

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

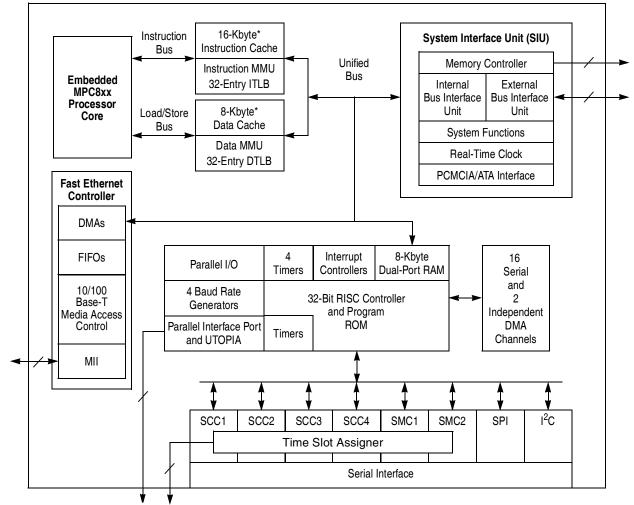
Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc862tzq100b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- System integration unit (SIU)
 - Bus monitor
 - Software watchdog
 - Periodic interrupt timer (PIT)
 - Low-power stop mode
 - Clock synthesizer
 - Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture
 - Reset controller
 - IEEE 1149.1 test access port (JTAG)
- Interrupts
 - Seven external interrupt request (IRQ) lines
 - 12 port pins with interrupt capability
 - The MPC862P and MPC862T have 23 internal interrupt sources; the MPC857T and MPC857DSL have 20 internal interrupt sources
 - Programmable priority between SCCs (MPC862P and MPC862T)
 - Programmable highest priority request
- Communications processor module (CPM)
 - RISC controller
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels
 - Up to 8-Kbytes of dual-port RAM
 - The MPC862P and MPC862T have 16 serial DMA (SDMA) channels; the MPC857T and MPC857DSL have 10 serial DMA (SDMA) channels
 - Three parallel I/O registers with open-drain capability
- Four baud rate generators
 - Independent (can be connected to any SCC or SMC)
 - Allow changes during operation
 - Autobaud support option
- The MPC862P and MPC862T have four SCCs (serial communication controller) The MPC857T and MPC857DSL have one SCC, SCC1; the MPC857DSL supports ethernet only
 - Serial ATM capability on all SCCs
 - Optional UTOPIA port on SCC4
 - Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation
 - HDLC/SDLC
 - HDLC bus (implements an HDLC-based local area network (LAN))
 - Asynchronous HDLC to support PPP (point-to-point protocol)
 - AppleTalk



Features

- Universal asynchronous receiver transmitter (UART)
- Synchronous UART
- Serial infrared (IrDA)
- Binary synchronous communication (BISYNC)
- Totally transparent (bit streams)
- Totally transparent (frame based with optional cyclic redundancy check (CRC))
- Two SMCs (serial management channels) (The MPC857DSL has one SMC, SMC1 for UART)
 - UART
 - Transparent
 - General circuit interface (GCI) controller
 - Can be connected to the time-division multiplexed (TDM) channels
- One serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multiple-master operation on the same bus
- One inter-integrated circuit (I²C) port
 - Supports master and slave modes
 - Multiple-master environment support
- Time-slot assigner (TSA) (The MPC857DSL does not have the TSA)
 - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, clocking
 - Allows dynamic changes
 - On the MPC862P and MPC862T, can be internally connected to six serial channels (four SCCs and two SMCs); on the MPC857T, can be connected to three serial channels (one SCC and two SMCs)
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on MPC862/857T/857DSL or MC68360
- PCMCIA interface
 - Master (socket) interface, release 2.1 compliant
 - Supports one or two PCMCIA sockets dependent upon whether ESAR functionality is enabled
 - 8 memory or I/O windows supported
- Low power support
 - Full on—All units fully powered
 - Doze—Core functional units disabled except time base decrementer, PLL, memory controller, RTC, and CPM in low-power standby

Features

*The MPC862T contains 4-Kbyte instruction cache and 4-Kbyte data cache.

