

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARM® Cortex®-M4Core Size32-Bit Single-CoreSpeed72MHzConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface Mount		
Core Size32-Bit Single-CoreSpeed72MHzConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Product Status	Active
Speed72MHzConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Core Processor	ARM® Cortex®-M4
ConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Core Size	32-Bit Single-Core
PeripheralsDMA, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Speed	72MHz
Number of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Peripherals	DMA, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Number of I/O	37
EEPROM Size-RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Program Memory Size	32KB (32K x 8)
RAM Size12K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	EEPROM Size	-
Data ConvertersA/D 15x12b; D/A 3x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	RAM Size	12K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)	Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Operating Temperature -40°C ~ 105°C (TA)	Data Converters	A/D 15x12b; D/A 3x12b
	Oscillator Type	Internal
Mounting Type Surface Mount	Operating Temperature	-40°C ~ 105°C (TA)
	Mounting Type	Surface Mount
Package / Case 48-LQFP	Package / Case	48-LQFP
Supplier Device Package48-LQFP (7x7)	Supplier Device Package	48-LQFP (7x7)
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f334c6t7tr	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f334c6t7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Up to 3 USARTs, one with ISO/IEC 7816 interface, LIN, IrDA, modem control
- 96-bit unique ID
- All packages ECOPACK[®]2
- Debug mode: serial wire debug (SWD), JTAG

Table 1. Device summary

Reference	Part number
STM32F334Kx	STM32F334K4/K6/K8
STM32F334Cx	STM32F334C4/C6/C8
STM32F334Rx	STM32F334R4/R6/R8

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed, following a specific sequence to avoid spurious writing to the I/Os registers.

Fast I/O handling allows I/O toggling up to 36 MHz.

3.8 Direct memory access (DMA)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each of the 7 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose timers, high-resolution timer, DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F334x4/6/8 devices embed a nested vectored interrupt controller (NVIC) able to handle up to 60 interrupt channels, that can be masked and 16 priority levels.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The external interrupt/event controller consists of 27 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked

3.16 Communication interfaces

3.16.1 Inter-integrated circuit interface (I²C)

The devices feature an I^2C bus interface which can operate in multimaster and slave mode. It can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes.

It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). It also includes programmable analog and digital noise filters.

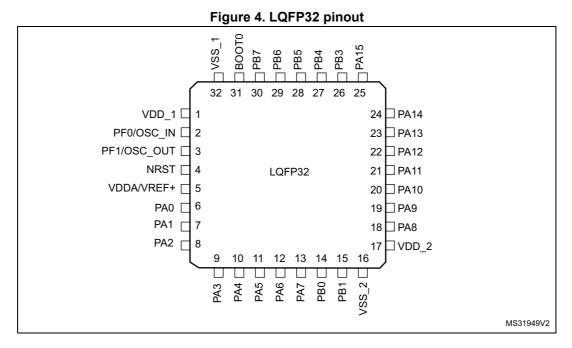
-	Analog filter	Digital filter			
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks			
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length 			
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.			

Table 6. Comparison of I²C analog and digital filters

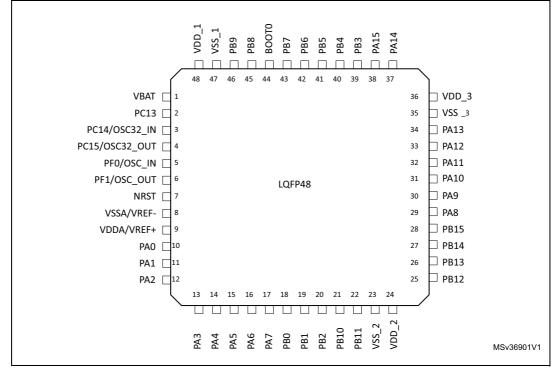
In addition, it provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. It also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I²C interface can be served by the DMA controller.

The features available in I2C1 are showed below in Table 7.


Table 7. STM32F334x4/6/8 I²C implementation

I ² C features ⁽¹⁾	I2C1
7-bit addressing mode	Х
10-bit addressing mode	Х
Standard mode (up to 100 kbit/s)	Х
Fast mode (up to 400 kbit/s)	Х
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х
Independent clock	Х
SMBus	Х
Wakeup from STOP	Х


1. X = supported.

4 Pinout and pin descriptions

Figure 5. LQFP48 pinout

57

40/115

	Table 14. Alternate functions (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port	Port	SYS_AF	TIM2/TIM15/ TIM16/TIM17/ EVENT	TIM1/TIM3/ TIM15/ TIM16	HRTIM1/TSC	I2C1/TIM1	SPI1/Infrared	TIM1/Infrared	USART1/USA RT2/USART3/ GPCOMP6	GPCOMP2/ GPCOMP4/ GPCOMP6	CAN/TIM1/ TIM15	TIM2/TIM3 /TIM17	TIM1	HRTIM1/ TIM1	HRTIM1/ OPAMP2	-	EVENT
	PB10	-	TIM2_CH3	-	TSC_SYNC	-	-	-	USART3_TX	-	-	-	-	-	HRTIM1_FLT3	-	EVENTOUT
	PB11	-	TIM2_CH4	-	TSC_G6_IO1	-	-	-	USART3_RX	-	-	-	-	-	HRTIM1_FLT4	-	EVENTOUT
	PB12	-	-	-	TSC_G6_IO2	-	-	TIM1_BKIN	USART3_CK	-	-	-	-	-	HRTIM1_CHC1	-	EVENTOUT
Port B	PB13	-	-	-	TSC_G6_IO3	-	-	TIM1_CH1N	USART3_CTS	-	-	-	-	-	HRTIM1_CHC2	-	EVENTOUT
	PB14	-	TIM15_CH1	-	TSC_G6_IO4	-	-	TIM1_CH2N	USART3_RTS _DE	-	-	-	-	-	HRTIM1_CHD1	-	EVENTOUT
	PB15	-	TIM15_CH2	TIM15_CH1 N	-	TIM1_CH3N	-	-	-	-	-	-	-	-	HRTIM1_CHD2	-	EVENTOUT
	PC0	-	EVENTOUT	TIM1_CH1	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC2	-	EVENTOUT	TIM1_CH3	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC3	-	EVENTOUT	TIM1_CH4	-	-	-	TIM1_BKIN2	-	-	-	-	-	-	-	-	-
	PC4	-	EVENTOUT	TIM1_ETR	-	-	-	-	USART1_TX	-	-	-	-	-	-	-	-
	PC5	-	EVENTOUT	TIM15_BKIN	TSC_G3_IO1	-	-	-	USART1_RX	-	-	-	-	-	-	-	-
	PC6	-	EVENTOUT	TIM3_CH1	HRTIM1_EEV1 0	-	-	-	COMP6_OUT	-	-	-	-	-	-	-	-
Port C	PC7	-	EVENTOUT	TIM3_CH2	HRTIM1_FLT5	-	-	-	-	-	-	-	-	-	-	-	-
	PC8	-	EVENTOUT	TIM3_CH3	HRTIM1_CHE1	-	-	-	-	-	-	-	-	-	-	-	-
	PC9	-	EVENTOUT	TIM3_CH4	HRTIM1_CHE2	-	-	-	-	-	-	-	-	-	-	-	-
	PC10	-	EVENTOUT	-	-	-	-	-	USART3_TX	-	-	-	-	-	-	-	-
	PC11	-	EVENTOUT	-	HRTIM1_EEV2	-	-	-	USART3_RX	-	-	-	-	-	-	-	-
	PC12	-	EVENTOUT	-	HRTIM1_EEV1	-	-	-	USART3_CK	-	-	-	-	-	-	-	-
	PC13	-	-	-	-	TIM1_CH1N	-	-	-	-	-	-	-	-	-	-	-
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Port D	PD2	-	EVENTOUT	TIM3_ETR	-	-	-	-	-	-	-	-	-	-	-	-	-
Port F	PF0	-	-	-	-	-	-	TIM1_CH3N	-	-	-	-	-	-	-	-	-
	PF1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 20* are derived from tests performed under the ambient temperature condition summarized in *Table 19*.

Symbol	Parameter	Conditions	Min.	Max.	Unit
t _{∨DD}	V _{DD} rise time rate		0	8	
	V _{DD} fall time rate	-	20	8	µs/V
	V _{DDA} rise time rate		0	8	μ5/ ν
	V _{DDA} fall time rate	-	20	8	

Table 20. Operating conditions at power-up / power-down

6.3.3 Characteristics of the embedded reset and power-control block

The parameters given in *Table 21* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down	Falling edge	1.8 ⁽²⁾	1.88	1.96	V
	reset threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽³⁾	POR reset temporization	-	1.5	2.5	4.5	ms

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only V_{DD} .

