

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc862tvr66b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- The MPC862/857T/857DSL provides enhanced ATM functionality over that of the MPC860SAR. The MPC862/857T/857DSL adds major new features available in "enhanced SAR" (ESAR) mode, including the following:
 - Improved operation, administration and maintenance (OAM) support
 - OAM performance monitoring (PM) support
 - Multiple APC priority levels available to support a range of traffic pace requirements
 - ATM port-to-port switching capability without the need for RAM-based microcode
 - Simultaneous MII (10/100Base-T) and UTOPIA (half-duplex) capability
 - Optional statistical cell counters per PHY
 - UTOPIA level 2 compliant interface with added FIFO buffering to reduce the total cell transmission time. (The earlier UTOPIA level 1 specification is also supported.)
 - Multi-PHY support on the MPC857T
 - Four PHY support on the MPC857DSL
 - Parameter RAM for both SPI and I^2C can be relocated without RAM-based microcode
 - Supports full-duplex UTOPIA both master (ATM side) and slave (PHY side) operation using a "split" bus
 - AAL2/VBR functionality is ROM-resident
- Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
- 32 address lines
- Memory controller (eight banks)
 - Contains complete dynamic RAM (DRAM) controller
 - Each bank can be a chip select or \overline{RAS} to support a DRAM bank
 - Up to 30 wait states programmable per memory bank
 - Glueless interface to Page mode/EDO/SDRAM, SRAM, EPROMs, flash EPROMs, and other memory devices.
 - DRAM controller programmable to support most size and speed memory interfaces
 - Four $\overline{\text{CAS}}$ lines, four $\overline{\text{WE}}$ lines, one $\overline{\text{OE}}$ line
 - Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
 - Variable block sizes (32 Kbyte–256 Mbyte)
 - Selectable write protection
 - On-chip bus arbitration logic
- General-purpose timers
 - Four 16-bit timers cascadable to be two 32-bit timers
 - Gate mode can enable/disable counting
 - Interrupt can be masked on reference match and event capture
- Fast Ethernet controller (FEC)
 - Simultaneous MII (10/100Base-T) and UTOPIA operation when using the UTOPIA multiplexed bus.

Features

- Sleep—All units disabled except RTC, PIT, time base, and decrementer with PLL active for fast wake up
- Deep sleep—All units disabled including PLL except RTC, PIT, time base, and decrementer.
- Power down mode- All units powered down except PLL, RTC, PIT, time base and
- decrementerDebug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: $= \neq < >$
 - Each watchpoint can generate a break point internally
- 3.3 V operation with 5-V TTL compatibility except EXTAL and EXTCLK
- 357-pin plastic ball grid array (PBGA) package
- Operation up to 100MHz

The MPC862/857T/857DSL is comprised of three modules that each use the 32-bit internal bus: the MPC8xx core, the system integration unit (SIU), and the communication processor module (CPM). The MPC862P/862T block diagram is shown in Figure 1. The MPC857T/857DSL block diagram is shown in Figure 2.

Thermal Calculation and Measurement

Characteristic	Symbol	Min	Мах	Unit
Output Low Voltage IOL = 2.0 mA (CLKOUT) IOL = 3.2 mA^3 IOL = 5.3 mA^4 IOL = $7.0 \text{ mA} (TXD1/PA14, TXD2/PA12)$ IOL = $8.9 \text{ mA} (TS, TA, TEA, BI, BB, HRESET, SRESET)$	VOL	_	0.5	V

Table 5. DC Electrical Specifications (continued)

¹ $V_{IL}(max)$ for the I²C interface is 0.8 V rather than the 1.5 V as specified in the I²C standard.

² Input capacitance is periodically sampled.

 ³ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB29, BRGO4/SPIMISO/PB28, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1SYNCB/PC7, CD3/L1RSYNCB/PC6, CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB, PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3, PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].

⁴ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (VDD \times IDD) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

 T_A = ambient temperature (°C)

 $R_{\theta IA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity T_J - T_A) are possible.

