

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51qe64clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF51QE128 Series Comparison

1 MCF51QE128 Series Comparison

The following table compares the various device derivatives available within the MCF51QE128 series.

Table 1. MCF51QE128 Series Features by MCU and Package

Feature	MCF51	QE128	MCF5 ⁻	IQE96	MCF51QE64	MCF51QE32
Flash size (bytes)	131	072	983	304	65536	32768
RAM size (bytes)	81	92	81	92	8192	8192
Pin quantity	80	64	80	64	64	64
Version 1 ColdFire core				y	es	
ACMP1				ye	es	
ACMP2				ye	es	
ADC channels	24	20	24	20	20	20
DBG				ye	es	
ICS				ye	es	
IIC1				ye	es	
IIC2				ye	es	
KBI				1	6	
Port I/O ^{1, 2}	70	54	70	54	54	54
Rapid GPIO	yes					
RTC				y	es	
SCI1				y	es	
SCI2				y	es	
SPI1				y	es	
SPI2				y	es	
External IRQ				y	es	
TPM1 channels				:	3	
TPM2 channels				:	3	
TPM3 channels					6	
XOSC				y	es	

¹ Port I/O count does not include the input-only PTA5/IRQ/TPM1CLK/RESET or the output-only PTA4/ACMP10/BKGD/MS.

² 16 bits associated with Ports C and E are shadowed with ColdFire Rapid GPIO module.

Pin Number		Lowest	←	Priority	\longrightarrow	Highest
80	64	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	PTD1	KBI2P1	MOSI2		
2	2	PTD0	KBI2P0	SPSCK2		
3	3	PTH7	SDA2			
4	4	PTH6	SCL2			
5	-	PTH5				
6	-	PTH4				
7	5	PTE7	RGPIO7	TPM3CLK		
8	6					V _{DD}
9	7					V _{DDAD}
10	8					V _{REFH}
11	9					V _{REFL}
12	10					V _{SSAD}
13	11					V _{SS}
14	12	PTB7	SCL1			EXTAL
15	13	PTB6	SDA1			XTAL
16	—	PTH3				
17	—	PTH2				
18	14	PTH1				
19	15	PTH0				
20	16	PTE6	RGPIO6			
21	17	PTE5	RGPIO5			
22	18	PTB5	TPM1CH1	SS1		
23	19	PTB4	TPM2CH1	MISO1		
24	20	PTC3	RGPIO11	TPM3CH3		
25	21	PTC2	RGPIO10	TPM3CH2		
26	22	PTD7	KBI2P7			
27	23	PTD6	KBI2P6			
28	24	PTD5	KBI2P5			
29	—	PTJ7				
30	—	PTJ6				
31	—	PTJ5				
32	—	PTJ4				
33	25	PTC1	RGPIO9	TPM3CH1		
34	26	PTC0	RGPIO8	TPM3CH0		
35	27	PTF7				ADP17
36	28	PTF6				ADP16
37	29	PTF5				ADP15
38	30	PTF4				ADP14
39	31	PTB3	KBI1P7	MOSI1 ¹		ADP7
40	32	PTB2	KBI1P6	SPSCK1		ADP6

Table 2. MCF51QE128 Series Pin Assignment by Package and Pin Sharing Priority

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	Ι _D	± 25	mA
Storage temperature range	T _{stg}	-55 to 150	°C

Table 4. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

- $^2~$ All functional non-supply pins are internally clamped to $V_{\mbox{SS}}$ and $V_{\mbox{DD}}.$
- ³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit		
Operating temperature range (packaged):					
MCF51QE64, MCF51QE96, and MCF51QE128:	T _A	-40 to 85	°C		
MCF51QE32:	'A	0 to 70	C		
Maximum junction temperature	T _{JM}	95	°C		
Thermal resistance Single-layer board					
64-pin LQFP	0	69	°C/W		
80-pin LQFP	θ_{JA}	60	C/ VV		
Thermal resistance Four-layer board					
64-pin LQFP	θ	50	°C/W		
80-pin LQFP	θ_{JA}	47	0/11		

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $\begin{array}{l} T_A = Ambient \ temperature, \ ^C\\ \theta_{JA} = Package \ thermal \ resistance, \ junction-to-ambient, \ ^C/W\\ P_D = P_{int} + P_{I/O}\\ P_{int} = I_{DD} \times V_{DD}, \ Watts \ \ chip \ internal \ power\\ P_{I/O} = Power \ dissipation \ on \ input \ and \ output \ pins \ \ user \ determined \end{array}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