Figure 1. MPC862P/862T Block Diagram

	Characteristic	50	MHz	66	MHz					
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B8a	CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3) BDIP, PTR valid (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B8b	CLKOUT to \overline{BR} , \overline{BG} , VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), \overline{STS} Valid ⁴ (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion (MAX = 0.25 x B1 + 6.0)	7.60	13.60	6.30	12.30	5.00	11.00	3.80	11.30	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.30 ⁵)	2.50	9.30	2.50	9.30	2.50	9.30	2.50	9.80	ns
B12	CLKOUT to $\overline{\text{TS}}$, $\overline{\text{BB}}$ negation (MAX = 0.25 x B1 + 4.8)	7.60	12.30	6.30	11.00	5.00	9.80	3.80	8.50	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B13	CLKOUT to TS, BB High-Z (MIN = 0.25 x B1)	7.60	21.60	6.30	20.30	5.00	19.00	3.80	14.00	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 x B1 + 2.5)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B14	CLKOUT to TEA assertion (MAX = 0.00 x B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B15	CLKOUT to $\overline{\text{TEA}}$ High-Z (MIN = 0.00 x B1 + 2.50)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	\overline{TA} , \overline{BI} valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 6.00)	6.00	—	6.00	—	6.00	—	6.00	—	ns
B16a	TEA, KR, RETRY, CR valid to CLKOUT (setup time) (MIN = 0.00 x B1 + 4.5)	4.50	_	4.50	_	4.50	—	4.50	—	ns
B16b	$\overline{\text{BB}}$, $\overline{\text{BG}}$, $\overline{\text{BR}}$, valid to CLKOUT (setup time) ⁶ (4MIN = 0.00 x B1 + 0.00)	4.00	_	4.00	—	4.00	_	4.00	—	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time) (MIN = 0.00 x B1 + 1.00 ⁷)	1.00		1.00		1.00	_	2.00		ns

Table 7. Bus Operation Timings (continued)

Num	Characteristic	33 MHz		40 MHz		50	MHz	66 MHz		11
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Мах	Unit
B17a	CLKOUT to KR, RETRY, CR valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	—	2.00	—	2.00	—	ns
B18	D(0:31), DP(0:3) valid to CLKOUT rising edge (setup time) ⁸ (MIN = 0.00 x B1 + 6.00)	6.00	—	6.00	_	6.00	_	6.00	—	ns
B19	CLKOUT rising edge to D(0:31), DP(0:3) valid (hold time) ⁸ (MIN = 0.00 x B1 + 1.00 ⁹)	1.00	—	1.00	_	1.00	_	2.00	—	ns
B20	D(0:31), DP(0:3) valid to CLKOUT falling edge (setup time) 10 (MIN = 0.00 x B1 + 4.00)	4.00	_	4.00	_	4.00	_	4.00	_	ns
B21	CLKOUT falling edge to D(0:31), DP(0:3) valid (hold Time) ¹⁰ (MIN = 0.00 x B1 + 2.00)	2.00	—	2.00	_	2.00	—	2.00	—	ns
B22	CLKOUT rising edge to CS asserted GPCM ACS = 00 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22a	CLKOUT falling edge to CS asserted GPCM ACS = 10, TRLX = 0 (MAX = 0.00 x B1 + 8.00)	—	8.00		8.00	—	8.00		8.00	ns
B22b	CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
B22c	CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 (MAX = 0.375 x B1 + 6.6)	10.90	18.00	10.90	18.00	7.00	14.30	5.20	12.30	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 (MAX = 0.00 x B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = 0.25 x B1 - 2.00)	5.60	—	4.30	—	3.00	—	1.80	—	ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11 TRLX = 0 (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50		8.00	_	5.60	_	ns
B25	CLKOUT rising edge to \overline{OE} , $\overline{WE}(0:3)$ asserted (MAX = 0.00 x B1 + 9.00)	_	9.00		9.00		9.00		9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 x B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns

Table 7. Bus Operation Timings (continued)

		33	MHz	40 MHz		50 MHz		66 I	MHz	
Num	Characteristic –		Max	Min	Max	Min	Max	Min	Max	Unit
B29d	WE(0:3) negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29e	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 1.50 x B1 - 2.00)	43.50	_	35.50	_	28.00	_	20.70	_	ns
B29f	f $\overline{WE}(0:3)$ negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 6.30)		_	3.00	_	1.10	_	0.00	_	ns
B29g	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 6.30)	5.00	_	3.00	_	1.10	_	0.00	_	ns
B29h	$\overline{\text{WE}}$ (0:3) negated to D(0:31), DP(0:3) High Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 1 (MIN = 0.375 x B1 - 3.30)	38.40	_	31.10	_	24.20	_	17.50	_	ns
B29i	$\overline{\text{CS}}$ negated to D(0:31), DP(0:3) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 x B1 - 3.30)	38.40	_	31.10	_	24.20	_	17.50	_	ns
B30	\overline{CS} , \overline{WE} (0:3) negated to A(0:31), BADDR(28:30) Invalid GPCM write access ¹¹ (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B30a	$\overline{WE}(0:3) \text{ negated to } A(0:31), \\ BADDR(28:30) \text{ Invalid GPCM, write} \\ access, TRLX = 0, CSNT = 1, \overline{CS} \\ negated to A(0:31) \text{ invalid GPCM write} \\ access TRLX = 0, CSNT = 1 ACS = 10, \\ or ACS == 11, EBDF = 0 (MIN = 0.50) \\ x B1 - 2.00)$	13.20		10.50		8.00		5.60		ns
B30b	$\overline{WE}(0:3) \text{ negated to } A(0:31) \text{ Invalid} \\ \text{GPCM BADDR}(28:30) \text{ invalid GPCM} \\ \text{write access, TRLX = 1, CSNT = 1.} \\ \overline{\text{CS}} \text{ negated to } A(0:31) \text{ Invalid GPCM} \\ \text{write access TRLX = 1, CSNT = 1,} \\ \text{ACS = 10, or ACS == 11 EBDF = 0} \\ (\text{MIN = 1.50 x B1 - 2.00)} \\ \end{array}$	43.50		35.50		28.00		20.70		ns

Table 7. Bus Operation Timings (continued)

Num	Num Characteristic		33 MHz		40 MHz		MHz	66 MHz		Unit
Num	Unaracteristic	Min	Max	Min	Max	Min	Max	Min	Max	onit
B37	UPWAIT valid to CLKOUT falling edge 1^2 (MIN = 0.00 x B1 + 6.00)	6.00	—	6.00	—	6.00	_	6.00	—	ns
B38	8 CLKOUT falling edge to UPWAIT valid 1.00 ¹² (MIN = 0.00 x B1 + 1.00)		—	1.00	—	1.00	_	1.00	—	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ¹³ (MIN = 0.00 x B1 + 7.00)	7.00	—	7.00	—	7.00	_	7.00	—	ns
B40	A(0:31), TSIZ(0:1), RD/WR, BURST, valid to CLKOUT rising edge (MIN = 0.00 x B1 + 7.00)	7.00	—	7.00	—	7.00	_	7.00	—	ns
B41	TS valid to CLKOUT rising edge (setup time) (MIN = 0.00 x B1 + 7.00)	7.00	—	7.00	—	7.00	-	7.00	—	ns
B42	CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time) (MIN = 0.00 x B1 + 2.00)	2.00	_	2.00	_	2.00	_	2.00	_	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)	_	TBD		TBD		TBD		TBD	ns

Table 7. Bus Operation Timings (continued)

¹ Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.

² If the rate of change of the frequency of EXTAL is slow (I.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (I.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%.