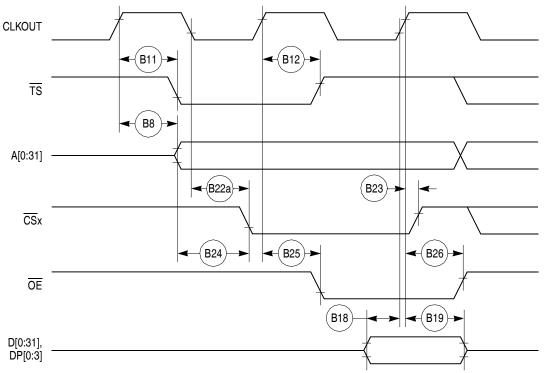
	Oh one stanistic	33	MHz	40	MHz	50 I	MHz	66 I		
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B30c	$\overline{WE}(0:3) \text{ negated to } A(0:31),$ BADDR(28:30) invalid GPCM write access, TRLX = 0, CSNT = 1. $\overline{CS} \text{ negated to } A(0:31) \text{ invalid GPCM}$ write access, TRLX = 0, CSNT = 1 ACS = 10, ACS == 11, EBDF = 1 (MIN = 0.375 x B1 - 3.00)	8.40		6.40		4.50		2.70		ns
B30d	\overline{WE} (0:3) negated to A(0:31), BADDR(28:30) invalid GPCM write access TRLX = 1, CSNT =1, \overline{CS} negated to A(0:31) invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1	38.67	_	31.38		24.50	_	17.83	_	ns
B31	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM (MAX = 0.00 X B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B31a	CLKOUT falling edge to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B31b	CLKOUT rising edge to \overline{CS} valid - as requested by control bit CST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B31c	CLKOUT rising edge to \overline{CS} valid- as requested by control bit CST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B31d	CLKOUT falling edge to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 (MAX = 0.375 x B1 + 6.6)	9.40	18.00	7.60	16.00	13.30	14.10	11.30	12.30	ns
B32	CLKOUT falling edge to $\overline{\text{BS}}$ valid- as requested by control bit BST4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32b	CLKOUT rising edge to \overline{BS} valid - as requested by control bit BST2 in the corresponding word in the UPM (MAX = 0.00 x B1 + 8.00)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns

Table 7. Bus Operation Timings (continued)

N	0k	33	MHz	40 I	MHz	50 I	MHz	66 MHz		11
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B32c	CLKOUT rising edge to $\overline{\text{BS}}$ valid - as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to \overline{BS} valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)	9.40	18.00	7.60	16.00	13.30	14.10	11.30	12.30	ns
B33	CLKOUT falling edge to \overline{GPL} valid - as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ Valid - as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B35	A(0:31), BADDR(28:30) to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid - As Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to BS valid - as requested by control bit BST2 in the corresponding word in the UPM (MIN = $0.75 \times B1 - 2.00$)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to \overline{GPL} valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns

Table 7. Bus Operation Timings (continued)

Num	Num Characteristic –		33 MHz 40 MHz		50 MHz		66 MHz		Unit	
Num	Unaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	onn
B37	UPWAIT valid to CLKOUT falling edge 1^2 (MIN = 0.00 x B1 + 6.00)	6.00	_	6.00	—	6.00	_	6.00	—	ns
B38	CLKOUT falling edge to UPWAIT valid 12 (MIN = 0.00 x B1 + 1.00)	1.00	—	1.00	—	1.00	_	1.00	—	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ¹³ (MIN = 0.00 x B1 + 7.00)	7.00	_	7.00	—	7.00	_	7.00	—	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00	—	7.00	—	7.00	—	7.00	—	ns
B41	TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	—	7.00	—	7.00	-	7.00	—	ns
B42	CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)		TBD		TBD		TBD		TBD	ns


Table 7. Bus Operation Timings (continued)

¹ Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.

² If the rate of change of the frequency of EXTAL is slow (I.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (I.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

- ³ The timings specified in B4 and B5 are based on full strength clock.
- ⁴ The timing for BR output is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter.
- ⁵ For part speeds above 50MHz, use 9.80ns for B11a.
- ⁶ The timing required for BR input is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter. The timing for BG input is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter.
- ⁷ For part speeds above 50MHz, use 2ns for B17.
- ⁸ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- ⁹ For part speeds above 50MHz, use 2ns for B19.
- ¹⁰ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
- ¹¹ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.
- ¹² The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 19.
- ¹³ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 22.