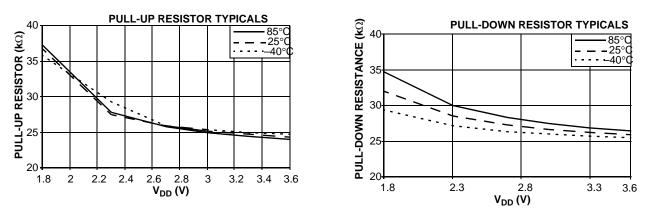
Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	
Latch-up	Minimum input voltage limit		- 2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions

No.	Rating ¹	Symbol	Min	Мах	Unit
1	Human body model (HBM)	V _{HBM}	± 2000	_	V
2	Machine model (MM)	V _{MM}	± 200	_	V
3	Charge device model (CDM)	V _{CDM}	± 500	_	V
4	Latch-up current at $T_A = 85^{\circ}C$	I _{LAT}	± 100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics


This section includes information about power supply requirements and I/O pin characteristics.

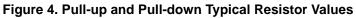

Num	С	C Characteristic		Symbol	Condition	Min	Typ ¹	Мах	Unit	
1		Operating Voltage				1.8 ²		3.6	V	
	С	Output high voltage	All I/O pins, low-drive strength		1.8 V, I _{Load} = -2 mA	V _{DD} – 0.5	_	_		
2	Ρ		All I/O pins,	V _{OH}	2.7 V, $I_{Load} = -10 \text{ mA}$	V _{DD} – 0.5	_		V	
	Т		high-drive strength		2.3 V, $I_{Load} = -6 \text{ mA}$	V _{DD} – 0.5	_	—		
	С				1.8V, $I_{Load} = -3 \text{ mA}$	V _{DD} – 0.5	_	—		
3	D	Output high current	Max total I _{OH} for all ports	I _{OHT}			_	100	mA	
	С	Output low voltage	All I/O pins, low-drive strength		1.8 V, I _{Load} = 2 mA		_	0.5		
4	Ρ	_	All I/O pins,	V _{OL}	2.7 V, I _{Load} = 10 mA	_	_	0.5	V	
	Т		high-drive strength		2.3 V, I _{Load} = 6 mA	_	_	0.5		
	С				1.8 V, I _{Load} = 3 mA	—	_	0.5		
5	D	Output low current	Max total I _{OL} for all ports	I _{OLT}			_	100	mA	
6	Ρ	Input high	all digital inputs	VIH	$V_{DD} > 2.7 V$	$0.70 ext{ x V}_{ ext{DD}}$	_	—		
	С	voltage		ЧН	V _{DD} > 1.8 V	$0.85 \times V_{DD}$	_	—	V	
7	Ρ	Input low voltage	all digital inputs	V _{IL}	V_{DD} > 2.7 V		_	0.35 x V _{DD}	v	
'	С			۴IL	V _{DD} >1.8 V		—	0.30 x V _{DD}		
8	С	Input hysteresis	all digital inputs	V _{hys}		$0.06 \times V_{DD}$	—	—	mV	
9	Ρ	Input leakage current	all input only pins (Per pin)	I _{In}	$V_{In} = V_{DD} \text{ or } V_{SS}$		_	1	μΑ	
10	Ρ	Hi-Z (off-state) leakage current	all input/output (per pin)	I _{OZ}	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	_	1	μΑ	
11	Ρ	Pull-up resistors	all digital inputs, when enabled	R _{PU}		17.5	_	52.5	kΩ	

Table 8. DC Characteristics

MCF51QE128 Series Data Sheet, Rev. 7

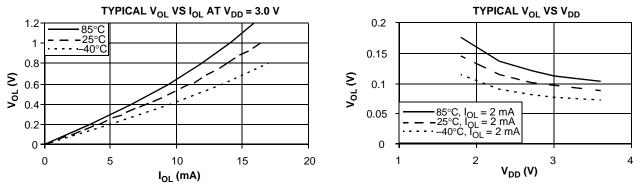


Figure 5. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0)