- ³ The timings specified in B4 and B5 are based on full strength clock.
- ⁴ The timing for BR output is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter.
- ⁵ For part speeds above 50MHz, use 9.80ns for B11a.
- ⁶ The timing required for BR input is relevant when the MPC862/857T/857DSL is selected to work with internal bus arbiter. The timing for BG input is relevant when the MPC862/857T/857DSL is selected to work with external bus arbiter.
- ⁷ For part speeds above 50MHz, use 2ns for B17.
- ⁸ The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- ⁹ For part speeds above 50MHz, use 2ns for B19.
- ¹⁰ The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
- ¹¹ The timing B30 refers to \overline{CS} when ACS = 00 and to $\overline{WE}(0:3)$ when CSNT = 0.
- ¹² The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 19.
- ¹³ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 22.

Figure 4 is the control timing diagram.

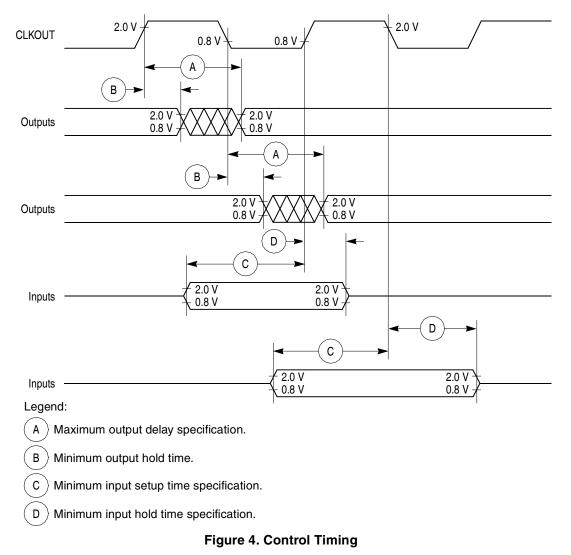


Figure 5 provides the timing for the external clock.

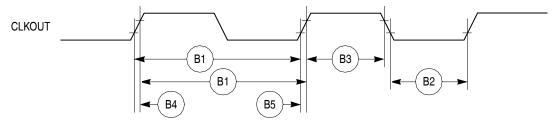


Figure 5. External Clock Timing

Figure 6 provides the timing for the synchronous output signals.

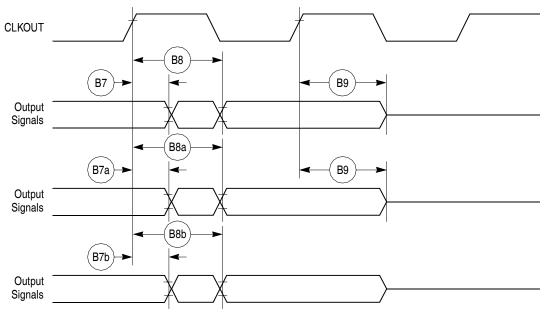


Figure 6. Synchronous Output Signals Timing

Figure 7 provides the timing for the synchronous active pull-up and open-drain output signals.

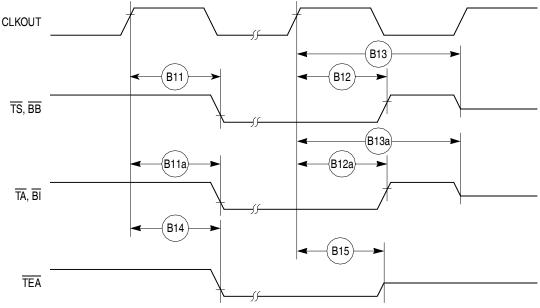


Figure 7. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing

Figure 8 provides the timing for the synchronous input signals.

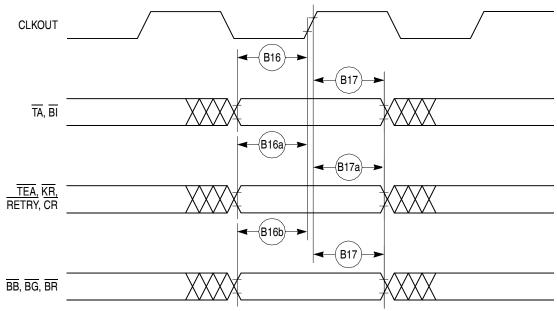


Figure 8. Synchronous Input Signals Timing

Figure 9 provides normal case timing for input data. It also applies to normal read accesses under the control of the UPM in the memory controller.