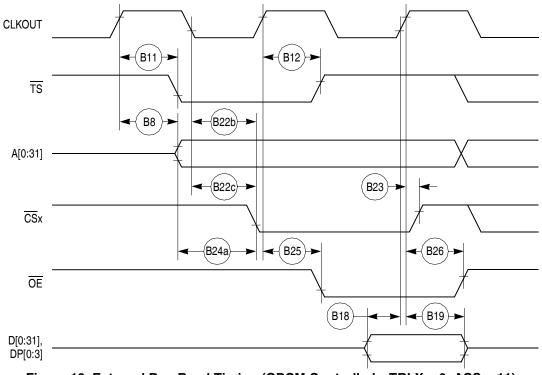
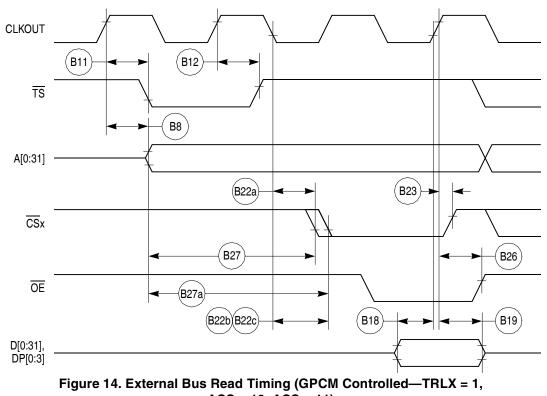



Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

ACS = 10, ACS = 11)

Figure 15 through Figure 17 provide the timing for the external bus write controlled by various GPCM factors.

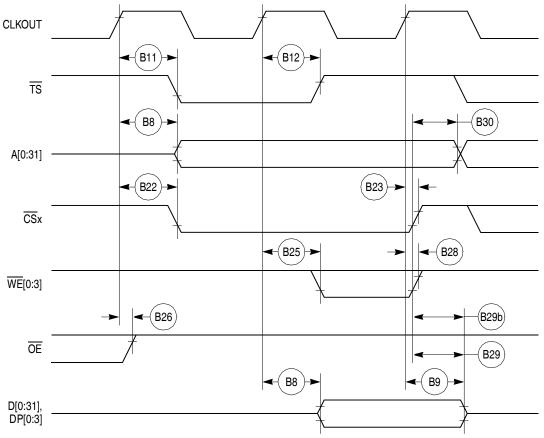


Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0,1 CSNT = 0)

Figure 21 provides the timing for the synchronous external master access controlled by the GPCM.

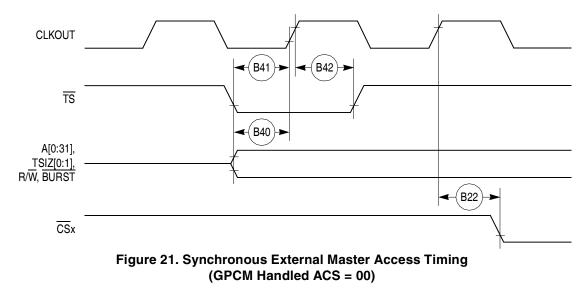
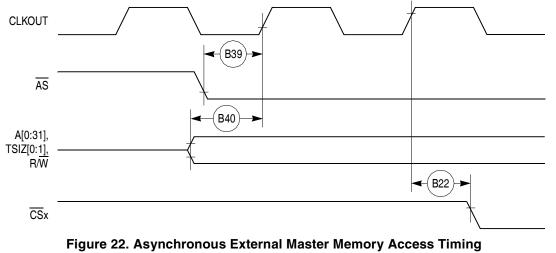



Figure 22 provides the timing for the asynchronous external master memory access controlled by the GPCM.

(GPCM Controlled—ACS = 00)

Figure 23 provides the timing for the asynchronous external master control signals negation.

