

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x12b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f334c6t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

TIM1and HRTIM1 maximum frequency is 144 MHz.

3.14.3 General-purpose timers (TIM2, TIM3, TIM15, TIM16, TIM17)

There are up to three general-purpose timers embedded in the STM32F334x4/6/8 (see *Table 5* for differences), that can be synchronized. Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

TIM2 and TIM3

They are full-featured general-purpose timers:

- TIM2 has a 32-bit auto-reload up/down counter and 32-bit prescaler
- TIM3 has a 16-bit auto-reload up/down counter and 16-bit prescaler

These timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.

The counters can be frozen in debug mode.

All have independent DMA request generation and support quadrature encoders.

• TIM15, 16 and 17

These three timers general-purpose timers with mid-range features:

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has 2 channels and 1 complementary channel
- TIM16 and TIM17 have 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in debug mode.

3.14.4 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.

3.14.5 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.14.6 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

Na	me	Abbreviation	bbreviation Definition			
Pin r	name	Unless otherwise after reset is the s	e specified in brackets below the pin name, the pin function during and same as the actual pin name			
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT 5 V tolerant I/O				
FTf 5 V tolerant I/O, FM+ capable			5 V tolerant I/O, FM+ capable			
		TTa	3.3 V tolerant I/O directly connected to ADC			
		ТТ	3.3 V tolerant I/O			
I/O str	ucture	тс	Standard 3.3 V I/O			
		В	Dedicated BOOT0 pin			
		RST	Bi-directional reset pin with embedded weak pull-up resistor			
No	tes	Unless otherwise reset	less otherwise specified by a note, all I/Os are set as floating inputs during and after set			
D	Alternate functions	Functions selected through GPIOx_AFR registers				
Pin functions	Additional functions	Functions directly	lirectly selected/enabled through peripheral registers			

Pi	n Numb	er				Pin	functions
LQFP 32	LQFP 48	LQFP 64	Pin name (function after reset)	Pin type	I/O structure	Alternate functions	Additional functions
-	1	1	VBAT	S	-	Backı	up power supply
-	2	2	PC13 ⁽¹⁾	I/O	тс	TIM1_CH1N	RTC_TAMP1/RTC_TS/ RTC_OUT/WKUP2
-	3	3	PC14 / OSC32_IN ⁽¹⁾	I/O	TC	-	OSC32_IN
-	4	4	PC15 / OSC32_OUT ⁽¹⁾	I/O	TC	-	OSC32_OUT
2	5	5	PF0 / OSC_IN	I/O	FT	TIM1_CH3N	OSC_IN
3	6	6	PF1 / OSC_OUT	I/O	FT	-	OSC_OUT
4	7	7	NRST	I/O	RST	Device reset in (put / internal reset output active low)

Bus	Boundary address	Size (bytes)	Peripheral
AHB3	0x5000 0000 - 0x5000 03FF	1 K	ADC1 - ADC2
-	0x4800 1800 - 0x4FFF FFFF	~132 M	Reserved
AHB2	0x4800 1400 - 0x4800 17FF	1 K	GPIOF
-	0x4800 1000 - 0x4800 13FF	1 K	Reserved
	0x4800 0C00 - 0x4800 0FFF	1 K	GPIOD
	0x4800 0800 - 0x4800 0BFF	1 K	GPIOC
ANDZ	0x4800 0400 - 0x4800 07FF	1 K	GPIOB
	0x4800 0000 - 0x4800 03FF	1 K	GPIOA
-	0x4002 4400 - 0x47FF FFFF	~128 M	Reserved
	0x4002 4000 - 0x4002 43FF	1 K	TSC
	0x4002 3400 - 0x4002 3FFF	3 K	Reserved
	0x4002 3000 - 0x4002 33FF	1 K	CRC
	0x4002 2400 - 0x4002 2FFF	3 K	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 K	Flash interface
	0x4002 1400 - 0x4002 1FFF		Reserved
	0x4002 1000 - 0x4002 13FF		RCC
	0x4002 0400 - 0x4002 0FFF		Reserved
	0x4002 0000 - 0x4002 03FF		DMA1
-	0x4001 8000 - 0x4001 FFFF	32 K	Reserved
APB2	0x4001 7400 - 0x4001 77FF	1 K	HRTIM1
	0x4001 4C00 - 0x4001 73FF	12 K	Reserved
	0x4001 4800 - 0x4001 4BFF	1 K	TIM17
	0x4001 4400 - 0x4001 47FF	1 K	TIM16
	0x4001 4000 - 0x4001 43FF	1 K	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 K	Reserved
4002	0x4001 3800 - 0x4001 3BFF	1 K	USART1
APBZ	0x4001 3400 - 0x4001 37FF	1 K	Reserved
	0x4001 3000 - 0x4001 33FF	1 K	SPI1
	0x4001 2C00 - 0x4001 2FFF	1 K	TIM1
	0x4001 0800 - 0x4001 2BFF	9 K	Reserved
	0x4001 0400 - 0x4001 07FF	1 K	EXTI
	0x4001 0000 - 0x4001 03FF	1 K	SYSCFG + COMP + OPAMP
-	0x4000 9C00 - 0x4000 FFFF	25 K	Reserved

Table 15. STM32F334x4/6/8 peripheral register boundary addresses

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 33: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT+CS}

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 34* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep mode: the wakeup event is WFE.
- WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

			-		-					
Symbol	Parameter	Conditions	Typ. @Vdd, V _{DD} = V _{DDA}					Мах	Unit	
Symbol		Conditions	2.0 V	2.4 V	2.7 V	3 V	3.3 V	3.6 V	IVIAX.	Onit
	Wakoup from	Regulator in run mode	4.3	4.1	4.0	3.9	3.8	3.7	4.5	
^t wustop	Stop mode	Regulator in low-power mode	7.8	6.7	6.1	5.9	5.5	5.3	9	μs
t _{WUSTANDBY} ⁽¹⁾	Wakeup from Standby mode	LSI and IWDG OFF	74.4	64.3	60.0	56.9	54.3	51.1	103	
twusleep	Wakeup from Sleep mode	-			6	3			-	CPU clock cycles

Table 34. Low-power mode wakeup timings

1. Data based on characterization results, not tested in production.

Table 35	Wakeup	time	using	USART
----------	--------	------	-------	-------

Symbol	Parameter	Conditions	Тур	Мах	Unit
	Wakeup time needed to calculate the maximum USART baudrate allowing	Stop mode with main regulator in low power mode	-	13.125	
IWOUSART	to wakeup up from stop mode when USART clock source is HSI	Stop mode with main regulator in run mode	-	3.125	μο

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 13*.

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 15*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Figure 19. TC and TTa I/O input characteristics - TTL port

Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port

Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port

Figure 23. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 53. Otherwise the reset will not be taken into account by the device.
- 3. The external capacitor on NRST must be placed as close as possible to the device.
- 4. Place the external capacitor 0.1u F on NRST as close as possible to the chip.

6.3.16 High-resolution timer (HRTIM)

The parameters given in *Table 54* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 19*.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
т.	Timer ambient	f _{HRTIM} =144MHz ⁽¹⁾	-40	-	105	°C
'A	temperature range	f _{HRTIM} =128MHz ⁽²⁾	-10	-	105	°C
f _{HRTIM}	HRTIM input clock	As per T. conditions	128	-	144	MHz
t _{HRTIM}	for DLL calibration		6.9	-	7.8	ns
t	Timer resolution	f _{HRTIM} =144MHz ⁽¹⁾ , TA from -40 to 105°C	-	217	-	ps
'RES(HRTIM)	time	f _{HRTIM} =128MHz ⁽²⁾ ,TA from -10 to 105°C	-	244	-	ps
Res _{HRTIM}	Timer resolution	-	-	-	16	bit
	Dead time	-	0.125	-	16	t _{HRTIM}
^t DTG	generator clock period	f _{HRTIM} =144MHz ⁽¹⁾	0.868	-	111.10	ns
t _{DTR /} t _{DTF}	Dead time range	-	-	-	511	t _{DTG}
max	(absolute value)	f _{HRTIM} =144MHz ⁽¹⁾	-	-	56.77	μs
fourre	Chopper stage	-	1/256	-	1/16	f _{HRTIM}
CHPERQ	clock frequency	f _{HRTIM} =144MHz ⁽¹⁾	0.562	-	9	MHz
terrow	Chopper first	-	16	-	256	t _{HRTIM}
'1STPW	pulse length	f _{HRTIM} =144MHz ⁽¹⁾	0.111	-	1.77	μs

Table 54. HRTIM1 characteristics

1. Using HSE with 8MHz XTAL as clock source, configuring PLL to get PLLCLK=144MHz, and selecting PLLCLKx2 as HRTIM clock source. (Refer to Reset and clock control section in RM0364.)

2. Using HSI (internal 8MHz RC oscillator), configuring PLL to get PLLCLK=128MHz, and selecting PLLCLKx2 as HRTIM clock source. (Refer to Reset and clock control section in RM0364.

Table	Table 57. HR TIM output response to external events 1 to 10 (Synchronous mode (7)					
Symbol	Parameter	Conditions	Min.	Тур.	Max. (2)	Unit
T _{PROP(HRTI} M)	External event response latency in HRTIM	HRTIM internal propagation delay ⁽³⁾	6	-	7	t _{HRTIM}
t _{LAT(DEEV)}	Digital external event response latency	Propagation delay from HRTIM1_EEVx digital input to HRTIM_CHxy output pin (30pF load) ⁽⁴⁾	-	61	72	ns
t _{LAT(AEEV)}	Analog external event response latency	Propagation delay from COMPx_INP input pin to HRTIM_CHxy output pin (30pF load) ⁽⁴⁾	-	81	94	ns
t _{W(FLT)}	Minimum external event pulse width	-	12.5	-	-	ns
T _{JIT(EEV)}	External event response jitter	Jitter of the delay from HRTIM1_EEVx digital input or COMPx_INP to HRTIM_CHxy output pin	-	-	1	t _{HRTIM}
T _{JIT(PW)}	Jitter on output pulse width in response to an external event	-	-	-	0	t _{HRTIM}

Table 57. HRTIM output response to exte	nal events 1 to 10 (Synchronous mode ⁽¹⁾)
---	---

EExFAST bit in HRTIM_EECR1 or HRTIM_EECR2 register is cleared (synchronous mode). External event filtering is disabled, i.e. EExF[3:0]=0000 in HRTIM_EECR2 register. Refer to Latency to external events paragraph in HRTIM section of RM0364.

2. Data based on characterization results, not tested in production.

3. This parameter does not take into account latency introduced by GPIO or comparator. Refer to DEERL or SACRL parameter for complete latency.

4. This parameter is given for f_{HRTIM} = 144 MHz.

 $T_{HRTIM} = 1 / f_{HRTIM}$ with $f_{HRTIM} = 144$ MHz or $f_{HRTIM} = 128$ MHZ depending on the clock controller configuration. (Refer to Reset and clock control section in RM0364.) 5.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
^t w(synci N)	Minimum pulse width on SYNCIN inputs, including HRTIM1_SCIN	-	2	-	-	t _{HRTIM}
t _{LAT(DF)}	Response time to external synchronization request	-	-	-	1	t _{HRTIM}
t _{LAT(AF)}	Pulse width on	-	-	16	-	t _{HRTIM}
	output	f _{HRTIM} =144 MHz	-	111.1	-	ns

Table 58. HRTIM synchronization input / output⁽¹⁾

1. Guaranteed by design, not tested in production.

145	Table of two min.max. timeout period at 40 km2 (Loi)							
Prescaler divider	PR[2:0] bits	Min. timeout (ms) RL[11:0]= 0x000	Max. timeout (ms) RL[11:0]= 0xFFF					
/4	0	0.1	409.6					
/8	1	0.2	819.2					
/16	2	0.4	1638.4					
/32	3	0.8	3276.8					
/64	4	1.6	6553.6					
/128	5	3.2	13107.2					
/256	7	6.4	26214.4					

Table 60. IWDG min./max. timeout period at 40 kHz (LSI) ⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 61. WWDG mir	ı./max. timeout value	at 72 MHz	(PCLK) ⁽¹⁾)
--------------------	-----------------------	-----------	-----------------------	---

Prescaler	WDGTB	Min. timeout value	Max. timeout value
1	0	0.05687	3.6409
2	1	0.1137	7.2817
4	2	0.2275	14.564
8	3	0.4551	29.127

1. Guaranteed by design, not tested in production.

6.3.18 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 Kbit/s
- Fast-mode (Fm): with a bit rate up to 400 Kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I²C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

DocID025409 Rev 5

Figure 24. SPI timing diagram - slave mode and CPHA = 0

Figure 25. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at 0.5V_{DD} and with external C_L = 30 pF.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{REF-}	Negative reference voltage			0		V
f _{ADC}	ADC clock frequency	-	0.14	-	72	MHz
		Resolution = 12 bits, Fast Channel	0.01	-	5.14	
f. (1)	Sampling rate	Resolution = 10 bits, Fast Channel	0.012	-	6	Mede
IS. T	Sampling fale	Resolution = 8 bits, Fast Channel	0.014	-	7.2	
		Resolution = 6 bits, Fast Channel	0.0175	-	9	
f _{TRIG} ⁽¹⁾	External trigger frequency	f _{ADC} = 72 MHz Resolution = 12 bits	-	-	5.14	MHz
		Resolution = 12 bits	-	-	14	1/f _{ADC}
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V
R _{AIN} ⁽¹⁾	External input impedance	-	-	-	100	κΩ
C _{ADC} ⁽¹⁾	Internal sample and hold capacitor	-	-	5	-	pF
+ (1)	Calibration time	f _{ADC} = 72 MHz	1.56			μs
'CAL`		-	112			1/f _{ADC}
	Trigger conversion latency	CKMODE = 00	1.5	2	2.5	1/f _{ADC}
+ (1)	Regular and injected channels without conversion abort	CKMODE = 01	-	-	2	1/f _{ADC}
'latr'		CKMODE = 10	-	-	2.25	1/f _{ADC}
		CKMODE = 11	-	-	2.125	1/f _{ADC}
		CKMODE = 00	2.5	3	3.5	1/f _{ADC}
t(1)	Trigger conversion latency	CKMODE = 01	-	-	3	1/f _{ADC}
"Intring"	a regular conversion	CKMODE = 10	-	-	3.25	1/f _{ADC}
		CKMODE = 11	-	-	3.125	1/f _{ADC}
+_(1)	Sampling time	f _{ADC} = 72 MHz	0.021	-	8.35	μs
^I S [*]		-	1.5	-	601.5	1/f _{ADC}
t _{ADCVREG} _STUP	ADC Voltage Regulator Start-up time	-	10		10	μs
t _{STAB}	Power-up time	-	1			conver sion cycle

Table 64. ADC characteristics (continued)

Symbol	Parameter	Conditions			Min ⁽⁴⁾	Max (4)	Unit
			Single ended	Fast channel 5.1 Ms	-	±3	
ЕІ	Integral		Single ended	Slow channel 4.8 Ms	-	±3.5	
	error		Differential	Fast channel 5.1 Ms	-	±2	
			Dillerential	Slow channel 4.8 Ms	-	±2.5	
			Single ended	Fast channel 5.1 Ms	10.4	-	bits
ENOB	Effective	ADC clock freq. \leq 72 MHz, Sampling freq. \leq 5 Msps		Slow channel 4.8 Ms	10.4	-	
	bits	$2.0 V \le V_{\Box \Box \Delta} \le 3.6 V$	Differential	Fast channel 5.1 Ms	10.8	-	
			Differential	Slow channel 4.8 Ms	10.8	-	
	Signal-to-		Single ended	Fast channel 5.1 Ms	64	-	dB
SINAD	noise and		Single ended	Slow channel 4.8 Ms	63	-	
(5)	distortion		Differential	Fast channel 5.1 Ms	67	-	
	ratio		Dillerential	Slow channel 4.8 Ms	67	- (
			Single ended	Fast channel 5.1 Ms	64	-	dB
SND ⁽⁵⁾	Signal-to-		Single ended	Slow channel 4.8 Ms	64	-	
SINK	noise ratio		Differential	Fast channel 5.1 Ms	67	-	
		ADC clock freq. ≤ 72 MHz,	Dillerential	Slow channel 4.8 Ms	67	-	
		$2.0 V < V_{\text{Add}} < 3.6 V$	Single ended	Fast channel 5.1 Ms	-	-75	
тun ⁽⁵⁾	Total			Slow channel 4.8 Ms	-	-75	
	distortion		Differential	Fast channel 5.1 Ms	-	-79	
			Differential	Slow channel 4.8 Ms	-	-78	

Table 67. ADC accuracy $^{(1)(2)(3)}$ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

- 3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.
- 4. Data based on characterization results, not tested in production.
- 5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Symbol	Parameter	Test condition	IS	Тур	Max ⁽³⁾	Unit
ET	Total upadiusted error		Fast channel	±2.5	±5	
			Slow channel	±3.5	±5	
EO Offset	Offset error	ADC Freq \leq 72 MHz Sampling Freq \leq 1MSPS 2.4 V \leq V _{DDA} = V _{REF+} \leq 3.6 V Slow	Fast channel	±1	±2.5	
			Slow channel	±1.5	±2.5	
EG	Cain arrar		Fast channel	±2	±3	
	Gainenoi		Slow channel	±3	±4	LOD
ED	Differential linearity error	Single-ended mode	Fast channel	±0.7	± 2	
			Slow channel	±0.7	±2	
EL	Integral linearity array		Fast channel	±1	±3	1
	integral intearity error		Slow channel	±1.2	±3	

Table 68. ADC accuracy⁽¹⁾⁽²⁾ at 1MSPS

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.. Any positive injection current within the limits specified for IINJ(PIN) and ∑IINJ(PIN) in Section 6.3.14: I/O port characteristics does not affect the ADC accuracy.

3. Data based on characterization results, not tested in production.

Figure 28. ADC accuracy characteristics

57

Figure 29. Typical connection diagram using the ADC

1. Refer to *Table 64* for the values of R_{AIN}.

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 10: Power-supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.20 DAC electrical specifications

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDA}	Analog supply voltage	-	2.4	-	3.6	V
R _{LOAD} ⁽¹⁾	Resistive load	DAC output buffer ON (to V_{SSA})	5	-	-	kΩ
R _{LOAD} ⁽¹⁾	Resistive load	DAC output buffer ON (to V _{DDA})	25	-	-	kΩ
$R_0^{(1)}$	Output impedance	DAC output buffer OFF	-	-	15	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load	DAC output buffer ON	-	-	50	pF
V _{DAC,OUT} (Voltage on DAC_OUT	Corresponds to 12-bit input code (0x0E0) to (0xF1C) at V_{DDA} = 3.6 V and (0x155) and (0xEAB) at V_{DDA} = 2.4 V	0.2	-	V _{DDA} – 0.2	v
			-	0.5	-	mV
			-	-	V _{DDA} – 1LSB	V
I _{DDA} ⁽³⁾	DAC DC current	With no load, middle code (0x800) on the input	-	-	380	μΑ
	mode ⁽²⁾	With no load, worst code (0xF1C) on the input.	-	-	480	μA

Table 69. DAC characteristics

7 Package information

7.1 Package mechanical data

To meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Device marking for LQFP32

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 35. LQFP32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Device marking for LQFP48

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.4 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

Figure 39. LQFP64 package outline

1. Drawing is not to scale.

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	11.800	12.000	-	-	0.4724	-
D1	9.800	10.000	-	-	0.3937	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
е	-	0.500	-	-	0.0197	-