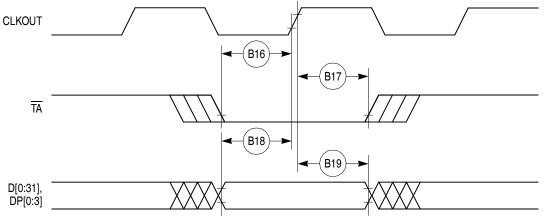
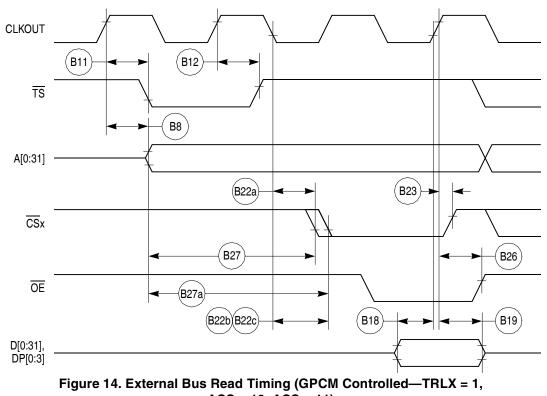



Figure 9. Input Data Timing in Normal Case

ACS = 10, ACS = 11)

Figure 15 through Figure 17 provide the timing for the external bus write controlled by various GPCM factors.

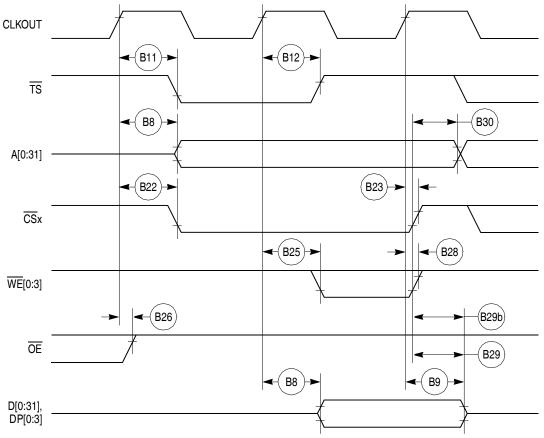


Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0,1 CSNT = 0)

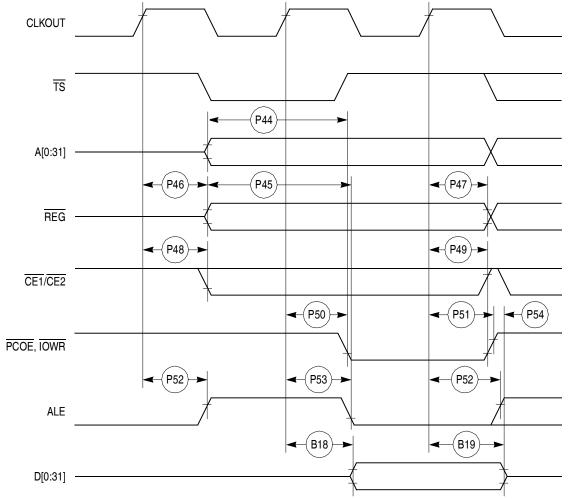


Figure 27 provides the PCMCIA access cycle timing for the external bus write.

Figure 27. PCMCIA Access Cycles Timing External Bus Write

Figure 28 provides the PCMCIA WAIT signals detection timing.

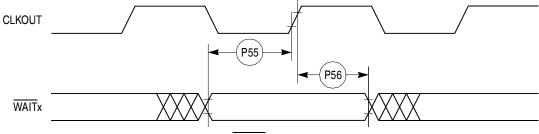


Figure 28. PCMCIA WAIT Signals Detection Timing

Table 11 shows the debug port timing for the MPC862/857T/857DSL.

Num	Characteristic	All Freq	Unit	
Nulli	Characteristic	Min		Unit
D61	DSCK cycle time	3 x T _{CLOCKOUT}		-
D62	DSCK clock pulse width	1.25 x T _{CLOCKOUT}		-
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00		ns
D65	DSDI data hold time	5.00		ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Table 11. Debug Port Timing

Figure 31 provides the input timing for the debug port clock.

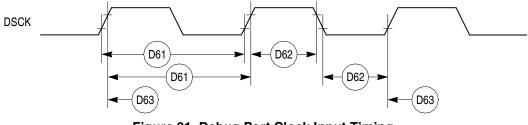


Figure 31. Debug Port Clock Input Timing

Figure 32 provides the timing for the debug port.

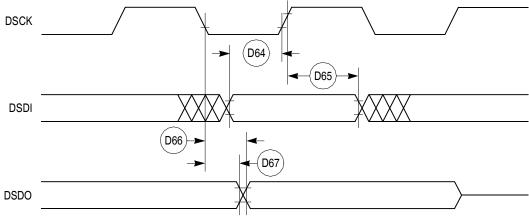


Figure 32. Debug Port Timings

CPM Electrical Characteristics

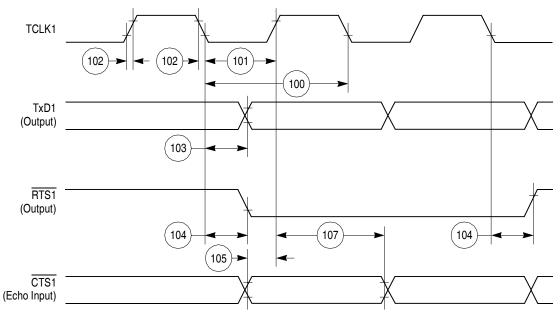


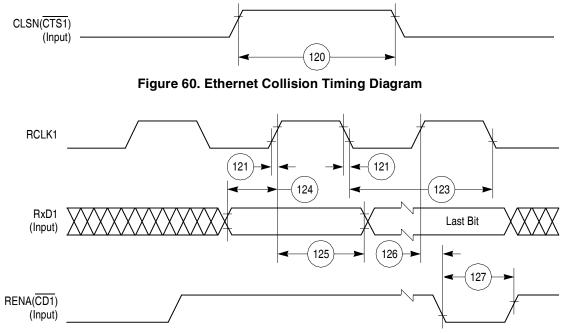
Figure 59. HDLC Bus Timing Diagram

11.8 Ethernet Electrical Specifications

Table 22 provides the Ethernet timings as shown in Figure 60 though Figure 64.

Table 22. Ethernet Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Omt
120	CLSN width high	40	—	ns
121	RCLK1 rise/fall time	_	15	ns
122	RCLK1 width low	40	—	ns
123	RCLK1 clock period ¹	80	120	ns
124	124 RXD1 setup time		—	ns
125	25 RXD1 hold time		—	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	—	ns
127	RENA width low	100	—	ns
128	TCLK1 rise/fall time	_	15	ns
129	TCLK1 width low	40	—	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)	10	50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)		50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns


CPM Electrical Characteristics

Num	Characteristic	All Freq	Unit	
num	Characteristic	Min	Мах	Unit
134	TENA inactive delay (from TCLK1 rising edge)	10	50	ns
135	RSTRT active delay (from TCLK1 falling edge)	10	50	ns
136	RSTRT inactive delay (from TCLK1 falling edge)	10	50	ns
137	REJECT width low	1	_	CLK
138	CLKO1 low to SDACK asserted ²	—	20	ns
139	CLKO1 low to SDACK negated ²	—	20	ns

Table 22. Ethernet Timing (continued)

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.

² SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.

CPM Electrical Characteristics

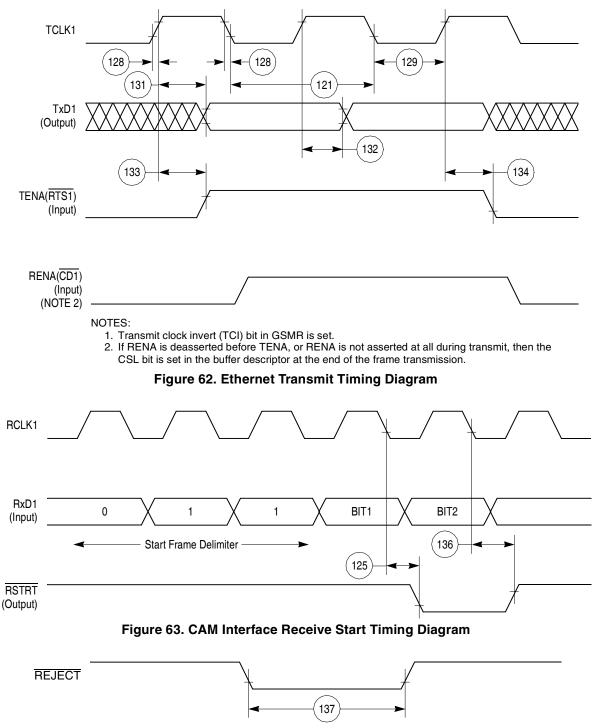


Figure 64. CAM Interface REJECT Timing Diagram

Table 35. Pin Assignments	(continued)
---------------------------	-------------

Name	Pin Number	Туре
PB21 SMTXD2 L1CLKOB PHSEL1 ¹ TXADDR1 ²	К16	Bidirectional (Optional: Open-drain)
PB20 SMRXD2 L1CLKOA PHSEL0 ¹ TXADDR0 ²	L16	Bidirectional (Optional: Open-drain)
PB19 RTS1 L1ST1	N19	Bidirectional (Optional: Open-drain)
PB18 RXADDR4 ² RTS2 L1ST2	N17	Bidirectional (Optional: Open-drain)
PB17 L1RQb L1ST3 RTS3 PHREQ1 ¹ RXADDR1 ²	P18	Bidirectional (Optional: Open-drain)
PB16 L1RQa L1ST4 RTS4 PHREQ0 ¹ RXADDR0 ²	N16	Bidirectional (Optional: Open-drain)
PB15 BRGO3 TxClav	R17	Bidirectional
PB14 RXADDR2 ² RSTRT1	U18	Bidirectional
PC15 DREQ0 RTS1 L1ST1 RxClav	D16	Bidirectional
PC14 DREQ1 RTS2 L1ST2	D18	Bidirectional

Document Revision History

15 Document Revision History

Table 36 lists significant changes between revisions of this document.

Rev. No.	Date	Substantive Changes
0	2001	Initial revision
0.1	9/2001	Change extended temperature from 95 to 105
0.2	11/2001	Revised for new template, changed Table 7 B23 max value @ 66 MHz from 2 ns to 8 ns.
0.3	4/2002	 Timing modified and equations added, for Rev. A and B devices. Modified power numbers and temperature ranges. Added ESAR UTOPIA timing.
1.0	9/2002	 Specification changed to include the MPC857T and MPC857DSL. Changed maximum operating frequency from 80 MHz to 100 MHz. Removed MPC862DP, DT, and SR derivatives and part numbers. Corrected power dissipation numbers. Changed UTOPIA maximum frequency from 50 MHz to 33 MHz. Changed part number ordering information to Rev. B devices only. To maximum ratings for temperature, added frequency ranges.
1.1	5/2003	Changed SPI Master Timing Specs. 162 and 164
1.2	8/2003	 Changed B28a through B28d and B29b to show that TRLX can be 0 or 1. Non-technical reformatting
2.0	11/2004	 Added a table footnote to Table 5 DC Electrical Specifications about meeting the VIL Max of the I2C Standard. Updated document template.
3.0	2/2006	Changed Tj from 95C to 105C in table 34

Table 36. Document Revision History

Document Revision History

THIS PAGE INTENTIONALLY LEFT BLANK