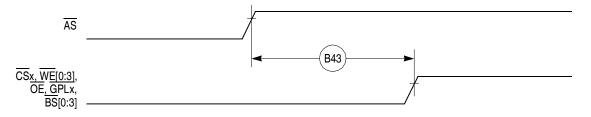


Figure 23. Asynchronous External Master—Control Signals Negation Timing

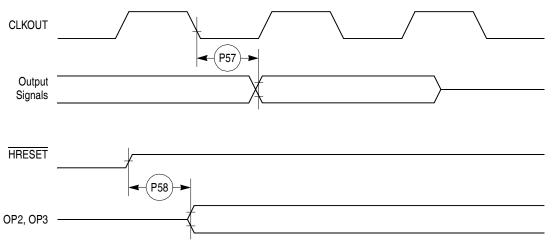

Table 10 shows the PCMCIA port timing for the MPC862/857T/857DSL.

Table	10.	PCMCIA	Port	Timina
10010		1 0 11 0 17		

Num	Characteristic	33 MHz		40 MHz		50 MHz		66 MHz		Unit
	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Max	Onic
P57	CLKOUT to OPx Valid (MAX = 0.00 x B1 + 19.00)	_	19.00	_	19.00	_	19.00	_	19.00	ns
P58	HRESET negated to OPx drive 1 (MIN = 0.75 x B1 + 3.00)	25.70	_	21.70	—	18.00	_	14.40	_	ns
P59	IP_Xx valid to CLKOUT rising edge (MIN = 0.00 x B1 + 5.00)	5.00	_	5.00	_	5.00	_	5.00	_	ns
P60	CLKOUT rising edge to IP_Xx invalid (MIN = 0.00 x B1 + 1.00)	1.00	_	1.00	_	1.00	_	1.00	_	ns

¹ OP2 and OP3 only.

Figure 29 provides the PCMCIA output port timing for the MPC862/857T/857DSL.

Figure 29. PCMCIA Output Port Timing

Figure 30 provides the PCMCIA output port timing for the MPC862/857T/857DSL.

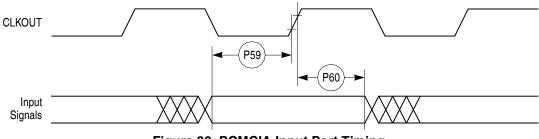


Figure 30. PCMCIA Input Port Timing

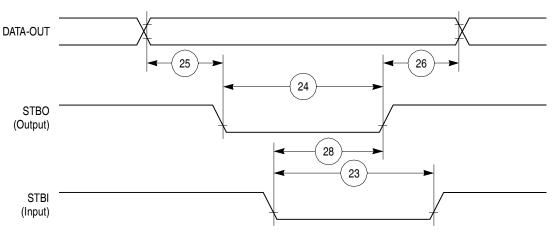

Table 12 shows the reset timing for the MPC862/857T/857DSL.

Table 12. Reset Timing

Num	Oberresteristic	33 N	IHz	40 M	lHz	50 N	1Hz	66 MHz		Unit
NUM	Characteristic	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
R69	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 x B1 + 20.00)	_	20.00	_	20.00	_	20.00	_	20.00	ns
R70	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 x B1 + 20.00)		20.00	—	20.00	_	20.00	—	20.00	ns
R71	$\overline{\text{RSTCONF}} \text{ pulse width} $ (MIN = 17.00 x B1)	515.20		425.00	_	340.00	—	257.60		ns
R72	—			—		—	—	—	—	—
R73	Configuration data to HRESET rising edge set up time (MIN = 15.00 x B1 + 50.00)	504.50	_	425.00	—	350.00	—	277.30	_	ns
R74	Configuration data to RSTCONF rising edge set up time (MIN = 0.00 x B1 + 350.00)	350.00	_	350.00	—	350.00	—	350.00	_	ns
R75	Configuration data hold time after RSTCONF negation (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	—	0.00	_	ns
R76	Configuration data hold time after HRESET negation (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 x B1 + 25.00)		25.00	—	25.00	_	25.00	_	25.00	ns
R78	RSTCONF negated to data out high impedance. (MAX = 0.00 x B1 + 25.00)	_	25.00	—	25.00	_	25.00	_	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance. (MAX = 0.00 x B1 + 25.00)	_	25.00	_	25.00	_	25.00	—	25.00	ns
R80	DSDI, DSCK set up (MIN = 3.00 x B1)	90.90	_	75.00		60.00	_	45.50	—	ns
R81	DSDI, DSCK hold time (MIN = 0.00 x B1 + 0.00)	0.00	_	0.00		0.00	_	0.00	—	ns
R82	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample (MIN = 8.00 x B1)	242.40	_	200.00	—	160.00	—	121.20	—	ns

