10.50	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0,1, CSNT = 1, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0,1, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	_	18.00	_	18.00	_	14.30	_	12.30	ns
B29	WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, CSNT = 0, EBDF = 0 (MIN = 0.25 x B1 - 2.00)	5.60	—	4.30	—	3.00	—	1.80	—	ns
B29a	WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B29b	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3), High Z GPCM write access, ACS = 00, TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	—	1.80	_	ns
B29c	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns

Table 7. Bus Operation	i Timings	(continued)
------------------------	-----------	-------------

Bus Signal Timing

Figure 19 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Cycles Timing

Figure 20 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 21 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 22 provides the timing for the asynchronous external master memory access controlled by the GPCM.

(GPCM Controlled—ACS = 00)

Figure 23 provides the timing for the asynchronous external master control signals negation.

Figure 23. Asynchronous External Master—Control Signals Negation Timing

Table 8 provides interrupt timing for the MPC862/857T/857DSL.Table 8. Interrupt Timing

Num	Charaotoriotio 1	All Freq	Unit	
NUIT	Characteristic	Min	Мах	Unit
139	IRQx valid to CLKOUT rising edge (set up time)	6.00		ns
140	IRQx hold time after CLKOUT	2.00		ns
l41	IRQx pulse width low	3.00		ns
142	IRQx pulse width high	3.00		ns
143	IRQx edge-to-edge time	4xT _{CLOCKOUT}		_

¹ The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.

The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC862/857T/857DSL is able to support.

Figure 24 provides the interrupt detection timing for the external level-sensitive lines.

Figure 24. Interrupt Detection Timing for External Level Sensitive Lines

Figure 25 provides the interrupt detection timing for the external edge-sensitive lines.

Figure 25. Interrupt Detection Timing for External Edge Sensitive Lines

Figure 27 provides the PCMCIA access cycle timing for the external bus write.

Figure 27. PCMCIA Access Cycles Timing External Bus Write

Figure 28 provides the PCMCIA WAIT signals detection timing.

Figure 28. PCMCIA WAIT Signals Detection Timing

Table 11 shows the debug port timing for the MPC862/857T/857DSL.

Num	Characteristic	All Freq	Unit	
Nulli	Characteristic	Min	Мах	Omt
D61	DSCK cycle time	3 x T _{CLOCKOUT}		-
D62	DSCK clock pulse width	1.25 x T _{CLOCKOUT}		-
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00		ns
D65	DSDI data hold time	5.00		ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Table 11. Debug Port Timing

Figure 31 provides the input timing for the debug port clock.

Figure 31. Debug Port Clock Input Timing

Figure 32 provides the timing for the debug port.

Figure 32. Debug Port Timings

CPM Electrical Characteristics

Num	Characteristic	All Freq	Unit	
Num		Min	Мах	Omt
43	SDACK negation delay from clock low	_	12	ns
44	SDACK negation delay from TA low	_	20	ns
45	SDACK negation delay from clock high	_	15	ns
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7	—	ns

Table 16. IDMA Controller Timing (continued)

Figure 46. IDMA External Requests Timing Diagram

Figure 47. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

CPM Electrical Characteristics

11.7 SCC in NMSI Mode Electrical Specifications

Table 20 provides the NMSI external clock timing.

Table 20. NMSI External Clock Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	All Frequencies Unit Min Max Unit 1/SYNCCLK — n 1/SYNCCLK +5 — n 1/SYNCCLK +5 — n 0.00 50.00 n ge) 0.00 50.00 n 5.00 — n n 5.00 — n n	Om	
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK +5	_	ns
102	RCLK1 and TCLK1 rise/fall time	_	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00		ns
106	RXD1 setup time to RCLK1 rising edge	5.00		ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	_	ns
108	CD1 setup Time to RCLK1 rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Charactoristic	All Frequencies		Unit	
Nulli	Characteristic	Min	Мах	Onit	
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz	
102	RCLK1 and TCLK1 rise/fall time	—	_	ns	
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns	
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns	
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns	
106	RXD1 setup time to RCLK1 rising edge	40.00	—	ns	
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns	
108	CD1 setup time to RCLK1 rising edge	40.00	_	ns	

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

CPM Electrical Characteristics

Figure 64. CAM Interface REJECT Timing Diagram

Figure 67. SPI Master (CP = 1) Timing Diagram

11.11 SPI Slave AC Electrical Specifications

Table 25 provides the SPI slave timings as shown in Figure 68 though Figure 69.