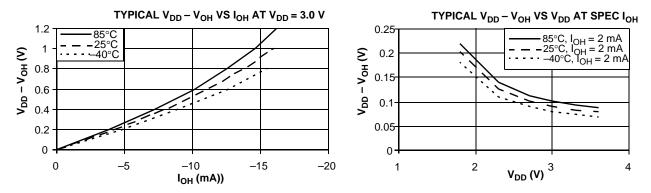



Figure 6. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

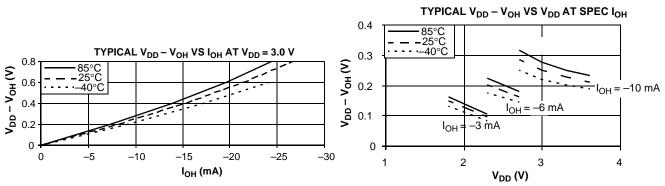


Figure 8. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1)

3.7 **Supply Current Characteristics**

This section includes information about power supply current in various operating modes.

Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit
Run supply current		25.165 MHz		32	35	
FEI mode, all modules on		20.100 10112		32	35	
	RI _{DD}	20 MHz	3	28.0		mA

Table 9. Supply Current Characteristics

					Freq	(V)				(°C)
		Р	Run supply current FEI mode, all modules on		25.165 MHz		32	35		-40 to 25
		Ρ			25.105 10112		32	35		85
	1	Т		RI _{DD}	20 MHz	3	28.0) —	mA	
		Т			8 MHz		13.2	_		-40 to 85
		Т			1 MHz		2.4 —	_		
ĺ		С	Run supply current		25.165 MHz		28.1	29.6	- mA	
	2	Т	FEI mode, all modules off	RI _{DD}	20 MHz	3	22.9	_		-40 to 85
2	2	Т			8 MHz	5	11.3	_		
		Т			1 MHz		2.0	—		

Num C

Temp

100

¹ Not available in stop2 mode.

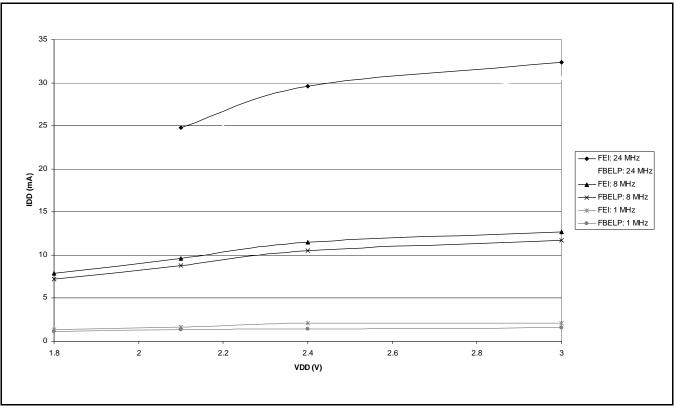


Figure 9. Typical Run I_{DD} for FBE and FEI, I_{DD} vs. V_{DD} (ADC off, All Other Modules Enabled)

3.8 External Oscillator (XOSC) Characteristics

Reference Figure 10 and Figure 11 for crystal or resonator circuits.

Table 11. XOSC and ICS Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂		See N See N		
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, High Gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S	 	 100 0 0 0	 0 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high power High range, low power High range, high power	^t CSTL ^t CSTH	 	200 400 5 15	 	ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode FBELP mode	f _{extal}	0.03125 0	_	40.0 50.33	MHz MHz

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² Load capacitors (C_1 , C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE=HGO=0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

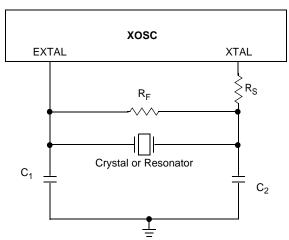


Figure 10. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

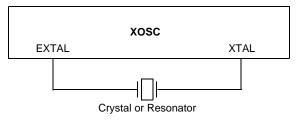


Figure 11. Typical Crystal or Resonator Circuit: Low Range/Low Gain

3.9 Internal Clock Source (ICS) Characteristics

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Charac	teristic	Symbol	Min	Typ ¹	Max	Unit
1	Ρ	Average internal reference freque at V _{DD} = 3.6 V and temperatu	f _{int_ft}	_	32.768	_	kHz	
2	Ρ	Internal reference frequency — u	iser trimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	60	100	μs
	Ρ		Low range (DRS=00)		16	—	20	
4	Ρ	DCO output frequency range — trimmed ²	Mid range (DRS=01)	f _{dco_u}	32	—	40	MHz
	Ρ		High range (DRS=10)		48	—	60	
	Ρ	DCO output frequency ²	Low range (DRS=00)		_	19.92	_	
5	Ρ	Reference = 32768 Hz and	Mid range (DRS=01)	f _{dco_DMX32}	_	39.85	_	MHz
	Ρ	DMX32 = 1	High range (DRS=10)			59.77		
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	± 0.1	± 0.2	%f _{dco}
7	С	Resolution of trimmed DCO outp temperature (not using FTRIM)	ut frequency at fixed voltage and	$\Delta f_{dco_res_t}$	_	± 0.2	± 0.4	%f _{dco}

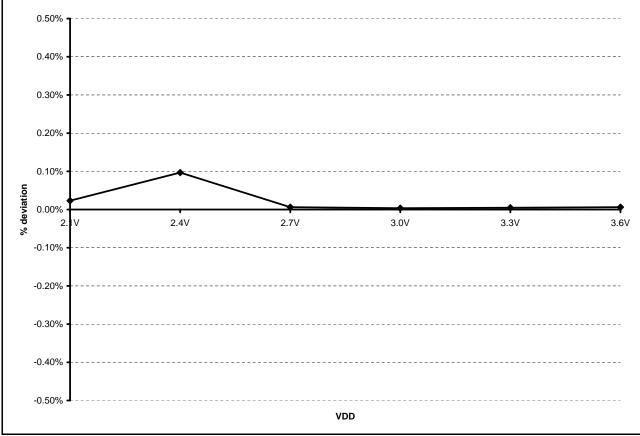


Figure 13. Deviation of DCO Output Across V_{DD} at 25°C

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Table 1	3. Control	Timing
---------	------------	--------

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency ($t_{cyc} = 1/f_{Bus}$) $V_{DD} \ge 1.8V$ $V_{DD} > 2.1V$ $V_{DD} > 2.4V$	f _{Bus}	dc		10 20 25.165	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μs
3	D	External reset pulse width ²	t _{extrst}	100		_	ns
4	D	Reset low drive	t _{rstdrv}	34 x t _{cyc}	_	—	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	—	μS

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 2 x t _{cyc}			ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 2 x t _{cyc}			ns
9	с	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁵ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		8 31		ns
3		Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		7 24		ns
10		Voltage regulator recovery time	t _{VRR}	_	4	_	μS

Table 13. Control Timing (continued)

¹ Typical values are based on characterization data at V_{DD} = 3.0V, 25°C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD} .

⁴ This is the minimum assertion time in which the interrupt **may** be recognized. The correct protocol is to assert the interrupt request until it is explicitly negated by the interrupt service routine.

 $^5\,$ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

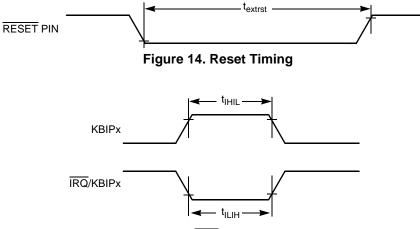
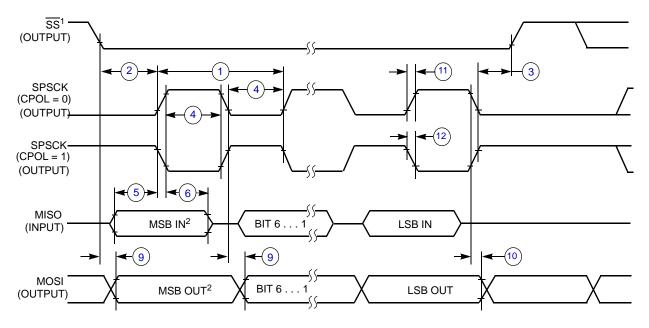
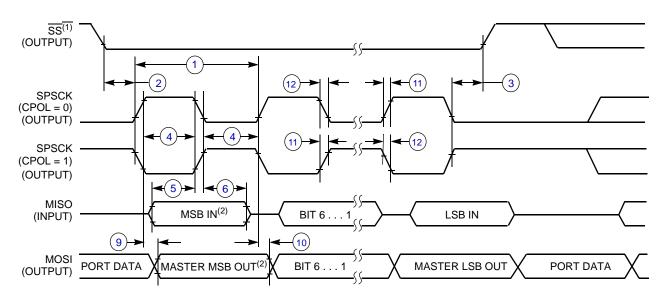



Figure 15. IRQ/KBIPx Timing



NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI Master Timing (CPHA = 0)

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 19. SPI Master Timing (CPHA =1)

MCF51QE128 Series Data Sheet, Rev. 7

3.11 Analog Comparator (ACMP) Electricals

Table 16. Analog	g Comparator	Electrical S	pecifications
------------------	--------------	---------------------	---------------

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V _{DD}	1.80	_	3.6	V
С	Supply current (active)	I _{DDAC}	_	20	35	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
С	Analog input offset voltage	V _{AIO}		20	40	mV
С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Р	Analog input leakage current	I _{ALKG}	_	_	1.0	μΑ
С	Analog comparator initialization delay	t _{AINIT}	—	—	1.0	μS

3.12 ADC Characteristics

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
D	Supply voltage	Absolute	V _{DDAD}	1.8		3.6	V	
		Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV	
D	Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV_{SSAD}	-100	0	+100	mV	
D	Ref Voltage High		V _{REFH}	1.8	V _{DDAD}	V _{DDAD}	V	
D	Ref Voltage Low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V	
D	Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
С	Input Capacitance		C _{ADIN}	_	4.5	5.5	pF	
С	Input Resistance		R _{ADIN}	_	5	7	kΩ	
	Analog Source Resistance	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}		_	2 5		External to MCU
С		10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz			_	5 10	kΩ	
		8 bit mode (all valid f _{ADCK})		—	_	10		
D		High Speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	
	Clock Freq.	Low Power (ADLPC=1)		0.4	—	4.0	111112	

Table 17. 12-bit ADC Operating Conditions

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section of the *MCF51QE128 Reference Manual*.

С	Characteristic	Symbol	Min	Typical	Мах	Unit
D	Supply voltage for program/erase -40°C to 85°C	V _{prog/erase}	1.8		3.6	V
D	Supply voltage for read operation	V _{Read}	1.8		3.6	V
D	Internal FCLK frequency ¹	f _{FCLK}	150		200	kHz
D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μs
Р	Longword program time (random location) ⁽²⁾	t _{prog}	9			t _{Fcyc}
Р	Longword program time (burst mode) ⁽²⁾	t _{Burst}	4			t _{Fcyc}
Р	Page erase time ²	t _{Page}		4000		t _{Fcyc}
Р	Mass erase time ⁽²⁾	t _{Mass}		20,000		t _{Fcyc}
	Longword program current ³	R _{IDDBP}	_	9.7	_	mA
	Page erase current ³	R _{IDDPE}	_	7.6	—	mA
с	Program/erase endurance ⁴ T _L to T _H = -40° C to + 85°C T = 25°C		10,000	 100,000		cycles
С	Data retention ⁵	t _{D_ret}	15	100	—	years

Table 19. Flash (Characteristics
-------------------	-----------------

¹ The frequency of this clock is controlled by a software setting.

² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

- ³ The program and erase currents are additional to the standard run I_{DD} . These values are measured at room temperatures with $V_{DD} = 3.0 \text{ V}$, bus frequency = 4.0 MHz.
- ⁴ Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619, *Typical Endurance for Nonvolatile Memory*.
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618, *Typical Data Retention for Nonvolatile Memory.*

4 Ordering Information

This section contains ordering information for MCF51QE128MCF51QE96, and MCF51QE64 devices.

Freescale Part Number ¹	Men	nory	Temperature range (°C)	Package ²
Freescale Fait Nulliper	Flash	RAM	Temperature range (°C)	Гаскауе
MCF51QE128CLK	128K	8K	-40 to +85	80 LQFP
MCF51QE128CLH	CLH 128K 8K		-40 to +85	64 LQFP
MCF51QE96CLK	96K	8K	-40 to +85	80 LQFP
MCF51QE96CLH	901	or	-40 to +85	64 LQFP
MCF51QE64CLH	64K	8K	-40 to +85	64 LQFP
MCF51QE32CLH	MCF51QE32CLH 32K		-40 to +85	64 LQFP
MCF51QE32LH	MCF51QE32LH 32K 8K		0 to +70	64 LQFP

Table 20. Ordering Information

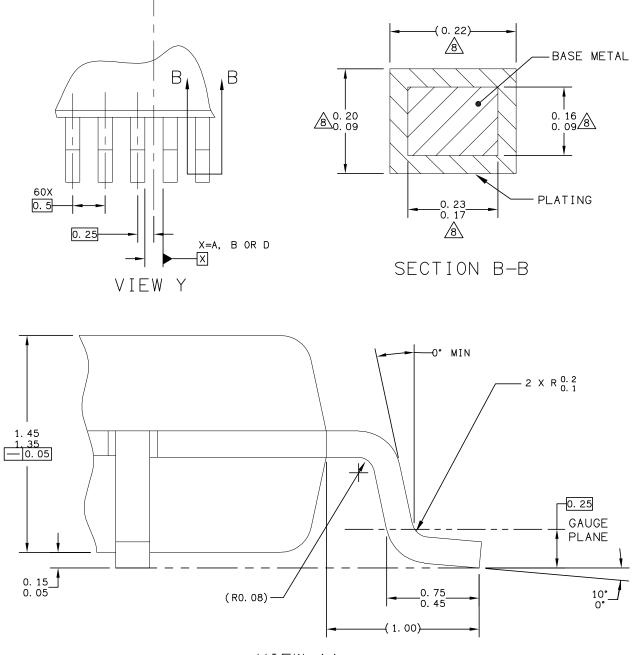
¹ See the reference manual, *MCF51QE128RM*, for a complete description of modules included on each device.

² See Table 21 for package information.

5 Package Information

The below table details the various packages available.

Table 21. Package Descriptions


Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W

5.1 Mechanical Drawings

The following pages are mechanical drawings for the packages described in Table 21. For the latest available drawings please visit our web site (http://www.freescale.com) and enter the package's document number into the keyword search box.

Package Information

VIEW AA

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
		DOCUMENT NO): 98ASS23234₩	REV: D
		CASE NUMBER	2:840F-02	06 APR 2005
		STANDARD: JEDEC MS-026 BCD		

Figure 25. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W), Sheet 2 of 3

MCF51QE128 Series Data Sheet, Rev. 7

Product Documentation

6 Product Documentation

Find the most current versions of all documents at: http://www.freescale.com

Reference Manual (MCF51QE128RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

7 Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Table 22. Revision History

Revision	Date	Description of Changes
3	25 Jun 2007	Table 8: Changed Condition entires in specs #6 (V _{IH}) and #7 (V _{IL}) from V _{DD} \geq 1.8V to V _{DD} > 2.7V and V _{DD} \leq 1.8V to V _{DD} > 1.8V.Table 8: Changed V _{DD} rising and V _{DD} falling min/typ/max specs in row #19 (Low-voltage warning threshold—high range) from 2.35, 2.40, and 2.50 to 2.36, 2.46, and 2.56 respectively.
4	17 Sep 2007	Added information about the MCF51QE32 device. Changed the SRAM size for the MCF51QE64 device (was 4 Kbytes, is 8 Kbytes). Corrected the number of ADC channels for the MCF51QE64 device (was 22, is 20). Corrected the number of ADC channels for the 64-pin package of the MCF51QE64 device (was 22, is 20).
		Changed ACMP electricals, V _{AIO} specification's test category from P to C.
5	28 May 2008	Updated the tables Thermal Characteristics, DC Characteristics, Supply Current Characteristics, XOSC and ICS Specifications (Temperature Range = -40 to 85°C Ambient), ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient), Control Timing, and Analog Comparator Electrical Specifications, 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) Updated the figures Typical Run IDD for FBE and FEI, IDD vs. VDD (ACMP and ADC off, All Other Modules Enabled), Deviation of DCO Output from Trimmed Frequency (50.33 MHz, 3.0 V), and Deviation of DCO Output from Trimmed Frequency (50.33 MHz, 25°C)
6	24 Jun 2008	Updated the table Thermal Characteristics Updated the row corresponding to Num 18 in the table DC Characteristics Updated the tables MCF51QE128 Series Features by MCU and Package , DC Characteristics , Supply Current Characteristics , Thermal Characteristics , Control Timing , and Ordering Information Updated the figures Typical Run IDD for FBE and FEI , IDD vs. VDD (ADC off, All Other Modules Enabled) , Deviation of DCO Output Across Temperature at VDD = 3.0 V , and Deviation of DCO Output Across VDD at 25xC
7	14 Oct 2008	Updated the Stop2 and Stop3 mode supply current in the Supply Current Characteristics table. Replaced the stop mode adders section from the Supply Current Characteristics with its own Stop Mode Adders table with new specifications.

Revision History

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF51QE128 Rev. 7 10/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