CPM Electrical Characteristics

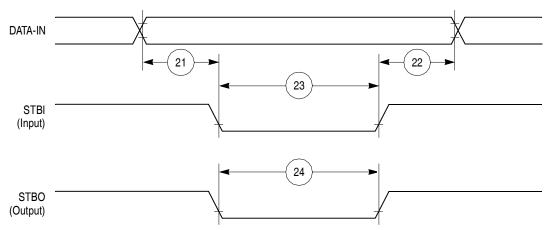


Figure 42. PIP Rx (Pulse Mode) Timing Diagram

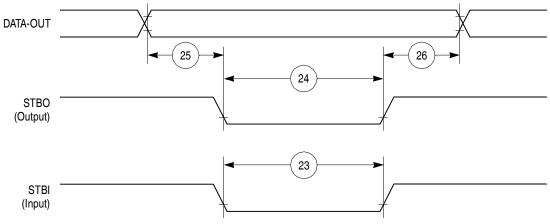


Figure 43. PIP TX (Pulse Mode) Timing Diagram

CPM Electrical Characteristics

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Max	
83a	L1RCLK, L1TCLK width high $(DSC = 1)^3$	P + 10	_	ns
84	L1CLK edge to L1CLKO valid (DSC = 1)	_	30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	_	L1TCL K
86	L1GR setup time ²	42.00	_	ns
87	L1GR hold time	42.00	_	ns
88	L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

Table 19. SI Timing (continued)

¹ The ratio SyncCLK/L1RCLK must be greater than 2.5/1.

² These specs are valid for IDL mode only.

³ Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.

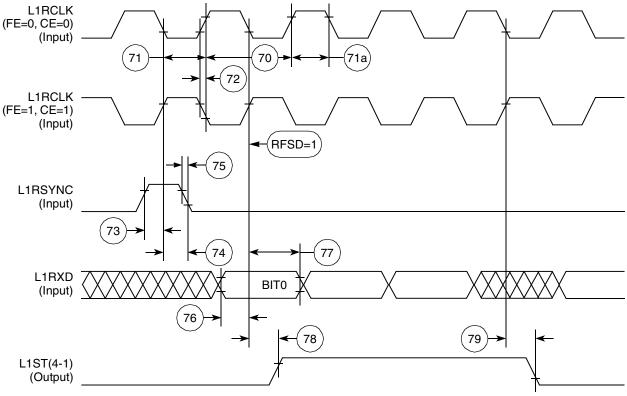
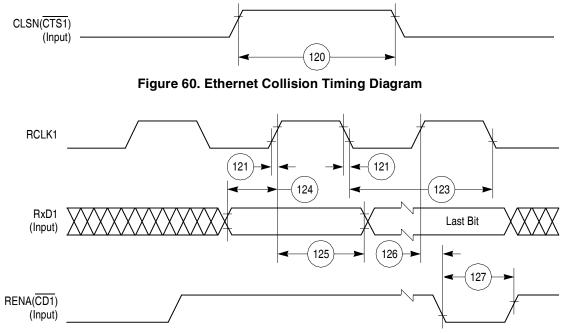


Figure 52. SI Receive Timing Diagram with Normal Clocking (DSC = 0)


CPM Electrical Characteristics

Num	Characteristic	All Freq	uencies	Unit
num	Characteristic	Min	Мах	Unit
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns
137	REJECT width low	1	_	CLK
138	CLKO1 low to SDACK asserted ²	—	20	ns
139	CLKO1 low to SDACK negated ²	_	20	ns

Table 22. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

UTOPIA AC Electrical Specifications

Figure 70 shows the I^2C bus timing.

12 UTOPIA AC Electrical Specifications

Table 28 shows the AC electrical specifications for the UTOPIA interface.