Table 25. SPI Slave Timing

Num	Charactoristic	All Frequencies U Min Max		Unit	
Num	Characteristic			Omit	
170	Slave cycle time	2	—	t _{cyc}	
171	Slave enable lead time		—	ns	
172	Slave enable lag time	15	—	ns	
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}	
174	Slave sequential transfer delay (does not require deselect)		—	t _{cyc}	
175	Slave data setup time (inputs)		—	ns	
176	Slave data hold time (inputs)		—	ns	
177	Slave access time		50	ns	

Figure 71 shows signal timings during UTOPIA receive operations.

Figure 72 shows signal timings during UTOPIA transmit operations.

Figure 72. UTOPIA Transmit Timing

13 FEC Electrical Characteristics

This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Furthermore, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

FEC Electrical Characteristics

13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency - 1%.

Table 29 provides information on the MII receive signal timing.

Num	Characteristic	Min	Мах	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup	5	—	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	—	ns
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period

Table 29. MII Receive Signal Timing

Figure 73 shows MII receive signal timing.

Figure 73. MII Receive Signal Timing Diagram

13.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN, MII_TX_ER, MII_TX_CLK)

The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK frequency - 1%.

Table 30 provides information on the MII transmit signal timing.

Table 30. MII Transmit Signal Timing

Num	Characteristic	Min	Мах	Unit
M5	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid	5	—	ns
M6	MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid	_	25	

Num	Characteristic	Min	Мах	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)	_	25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	_	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	_	ns
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Figure 76 shows the MII serial management channel timing diagram.

Figure 76. MII Serial Management Channel Timing Diagram

14 Mechanical Data and Ordering Information

Table 33 provides information on the MPC862/857T/857DSL derivative devices.

Table 33. MPC862/857T/857DSL Derivatives

Device	Number	Ethernet	Multi-Channel	ATM Support	Cache Size	
Device	SCCs ¹	Support	HDLC Support		Instruction	Data
MPC862T	Four	10/100 Mbps	Yes	Yes	4 Kbytes	4 Kbytes
MPC862P	Four	10/100 Mbps	Yes	Yes	16 Kbytes	8 Kbytes

Table 35 contains a list of the MPC862 input and output signals and shows multiplexing and pin assignments.

Name	Pin Number	Туре
A[0:31]	B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15, C14, B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10, C10, A13, A10, A12, A11, A9	Bidirectional Three-state
TSIZ0 REG	В9	Bidirectional Three-state
TSIZ1	C9	Bidirectional Three-state
RD/WR	B2	Bidirectional Three-state
BURST	F1	Bidirectional Three-state
BDIP GPL_B5	D2	Output
TS	F3	Bidirectional Active Pull-up
TA	C2	Bidirectional Active Pull-up
TEA	D1	Open-drain
BI	E3	Bidirectional Active Pull-up
IRQ2 RSV	НЗ	Bidirectional Three-state
IRQ4 KR RETRY SPKROUT	К1	Bidirectional Three-state
CR IRQ3	F2	Input
D[0:31]	W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11, T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, V12, V6, W5, U6, T7	Bidirectional Three-state
DP0 IRQ3	V3	Bidirectional Three-state
DP1 IRQ4	V5	Bidirectional Three-state
DP2 IRQ5	W4	Bidirectional Three-state
DP3 IRQ6	V4	Bidirectional Three-state

Table 35. Pin Assignments

How to Reach Us:

Home Page: www.freescale.com email:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC862EC Rev. 3 2/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2006.

