

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (4), 10/100Mbps (1)
SATA	-
USB	
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc862tzq66b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 7 provides the bus operation timing for the MPC862/857T/857DSL at 33 MHz, 40 Mhz, 50 MHz and 66 Mhz.

The timing for the MPC862/857T/857DSL bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays.

Niume	Oh overstavistis	33 MHz 40 MHz		MHz	50 I	MHz	66 MHz		11	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B1	CLKOUT period	30.30	30.30	25.00	30.30	20.00	30.30	15.15	30.30	ns
B1a	EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF <= 2)	-0.90	0.90	-0.90	0.90	-0.90	0.90	-0.90	0.90	ns
B1b	EXTCLK to CLKOUT phase skew (EXTCLK > 10 MHz and MF < 10)	-2.30	2.30	-2.30	2.30	-2.30	2.30	-2.30	2.30	ns
B1c	CLKOUT phase jitter (EXTCLK > 15 MHz and MF <= 2) 1	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	ns
B1d	CLKOUT phase jitter ¹	-2.00	2.00	-2.00	2.00	-2.00	2.00	-2.00	2.00	ns
B1e	CLKOUT frequency jitter (MF < 10) ¹	—	0.50	—	0.50	_	0.50	_	0.50	%
B1f	CLKOUT frequency jitter (10 < MF < 500) ¹	—	2.00	—	2.00	_	2.00	_	2.00	%
B1g	CLKOUT frequency jitter (MF > 500) ¹	—	3.00	—	3.00	—	3.00	_	3.00	%
B1h	Frequency jitter on EXTCLK ²	_	0.50		0.50	_	0.50	_	0.50	%
B2	CLKOUT pulse width low (MIN = 0.040 x B1)	12.10	_	10.00	_	8.00	_	6.10	_	ns
B3	CLKOUT width high (MIN = 0.040 x B1)	12.10	—	10.00	—	8.00	—	6.10	—	ns
B4	CLKOUT rise time ³ (MAX = 0.00 x B1 + 4.00)	—	4.00	—	4.00	—	4.00	—	4.00	ns
B5 ³³	CLKOUT fall time ³ (MAX = $0.00 \times B1 + 4.00$)	—	4.00	—	4.00	—	4.00	—	4.00	ns
B7	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), DP(0:3) invalid (MIN = 0.25 x B1)	7.60	_	6.30		5.00	—	3.80	—	ns
B7a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, AT(0:3), $\overline{\text{BDIP}}$, PTR invalid (MIN = 0.25 x B1)	7.60	—	6.30	_	5.00	_	3.80	—	ns
B7b	CLKOUT to \overline{BR} , \overline{BG} , FRZ, VFLS(0:1), VF(0:2) IWP(0:2), LWP(0:1), \overline{STS} invalid ⁴ (MIN = 0.25 x B1)	7.60	_	6.30	_	5.00	_	3.80	_	ns
B8	CLKOUT to A(0:31), BADDR(28:30) RD/WR, BURST, D(0:31), DP(0:3) valid (MAX = 0.25 x B1 + 6.3)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns

Table 7. Bus Operation Timings

Bus Signal Timing

Nium	Ohove stavistic	33	33 MHz		MHz 50 MHz		MHz	66 I	MHz	11
NUM	Characteristic	Min	Max	Min	Max	Min	Мах	Min	Max	Unit
B32c	CLKOUT rising edge to $\overline{\text{BS}}$ valid - as requested by control bit BST3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B32d	CLKOUT falling edge to \overline{BS} valid- as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 x B1 + 6.60)	9.40	18.00	7.60	16.00	13.30	14.10	11.30	12.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid - as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 x B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ Valid - as requested by control bit GxT3 in the corresponding word in the UPM (MAX = 0.25 x B1 + 6.80)	7.60	14.30	6.30	13.00	5.00	11.80	3.80	10.50	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by control bit CST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid - as requested by CST2 in the corresponding word in UPM (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B35	A(0:31), BADDR(28:30) to \overline{CS} valid - as requested by control bit BST4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to BS valid - As Requested by BST1 in the corresponding word in the UPM (MIN = 0.50 x B1 - 2.00)	13.20	_	10.50	_	8.00	_	5.60	_	ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to BS valid - as requested by control bit BST2 in the corresponding word in the UPM (MIN = $0.75 \times B1 - 2.00$)	20.70	_	16.70	_	13.00	_	9.40	_	ns
B36	A(0:31), BADDR(28:30), and D(0:31) to \overline{GPL} valid as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns

Table 7. Bus Operation Timings (continued)

Bus Signal Timing

Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)

ACS = 10, ACS = 11)

Bus Signal Timing

Figure 19 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Cycles Timing

Figure 20 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 21 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 22 provides the timing for the asynchronous external master memory access controlled by the GPCM.

(GPCM Controlled—ACS = 00)

Figure 23 provides the timing for the asynchronous external master control signals negation.

Figure 23. Asynchronous External Master—Control Signals Negation Timing

Table 9 shows the PCMCIA timing for the MPC862/857T/857DSL.

Table 9. PCMCIA Timing

Num	Characteristic	Characteristic 33 MHz		40 1	40 MHz		50 MHz		66 MHz	
Num	Characteristic	Min	Мах	Min	Max	Min	Max	Min	Max	Unit
P44	A(0:31), $\overline{\text{REG}}$ valid to PCMCIA Strobe asserted. ¹ (MIN = 0.75 x B1 - 2.00)	20.70	_	16.70	_	13.00	_	9.40	_	ns
P45	A(0:31), $\overline{\text{REG}}$ valid to ALE negation. ¹ (MIN = 1.00 x B1 - 2.00)	28.30	—	23.00	—	18.00	_	13.20	—	ns
P46	CLKOUT to REG valid (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P47	CLKOUT to REG Invalid. (MIN = 0.25 x B1 + 1.00)	8.60	_	7.30	_	6.00	_	4.80	_	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted. (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated. (MAX = 0.25 x B1 + 8.00)	7.60	15.60	6.30	14.30	5.00	13.00	3.80	11.80	ns
P50	CLKOUT to \overrightarrow{PCOE} , \overrightarrow{IORD} , \overrightarrow{PCWE} , \overrightarrow{IOWR} assert time. (MAX = 0.00 x B1 + 11.00)	_	11.00	_	11.00	_	11.00	_	11.00	ns
P51	$\frac{\text{CLKOUT to } \overline{\text{PCOE}}, \overline{\text{IORD}}, \overline{\text{PCWE}},}{\overline{\text{IOWR}} \text{ negate time.} (MAX = 0.00 \text{ x})}$ $B1 + 11.00)$	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time (MAX = 0.25 x B1 + 6.30)	7.60	13.80	6.30	12.50	5.00	11.30	3.80	10.00	ns
P53	CLKOUT to ALE negate time (MAX = 0.25 x B1 + 8.00)	_	15.60	—	14.30	—	13.00	_	11.80	ns
P54	$\overline{\text{PCWE}}, \overline{\text{IOWR}} \text{ negated to } D(0:31)$ invalid. ¹ (MIN = 0.25 x B1 - 2.00)	5.60	_	4.30	_	3.00	_	1.80	_	ns
P55	$\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ valid to CLKOUT rising edge. ¹ (MIN = 0.00 x B1 + 8.00)	8.00	—	8.00	—	8.00	_	8.00	—	ns
P56	CLKOUT rising edge to \overline{WAITA} and \overline{WAITB} invalid. ¹ (MIN = 0.00 x B1 + 2.00)	2.00	—	2.00	—	2.00	—	2.00	—	ns

¹ PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the \overline{WAITx} signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The \overline{WAITx} assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the *MPC862 PowerQUICC User s Manual*.

Table 11 shows the debug port timing for the MPC862/857T/857DSL.

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	Omt
D61	DSCK cycle time	3 x T _{CLOCKOUT}		-
D62	DSCK clock pulse width	1.25 x T _{CLOCKOUT}		-
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00		ns
D65	DSDI data hold time	5.00		ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Table 11. Debug Port Timing

Figure 31 provides the input timing for the debug port clock.

Figure 31. Debug Port Clock Input Timing

Figure 32 provides the timing for the debug port.

Figure 32. Debug Port Timings

Figure 42. PIP Rx (Pulse Mode) Timing Diagram

Figure 43. PIP TX (Pulse Mode) Timing Diagram

Num	Characteristic	All Freq	Unit	
	Unaracteristic	Min	Мах	Omt
43	SDACK negation delay from clock low	_	12	ns
44	SDACK negation delay from TA low	_	20	ns
45	SDACK negation delay from clock high	_	15	ns
46	\overline{TA} assertion to falling edge of the clock setup time (applies to external \overline{TA})	7	—	ns

Table 16. IDMA Controller Timing (continued)

Figure 46. IDMA External Requests Timing Diagram

Figure 47. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA

11.7 SCC in NMSI Mode Electrical Specifications

Table 20 provides the NMSI external clock timing.

Table 20. NMSI External Clock Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Om
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK +5	_	ns
102	RCLK1 and TCLK1 rise/fall time	_	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00		ns
106	RXD1 setup time to RCLK1 rising edge	5.00		ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	_	ns
108	CD1 setup Time to RCLK1 rising edge	5.00	_	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signal.

Table 21 provides the NMSI internal clock timing.

Table 21. NMSI Internal Clock Timing

Num	Characteristic	All Freq	Unit	
Nulli	Characteristic	Min	Мах	Onit
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK1 and TCLK1 rise/fall time	—	_	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	40.00	_	ns
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns
108	CD1 setup time to RCLK1 rising edge	40.00		ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as an external sync signals.

Figure 59. HDLC Bus Timing Diagram

11.8 Ethernet Electrical Specifications

Table 22 provides the Ethernet timings as shown in Figure 60 though Figure 64.

Table 22. Ethernet Timing

Num	Characteristic	All Freq	uencies	Unit
Num	Characteristic	Min	Мах	Omit
120	CLSN width high	40	—	ns
121	RCLK1 rise/fall time	—	15	ns
122	RCLK1 width low	40	—	ns
123	RCLK1 clock period ¹	80	120	ns
124	RXD1 setup time	20	—	ns
125	RXD1 hold time	5	_	ns
126	RENA active delay (from RCLK1 rising edge of the last data bit)	10	—	ns
127	RENA width low	100	—	ns
128	TCLK1 rise/fall time	—	15	ns
129	TCLK1 width low	40	—	ns
130	TCLK1 clock period ¹	99	101	ns
131	TXD1 active delay (from TCLK1 rising edge)	10	50	ns
132	TXD1 inactive delay (from TCLK1 rising edge)	10	50	ns
133	TENA active delay (from TCLK1 rising edge)	10	50	ns

Figure 67. SPI Master (CP = 1) Timing Diagram

11.11 SPI Slave AC Electrical Specifications

Table 25 provides the SPI slave timings as shown in Figure 68 though Figure 69.

Table 25. SPI Slave Timing

Num	Characteristic	All Freq	Unit	
Num	Characteristic	Min	Мах	Omit
170	Slave cycle time	2	—	t _{cyc}
171	Slave enable lead time	15	—	ns
172	Slave enable lag time	15	—	ns
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	—	t _{cyc}
175	Slave data setup time (inputs)	20	—	ns
176	Slave data hold time (inputs)	20	—	ns
177	Slave access time		50	ns

UTOPIA AC Electrical Specifications

Figure 70 shows the I^2C bus timing.

12 UTOPIA AC Electrical Specifications

Table 28 shows the AC electrical specifications for the UTOPIA interface.

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output		4 ns	ns
	Duty cycle		50	50	%
	Frequency			33	MHz
U1a	UtpClk rise/fall time (external clock option)	Input		4ns	ns
	Duty cycle		40	60	%
	Frequency			33	MHz
U2	RxEnb and TxEnb active delay	Output	2 ns	16 ns	ns
U3	UTPB, SOC, Rxclav and Txclav setup time	Input	4 ns		ns
U4	UTPB, SOC, Rxclav and Txclav hold time	Input	1 ns		ns
U5	UTPB, SOC active delay (and PHREQ and PHSEL active delay in MPHY mode)	Output	2 ns	16 ns	ns

Table 28. UTOPIA AC Electrical Specifications

Num	Characteristic	Min	Max	Unit
M7	MII_TX_CLK pulse width high	35%	65%	MII_TX_CLK period
M8	MII_TX_CLK pulse width low	35%	65%	MII_TX_CLK period

Table 30. MII Transmit Signal Timing (continued)

Figure 74 shows the MII transmit signal timing diagram.

Figure 74. MII Transmit Signal Timing Diagram

13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 31 provides information on the MII async inputs signal timing.

Table 31. MII Async Inputs Signal Timing

Num	Characteristic	Min	Мах	Unit
M9	MII_CRS, MII_COL minimum pulse width	1.5		MII_TX_CLK period

Figure 75 shows the MII asynchronous inputs signal timing diagram.

Figure 75. MII Async Inputs Timing Diagram

13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 32 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.

Table 35 contains a list of the MPC862 input and output signals and shows multiplexing and pin assignments.

Name	Pin Number	Туре
A[0:31]	B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15, C14, B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10, C10, A13, A10, A12, A11, A9	Bidirectional Three-state
TSIZ0 REG	В9	Bidirectional Three-state
TSIZ1	C9	Bidirectional Three-state
RD/WR	B2	Bidirectional Three-state
BURST	F1	Bidirectional Three-state
BDIP GPL_B5	D2	Output
TS	F3	Bidirectional Active Pull-up
TA	C2	Bidirectional Active Pull-up
TEA	D1	Open-drain
BI	E3	Bidirectional Active Pull-up
IRQ2 RSV	НЗ	Bidirectional Three-state
IRQ4 KR RETRY SPKROUT	К1	Bidirectional Three-state
CR IRQ3	F2	Input
D[0:31]	W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11, T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, V12, V6, W5, U6, T7	Bidirectional Three-state
DP0 IRQ3	V3	Bidirectional Three-state
DP1 IRQ4	V5	Bidirectional Three-state
DP2 IRQ5	W4	Bidirectional Three-state
DP3 IRQ6	V4	Bidirectional Three-state

Table 35. Pin Assignments

Name	Pin Number	Туре
BR	G4	Bidirectional
BG	E2	Bidirectional
BB	E1	Bidirectional Active Pull-up
FRZ IRQ6	G3	Bidirectional
IRQ0	V14	Input
IRQ1	U14	Input
M_TX_CLK IRQ7	W15	Input
<u>CS</u> [0:5]	C3, A2, D4, E4, A4, B4	Output
CS6 CE1_B	D5	Output
CS7 CE2_B	C4	Output
WE0 BS_B0 IORD	C7	Output
WE1 BS_B1 IOWR	A6	Output
WE2 BS_B2 PCOE	B6	Output
WE3 BS_B3 PCWE	A5	Output
BS_A[0:3]	D8, C8, A7, B8	Output
GPL_A0 GPL_B0	D7	Output
OE GPL_A1 GPL_B1	C6	Output
GPL_A[2:3] GPL_B[2:3] CS[2-3]	B5, C5	Output
UPWAITA GPL_A4	C1	Bidirectional
UPWAITB GPL_B4	B1	Bidirectional

Table 35. Pin Assignments (continued)

Name	Pin Number	Туре
PA2 CLK6 TOUT3 L1RCLKB	R18	Bidirectional
PA1 CLK7 BRGO4 TIN4	T19	Bidirectional
PA0 CLK8 TOUT4 L1TCLKB	U19	Bidirectional
PB31 SPISEL REJECT1	C17	Bidirectional (Optional: Open-drain)
PB30 SPICLK RSTRT2	C19	Bidirectional (Optional: Open-drain)
PB29 SPIMOSI	E16	Bidirectional (Optional: Open-drain)
PB28 SPIMISO BRGO4	D19	Bidirectional (Optional: Open-drain)
PB27 I2CSDA BRGO1	E19	Bidirectional (Optional: Open-drain)
PB26 I2CSCL BRGO2	F19	Bidirectional (Optional: Open-drain)
PB25 RXADDR3 ² SMTXD1	J16	Bidirectional (Optional: Open-drain)
PB24 TXADDR3 ² SMRXD1	J18	Bidirectional (Optional: Open-drain)
PB23 TXADDR2 ² SDACK1 SMSYN1	K17	Bidirectional (Optional: Open-drain)
PB22 TXADDR4 ² SDACK2 SMSYN2	L19	Bidirectional (Optional: Open-drain)

Table 35. Pin Assignments (continued)

Mechanical Data and Ordering Information

SIDE VIEW

NOTES:

- 1. Dimensions and tolerancing per ASME Y14.5M, 1994.
- 2. Dimensions in millimeters.
- 3. Dimension b is the maximum solder ball diameter measured parallel to datum C.

	MILLIMETERS		
DIM	MIN	MAX	
Α		2.05	
A1	0.50	0.70	
A2	0.95	1.35	
A3	0.70	0.90	
b	0.60	0.90	
D	25.00	BSC	
D1	22.86	BSC	
D2	22.40	22.60	
е	1.27	BSC	
Е	25.00	BSC	
E1	22.86	BSC	
E2	22.40	22.60	

Case No. 1103-01

В

How to Reach Us:

Home Page: www.freescale.com email:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC862EC Rev. 3 2/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2006.