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output		4 ns	ns
	Duty cycle		50	50	%
	Frequency			33	MHz
U1a	UtpClk rise/fall time (external clock option)	Input		4ns	ns
	Duty cycle		40	60	%
	Frequency			33	MHz
U2	RxEnb and TxEnb active delay	Output	2 ns	16 ns	ns
U3	UTPB, SOC, Rxclav and Txclav setup time	Input	4 ns		ns
U4	UTPB, SOC, Rxclav and Txclav hold time	Input	1 ns		ns
U5	UTPB, SOC active delay (and PHREQ and PHSEL active delay in MPHY mode)	Output	2 ns	16 ns	ns

Table 28. UTOPIA AC Electrical Specifications

Name	Pin Number	Туре
PA2 CLK6 TOUT3 L1RCLKB	R18	Bidirectional
PA1 CLK7 BRGO4 TIN4	T19	Bidirectional
PA0 CLK8 TOUT4 L1TCLKB	U19	Bidirectional
PB31 SPISEL REJECT1	C17	Bidirectional (Optional: Open-drain)
PB30 SPICLK RSTRT2	C19	Bidirectional (Optional: Open-drain)
PB29 SPIMOSI	E16	Bidirectional (Optional: Open-drain)
PB28 SPIMISO BRGO4	D19	Bidirectional (Optional: Open-drain)
PB27 I2CSDA BRGO1	E19	Bidirectional (Optional: Open-drain)
PB26 I2CSCL BRGO2	F19	Bidirectional (Optional: Open-drain)
PB25 RXADDR3 ² SMTXD1	J16	Bidirectional (Optional: Open-drain)
PB24 TXADDR3 ² SMRXD1	J18	Bidirectional (Optional: Open-drain)
PB23 TXADDR2 ² SDACK1 SMSYN1	K17	Bidirectional (Optional: Open-drain)
PB22 TXADDR4 ² SDACK2 SMSYN2	L19	Bidirectional (Optional: Open-drain)

Table 35. Pin Assignments (continued)

Table 35. Pin Assignments	(continued)
---------------------------	-------------

Name	Pin Number	Туре
PB21 SMTXD2 L1CLKOB PHSEL1 ¹ TXADDR1 ²	К16	Bidirectional (Optional: Open-drain)
PB20 SMRXD2 L1CLKOA PHSEL0 ¹ TXADDR0 ²	L16	Bidirectional (Optional: Open-drain)
PB19 RTS1 L1ST1	N19	Bidirectional (Optional: Open-drain)
PB18 RXADDR4 ² RTS2 L1ST2	N17	Bidirectional (Optional: Open-drain)
PB17 L1RQb L1ST3 RTS3 PHREQ1 ¹ RXADDR1 ²	P18	Bidirectional (Optional: Open-drain)
PB16 L1RQa L1ST4 RTS4 PHREQ0 ¹ RXADDR0 ²	N16	Bidirectional (Optional: Open-drain)
PB15 BRGO3 TxClav	R17	Bidirectional
PB14 RXADDR2 ² RSTRT1	U18	Bidirectional
PC15 DREQ0 RTS1 L1ST1 RxClav	D16	Bidirectional
PC14 DREQ1 RTS2 L1ST2	D18	Bidirectional

Name	Pin Number	Туре
PC13 L1RQb L1ST3 RTS3	E18	Bidirectional
PC12 L1RQa L1ST4 RTS4	F18	Bidirectional
PC11 CTS1	J19	Bidirectional
PC10 CD1 TGATE1	K19	Bidirectional
PC9 CTS2	L18	Bidirectional
PC8 CD2 TGATE2	M18	Bidirectional
PC7 CTS3 L1TSYNCB SDACK2	M16	Bidirectional
PC6 CD3 L1RSYNCB	R19	Bidirectional
PC5 CTS4 L1TSYNCA SDACK1	T18	Bidirectional
PC4 CD4 L1RSYNCA	T17	Bidirectional
PD15 L1TSYNCA MII-RXD3 UTPB0	U17	Bidirectional
PD14 L1RSYNCA MII-RXD2 UTPB1	V19	Bidirectional
PD13 L1TSYNCB MII-RXD1 UTPB2	V18	Bidirectional

Table 35. Pin Assignments (continued)

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK