

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51qe96clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1		51QE128 Series Comparison
2	Pin A	ssignments
3	Elect	rical Characteristics9
	3.1	Introduction
	3.2	Parameter Classification
	3.3	Absolute Maximum Ratings9
	3.4	Thermal Characteristics10
	3.5	ESD Protection and Latch-Up Immunity11
	3.6	DC Characteristics
	3.7	Supply Current Characteristics
	3.8	External Oscillator (XOSC) Characteristics
	3.9	Internal Clock Source (ICS) Characteristics

	3.10	AC Characteristics
		3.10.1 Control Timing 21
		3.10.2 TPM Module Timing
		3.10.3 SPI Timing 24
		Analog Comparator (ACMP) Electricals 27
	3.12	ADC Characteristics
	3.13	Flash Specifications
4	Orde	ring Information
5	Packa	age Information
	5.1	Mechanical Drawings
6	Produ	uct Documentation
7	Revis	ion History
7	Revis	ion History

MCF51QE128 Series Comparison

1 MCF51QE128 Series Comparison

The following table compares the various device derivatives available within the MCF51QE128 series.

Table 1. MCF51QE128 Series Features by MCU and Package

Feature	MCF51	QE128	MCF5 ⁻	IQE96	MCF51QE64	MCF51QE32
Flash size (bytes)	131	072	98304		65536	32768
RAM size (bytes)	81	92	81	92	8192	8192
Pin quantity	80 64 80 64		64	64		
Version 1 ColdFire core				y	es	
ACMP1				ye	es	
ACMP2				ye	es	
ADC channels	24	20	24	20	20	20
DBG				ye	es	
ICS				ye	es	
IIC1				ye	es	
IIC2				ye	es	
KBI				1	6	
Port I/O ^{1, 2}	70	54	70	54	54	54
Rapid GPIO				y	es	
RTC				y	es	
SCI1				y	es	
SCI2				y	es	
SPI1				y	es	
SPI2				y	es	
External IRQ				y	es	
TPM1 channels				:	3	
TPM2 channels				:	3	
TPM3 channels					6	
XOSC				y	es	

¹ Port I/O count does not include the input-only PTA5/IRQ/TPM1CLK/RESET or the output-only PTA4/ACMP10/BKGD/MS.

² 16 bits associated with Ports C and E are shadowed with ColdFire Rapid GPIO module.

Pin Number		Lowest	←	Priority	\longrightarrow	Highest
80	64	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	PTD1	KBI2P1	MOSI2		
2	2	PTD0	KBI2P0	SPSCK2		
3	3	PTH7	SDA2			
4	4	PTH6	SCL2			
5	-	PTH5				
6	-	PTH4				
7	5	PTE7	RGPIO7	TPM3CLK		
8	6					V _{DD}
9	7					V _{DDAD}
10	8					V _{REFH}
11	9					V _{REFL}
12	10					V _{SSAD}
13	11					V _{SS}
14	12	PTB7	SCL1			EXTAL
15	13	PTB6	SDA1			XTAL
16	—	PTH3				
17	—	PTH2				
18	14	PTH1				
19	15	PTH0				
20	16	PTE6	RGPIO6			
21	17	PTE5	RGPIO5			
22	18	PTB5	TPM1CH1	SS1		
23	19	PTB4	TPM2CH1	MISO1		
24	20	PTC3	RGPIO11	TPM3CH3		
25	21	PTC2	RGPIO10	TPM3CH2		
26	22	PTD7	KBI2P7			
27	23	PTD6	KBI2P6			
28	24	PTD5	KBI2P5			
29	—	PTJ7				
30	—	PTJ6				
31	—	PTJ5				
32	—	PTJ4				
33	25	PTC1	RGPIO9	TPM3CH1		
34	26	PTC0	RGPIO8	TPM3CH0		
35	27	PTF7				ADP17
36	28	PTF6				ADP16
37	29	PTF5				ADP15
38	30	PTF4				ADP14
39	31	PTB3	KBI1P7	MOSI1 ¹		ADP7
40	32	PTB2	KBI1P6	SPSCK1		ADP6

Table 2. MCF51QE128 Series Pin Assignment by Package and Pin Sharing Priority

- ¹ SPI1 pins (SS1, MISO1, MOSI1, and SPSCK2) can be repositioned using SPI1PS in SOPT2. Default locations are PTB5, PTB4, PTB3, and PTB2.
- ² IIC1 pins (SCL1 and SDA1) can be repositioned using IIC1PS in SOPT2. Default locations are PTA3 and PTA2, respectively.
- ³ The PTA4/ACMP1O/BKGD/MS is limited to output only for the port I/O function.

3.1 Introduction

This section contains electrical and timing specifications for the MCF51QE128 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 3. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $\begin{array}{l} T_A = Ambient \ temperature, \ ^C\\ \theta_{JA} = Package \ thermal \ resistance, \ junction-to-ambient, \ ^C/W\\ P_D = P_{int} + P_{I/O}\\ P_{int} = I_{DD} \times V_{DD}, \ Watts \ \ chip \ internal \ power\\ P_{I/O} = Power \ dissipation \ on \ input \ and \ output \ pins \ \ user \ determined \end{array}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	
Latch-up	Minimum input voltage limit		- 2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 6. ESD and Latch-up Test Conditions

Num	С	Characteristic Symbol Condition		Condition	Min	Typ ¹	Max	Unit	
		DC injection	Single pin limit			-0.2	—	0.2	mA
12	D	current ^{3, 4, 5}	Total MCU limit, includes sum of all stressed pins		$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-5	_	5	mA
13	С	Input Capacitanc	e, all pins	C _{In}		_	—	8	pF
14	С	RAM retention vo	oltage	V _{RAM}		_	0.6	1.0	V
15	С	POR re-arm volta	age ⁶	V _{POR}		0.9	1.4	1.79	V
16	D	POR re-arm time)	t _{POR}		10	_	_	μS
17	Ρ	Low-voltage dete high range ⁷	ection threshold —	V _{LVDH} ⁸	V _{DD} falling V _{DD} rising	2.11 2.16	2.16 2.21	2.22 2.27	V
18	Ρ	Low-voltage dete low range ⁷	ection threshold —	V _{LVDL}	V _{DD} falling V _{DD} rising	1.80 1.86	1.82 1.90	1.91 1.99	V
19	Ρ	Low-voltage warr high range ⁷	ning threshold —	V _{LVWH}	V _{DD} falling V _{DD} rising	2.36 2.36	2.46 2.46	2.56 2.56	V
20	Ρ	Low-voltage warr low range ⁷	ning threshold —	V _{LVWL}	V _{DD} falling V _{DD} rising	2.11 2.16	2.16 2.21	2.22 2.27	V
21	С	Low-voltage inhit hysteresis ⁷	pit reset/recover	V _{hys}		_	50	_	mV
22	Ρ	Bandgap Voltage	e Reference ⁹	V _{BG}		1.15	1.17	1.18	V

Table 8. DC Characteristics (continued)

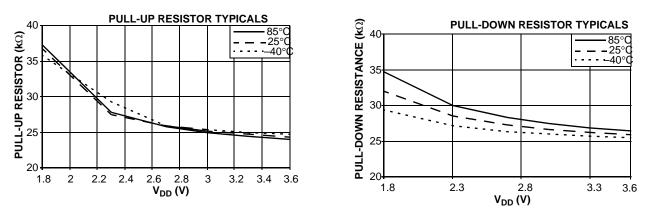
¹ Typical values are measured at 25°C. Characterized, not tested

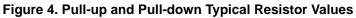
² As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL}.

 3 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).


⁶ Maximum is highest voltage that POR is guaranteed.


⁷ Low voltage detection and warning limits measured at 1 MHz bus frequency.

⁸ Run at 1 MHz bus frequency

 $^9\,$ Factory trimmed at V_DD = 3.0 V, Temp = 25°C

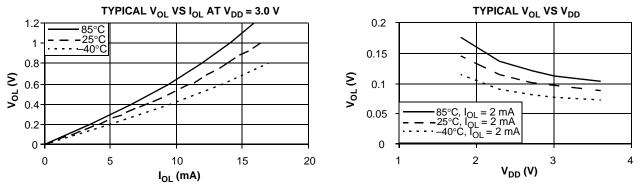


Figure 5. Typical Low-Side Driver (Sink) Characteristics — Low Drive (PTxDSn = 0)

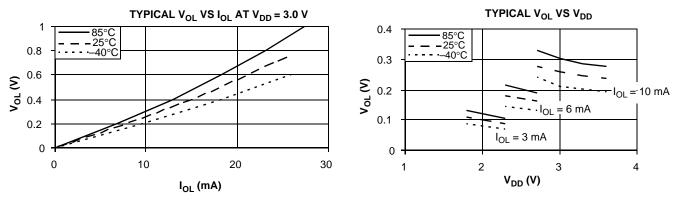
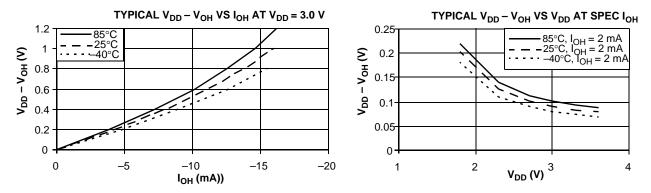



Figure 6. Typical Low-Side Driver (Sink) Characteristics — High Drive (PTxDSn = 1)

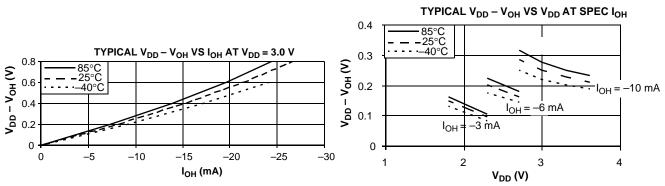


Figure 8. Typical High-Side (Source) Characteristics — High Drive (PTxDSn = 1)

3.7 **Supply Current Characteristics**

This section includes information about power supply current in various operating modes.

Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit
Run supply current		25.165 MHz		32	35	
FEI mode, all modules on		20.100 10112		32	35	
	RI _{DD}	20 MHz	3	28.0		mA

Table 9. Supply Current Characteristics

					Freq	(V)				(°C)
		Ρ	Run supply current		25.165 MHz		32	35		-40 to 25
		Ρ	FEI mode, all modules on		25.105 10112		32	35		85
	1	Т		RI _{DD}	20 MHz	3	28.0		mA	
		Т			8 MHz		13.2	_		-40 to 85
		Т			1 MHz		2.4	_		
ĺ		С	Run supply current		25.165 MHz		28.1	29.6		
	2	Т	FEI mode, all modules off	RI _{DD}	20 MHz	3	22.9	_	mA	-40 to 85
	2	Т			8 MHz	0	11.3	_		
		Т			1 MHz		2.0	—		

Num C

Temp

100

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
3	т	Run supply current LPS=0, all modules off	RI _{DD}	16 kHz FBILP	3	203	_	μA	-40 to 85
5	Т		DD	16 kHz FBELP	5	154	_	μΑ	-40 10 83
4	т	Run supply current LPS=1, all modules off, running from Flash	RI _{DD}	16 kHz FBELP	3	50		μΑ	-40 to 85
	С	Wait mode supply current		25.165 MHz		11	13.7		
5	Т	FEI mode, all modules off	\\//	20 MHz	3	4.57			40 to 85
5	Т		WI _{DD}	8 MHz	3	2	_	mA	40 10 85
	Т			1 MHz		0.73	_		
	Р	Stop2 mode supply current				0.6	0.8		-40 to 25
	С				3	3.0	11		70
6	Ρ		S21	n/a		8.0	20	μA	85
0	С		S2I _{DD}	n/a		0.6	0.8	μΛ	-40 to 25
	С				2	2.5	10		70
	С					6.0	12		85
	Ρ	Stop3 mode supply current				0.8	1.3		-40 to 25
	С	No clocks active			3	6.0	18		70
7	Ρ		S3I _{DD}	n/a		18.0	28	μA	85
,	С		DD	Π/α		0.8	1.3	μΛ	-40 to 25
	С				2	5.0	16	1	70
	С					12.0	20		85

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

Table 10. Stop Mode Adders

Num	с	Parameter	Condition		Units			
Num	C	Farameter	Condition	-40	25	70	85	Units
1	Т	LPO		50	75	100	150	nA
2	Т	ERREFSTEN	RANGE = HGO = 0	1000	1000	1100	1500	nA
3	Т	IREFSTEN ¹		63	70	77	81	uA
4	Т	RTC	does not include clock source current	50	75	100	150	nA
5	Т	LVD ¹	LVDSE = 1	90	100	110	115	uA
6	Т	ACMP ¹	not using the bandgap (BGBE = 0)	18	20	22	23	uA
7	Т	ADC ¹	ADLPC = ADLSMP = 1 not using the bandgap (BGBE = 0)	95	106	114	120	uA

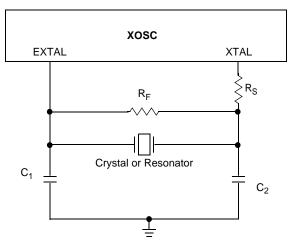


Figure 10. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

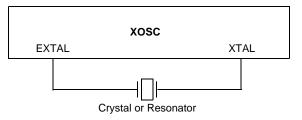


Figure 11. Typical Crystal or Resonator Circuit: Low Range/Low Gain

3.9 Internal Clock Source (ICS) Characteristics

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Num	С	Charac	Symbol	Min	Typ ¹	Max	Unit	
1	Ρ	Average internal reference freque at V _{DD} = 3.6 V and temperatu	f _{int_ft}	_	32.768	_	kHz	
2	Ρ	Internal reference frequency — u	iser trimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time	t _{IRST}	_	60	100	μs	
	Ρ	DCO output frequency range —	Low range (DRS=00)	f _{dco_u}	16	—	20	MHz
4	Ρ		Mid range (DRS=01)		32	—	40	
	Ρ		High range (DRS=10)		48	—	60	
	Ρ	DCO output frequency ² Reference = 32768 Hz and	Low range (DRS=00)	f _{dco_DMX32}	_	19.92	_	
5	Ρ		Mid range (DRS=01)		_	39.85	_	
	Ρ	DMX32 = 1	High range (DRS=10)			59.77		
6	С	Resolution of trimmed DCO outp temperature (using FTRIM)	$\Delta f_{dco_res_t}$	_	± 0.1	± 0.2	%f _{dco}	
7	С	Resolution of trimmed DCO outp temperature (not using FTRIM)	$\Delta f_{dco_res_t}$	_	± 0.2	± 0.4	%f _{dco}	

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
8	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+ 0.5 -1.0	±2	%f _{dco}
9	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0°C to 70 °C	Δf_{dco_t}	_	± 0.5	± 1	%f _{dco}
10	С	FLL acquisition time ³	t _{Acquire}	_	_	1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ⁴	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

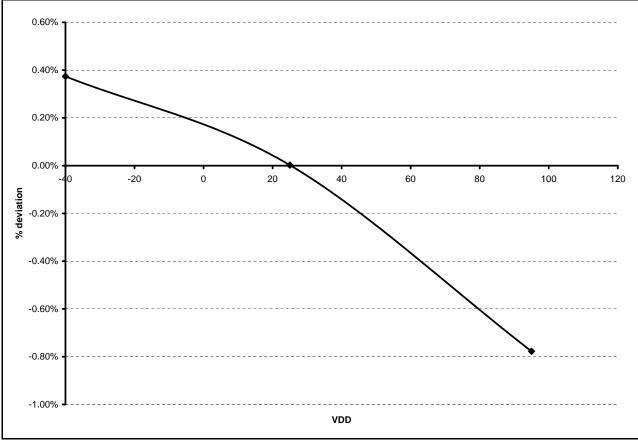


Figure 12. Deviation of DCO Output Across Temperature at V_{DD} = 3.0 V

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 2 x t _{cyc}			ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 2 x t _{cyc}		_	ns
9	С	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁵ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		8 31		ns
		Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		7 24		ns
10		Voltage regulator recovery time	t _{VRR}	_	4	_	μS

Table 13. Control Timing (continued)

¹ Typical values are based on characterization data at V_{DD} = 3.0V, 25°C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset or interrupt pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD} .

⁴ This is the minimum assertion time in which the interrupt **may** be recognized. The correct protocol is to assert the interrupt request until it is explicitly negated by the interrupt service routine.

 $^5\,$ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

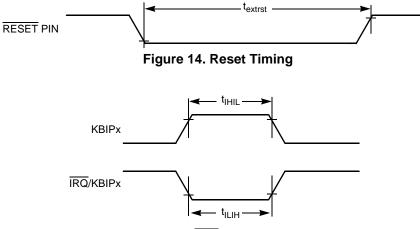
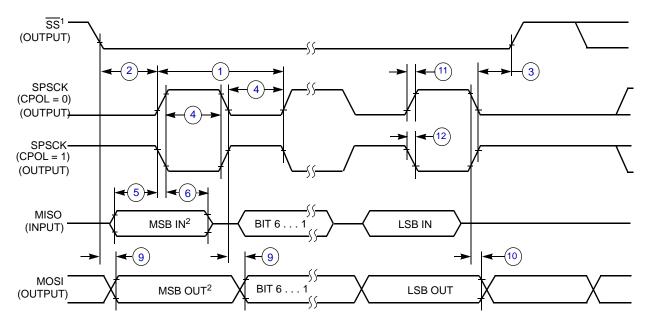
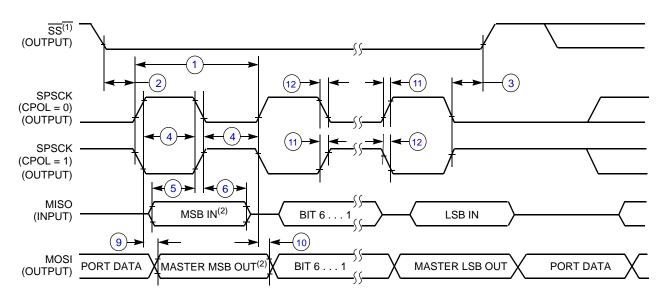



Figure 15. IRQ/KBIPx Timing

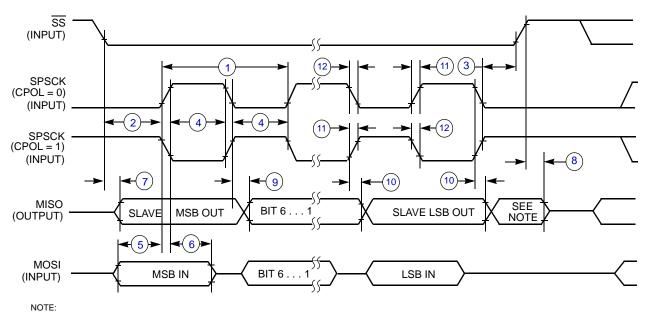


NOTES:

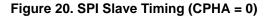
1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

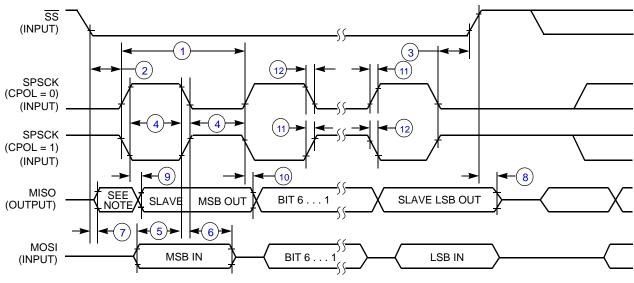
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI Master Timing (CPHA = 0)


NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).


2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.


Figure 19. SPI Master Timing (CPHA =1)

1. Not defined but normally MSB of character just received

NOTE:

1. Not defined but normally LSB of character just received

Figure 21. SPI Slave Timing (CPHA = 1)

3.11 Analog Comparator (ACMP) Electricals

Table 16. Analog	g Comparator	Electrical S	pecifications
------------------	--------------	---------------------	---------------

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V _{DD}	1.80	_	3.6	V
С	Supply current (active)	I _{DDAC}	_	20	35	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
С	Analog input offset voltage	V _{AIO}		20	40	mV
С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
Р	Analog input leakage current	I _{ALKG}	_	_	1.0	μΑ
С	Analog comparator initialization delay	t _{AINIT}	—	—	1.0	μS

3.12 ADC Characteristics

С	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
D	Supply voltage	Absolute	V _{DDAD}	1.8		3.6	V	
		Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV	
D	Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV_{SSAD}	-100	0	+100	mV	
D	Ref Voltage High		V _{REFH}	1.8	V _{DDAD}	V _{DDAD}	V	
D	Ref Voltage Low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V	
D	Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
С	Input Capacitance		C _{ADIN}	—	4.5	5.5	pF	
С	Input Resistance		R _{ADIN}		5	7	kΩ	
	Analog Source Resistance	12 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}		_	2 5		External to MCU
С		10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz			_	5 10	kΩ	
		8 bit mode (all valid f _{ADCK})		_	_	10		
D		High Speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	
	Clock Freq.	Low Power (ADLPC=1)		0.4	—	4.0	111112	

Table 17. 12-bit ADC Operating Conditions

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

4 Ordering Information

This section contains ordering information for MCF51QE128MCF51QE96, and MCF51QE64 devices.

Freescale Part Number ¹	Men	nory	Temperature range (°C)	Package ²	
Freescale Fait Nulliper	Flash	RAM	Temperature range (°C)	Гаскауе	
MCF51QE128CLK	128K 8K		-40 to +85	80 LQFP	
MCF51QE128CLH	51QE128CLH 128K 8K		-40 to +85	64 LQFP	
MCF51QE96CLK	96K	8K	-40 to +85	80 LQFP	
MCF51QE96CLH	901	or	-40 to +85	64 LQFP	
MCF51QE64CLH	64K	8K	-40 to +85	64 LQFP	
MCF51QE32CLH	MCF51QE32CLH 32K 8K		-40 to +85	64 LQFP	
MCF51QE32LH	32K	8K	0 to +70	64 LQFP	

Table 20. Ordering Information

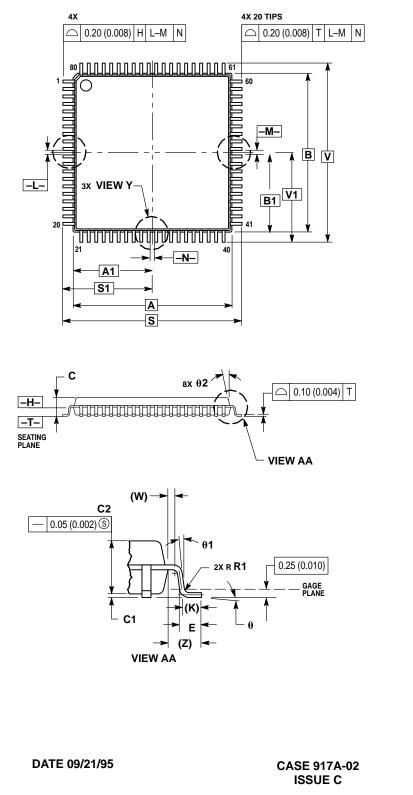
¹ See the reference manual, *MCF51QE128RM*, for a complete description of modules included on each device.

² See Table 21 for package information.

5 Package Information

The below table details the various packages available.

Table 21. Package Descriptions


Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W

5.1 Mechanical Drawings

The following pages are mechanical drawings for the packages described in Table 21. For the latest available drawings please visit our web site (http://www.freescale.com) and enter the package's document number into the keyword search box.

Package Information

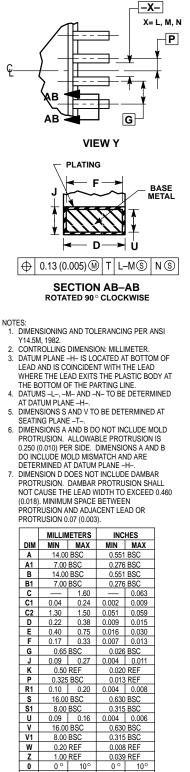


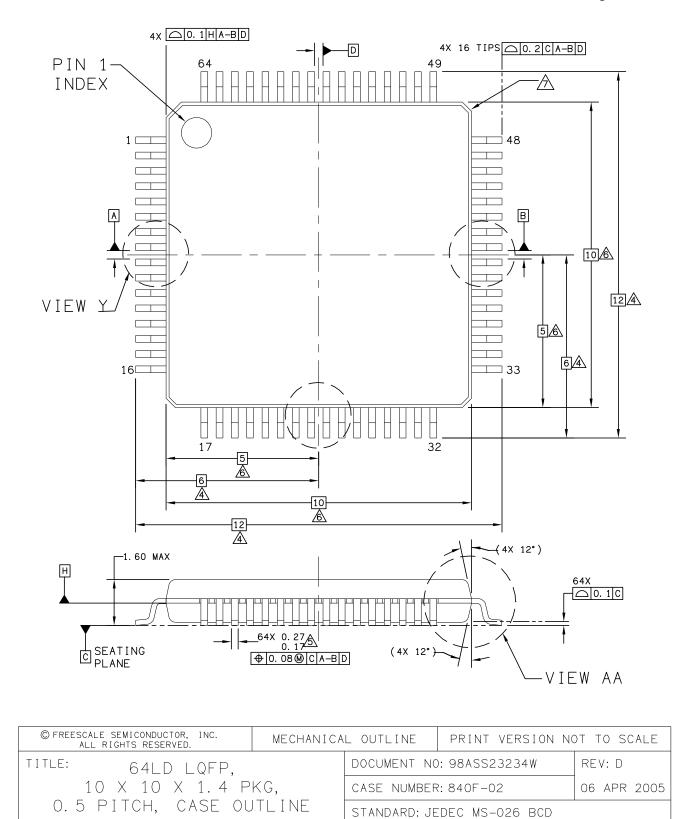
Figure 23. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)

01

02

0 °

9° 14


0 °

9 °

14°

Package Information

Revision History

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF51QE128 Rev. 7 10/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