2. The product behavior is guaranteed by design down to the minimum $V_{\mbox{POR/PDR}}$ value.

3. Guaranteed by design, not tested in production.

				Ту	/p.	
Symbol	Parameter	Conditions	^f HCLK	Peripherals enabled	Peripherals disabled	Unit
			72 MHz	51.8	6.3	
			64 MHz	46.4	5.7	
			48 MHz	35.0	4.40	
			32 MHz	23.7	3.13	
			24 MHz	18.0	2.49	
	Supply current in		16 MHz	12.2	1.85	^
I _{DD}	Sleep mode from V _{DD} supply		8 MHz	6.2	0.99	- mA
			4 MHz	3.68	0.88	
			2 MHz	2.26	0.80	
		Running from HSE crystal clock 8 MHz,	1 MHz	1.55	0.76	1
			500 kHz	1.20	0.74	
			125 kHz	0.89	0.72	
		code executing from Flash or RAM	72 MHz	239.0	236.7	
		FIASTI OF RAIM	64 MHz	209.4	207.8	
			48 MHz	154.0	152.9	
			32 MHz	103.7	103.2	
			24 MHz	80.1	79.8	
I _{DDA} ^{(1) (2)}	Supply current in		16 MHz	56.7	56.6	
	Sleep mode from V _{DDA} supply		8 MHz	1.14	1.14	μA
			4 MHz	1.14	1.14	1
			2 MHz	1.14	1.14	1
			1 MHz	1.14	1.14	1
			500 kHz	1.14	1.14	1
			125 kHz	1.14	1.14	1

Table 31. Typical current	consumption in Sleep	mode, code running	from Flash or RAM

1. V_{DDA} supervisor is OFF.

2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 50: I/O static characteristics*.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 17*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 17*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 47: ESD absolute maximum ratings* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	
V _{OLFM+} ⁽¹⁾⁽⁴⁾	Output low level voltage for an FTf I/O pin in FM+ mode	I _{IO} = +20 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	

Table 51. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 17* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 17* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

4. Data based on design simulation.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 22* and *Table 66*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 19*.

Table	Table 57. HRTIM output response to external events 1 to 10 (Synchronous mode ⁽¹⁾)					
Symbol	Parameter Conditions		Min.	Тур.	Max. (2)	Unit
T _{PROP(HRTI} M)	External event response latency in HRTIM	HRTIM internal propagation delay ⁽³⁾	6	-	7	t _{HRTIM}
t _{LAT(DEEV)}	Digital external event response latency	Propagation delay from HRTIM1_EEVx digital input to HRTIM_CHxy output pin (30pF load) ⁽⁴⁾	-	61	72	ns
t _{LAT(AEEV)}	Analog external event response latency	Propagation delay from COMPx_INP input pin to HRTIM_CHxy output pin (30pF load) ⁽⁴⁾	-	81	94	ns
t _{W(FLT)}	Minimum external event pulse width	-	12.5	-	-	ns
T _{JIT(EEV)}	External event response jitter	Jitter of the delay from HRTIM1_EEVx digital input or COMPx_INP to HRTIM_CHxy output pin	-	-	1	t _{HRTIM}
T _{JIT(PW)}	Jitter on output pulse width in response to an external event	-	-	-	0	t _{HRTIM}

Table 57. HRTIM output response to external events 1 to 10 (Synchronous mode ⁽¹⁾)

EExFAST bit in HRTIM_EECR1 or HRTIM_EECR2 register is cleared (synchronous mode). External event filtering is disabled, i.e. EExF[3:0]=0000 in HRTIM_EECR2 register. Refer to Latency to external events paragraph in HRTIM section of RM0364.

2. Data based on characterization results, not tested in production.

3. This parameter does not take into account latency introduced by GPIO or comparator. Refer to DEERL or SACRL parameter for complete latency.

4. This parameter is given for f_{HRTIM} = 144 MHz.

 $T_{HRTIM} = 1 / f_{HRTIM}$ with $f_{HRTIM} = 144$ MHz or $f_{HRTIM} = 128$ MHZ depending on the clock controller configuration. (Refer to Reset and clock control section in RM0364.) 5.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
^t w(synci N)	Minimum pulse width on SYNCIN inputs, including HRTIM1_SCIN	-	2	-	-	t _{HRTIM}
t _{LAT(DF)}	Response time to external synchronization request	-	-	-	1	t _{HRTIM}
	Pulse width on	-	-	16	-	t _{HRTIM}
^t LAT(AF)	HRTIM1_SCOUT output	f _{HRTIM} =144 MHz	-	111.1	-	ns

Table 58. HRTIM synchronization input / output⁽¹⁾

1. Guaranteed by design, not tested in production.

6.3.17 Timer characteristics

The parameters given in *Table 59* are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

	Table 55.	TIMx ⁽¹⁾⁽²⁾ characte	istics		1
Symbol	Parameter	Conditions	Min.	Max.	Unit
		-	1	-	t _{TIMxCL} К
f _{EXT}	Timer resolution time	f _{TIMxCLK} = 72 MHz	13.9	-	ns
		mer resolution time - 1 - $f_{TIMxCLK} = 72 \text{ MHz}$ 13.9 - $f_{TIM1CLK} = 144 \text{ MHz}$ 6.95 - mer external clock - 0 $f_{TIMxCLK}/2$ equency on CH1 to CH4 - 0 36 mer resolution TIMx (except TIM2) - 16 mer resolution TIM2 - 32 S-bit counter clock period - 1 65536 $f_{TIMxCLK} = 72 \text{ MHz}$ 0.0139 910 $f_{TIMxCLK} = 144 \text{ MHz}$ 0.0069 455 aximum possible count - - 65536 × 65536	ns		
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Dee	Timer resolution	TIMx (except TIM2)	-	16	bit
Kestim		TIM2	-	32	DIL
		-	1	65536	t _{TIMxCL} К
^t COUNTER	16-bit counter clock period	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
		f _{TIM1CLK} = 144 MHz	0.0069	455	μs
t _{MAX_COUN}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCL} к
T	with 32-bit counter	f _{TIMxCLK} = 72 MHz	-	59.65	S
		f _{TIM1CLK} = 144 MHz	-	29.825	S

Table 59.	$TIMx^{(1)(2)}$	characteristics
-----------	-----------------	-----------------

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM15, TIM16 and TIM17 timers.

2. Guaranteed by design, not tested in production.

Tab								
Prescaler divider	PR[2:0] bits	Min. timeout (ms) RL[11:0]= 0x000	Max. timeout (ms) RL[11:0]= 0xFFF					
/4	0	0.1	409.6					
/8	1	0.2	819.2					
/16	2	0.4	1638.4					
/32	3	0.8	3276.8					
/64	4	1.6	6553.6					
/128	5	3.2	13107.2					
/256	7	6.4	26214.4					

Table 60. IWDG min./max. timeout period at 40 kHz (LSI) ⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 61. WWDG	6 min./max. timeout value at 72 MHz	: (PCLK) ⁽¹⁾
----------------	-------------------------------------	-------------------------

Prescaler	WDGTB	Min. timeout value	Max. timeout value
1	0	0.05687	3.6409
2	1	0.1137	7.2817
4	2	0.2275	14.564
8	3	0.4551	29.127

1. Guaranteed by design, not tested in production.

6.3.18 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 Kbit/s
- Fast-mode (Fm): with a bit rate up to 400 Kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I²C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min.	Max.	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter.	50 ⁽²⁾	260 ⁽³⁾	ns

Table 62. I²C analog filter characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

2. Spikes with width below $t_{AF}(min.)$ are filtered.

3. Spikes with width above $t_{AF}(max.)$ are not filtered.

SPI characteristics

Unless otherwise specified, the parameters given in *Table 53* for SPI are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 19: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode 2.7 <v<sub>DD<3.6</v<sub>			24	
		Master mode 2 <v<sub>DD<3.6</v<sub>			18	
f _{SCK}	SPI clock frequency	Slave mode 2 <v<sub>DD<3.6</v<sub>	-	_	24	MHz
1/t _{c(SCK)}		Slave mode transmitter/full duplex			18 ⁽²⁾	
		2 <v<sub>DD<3.6</v<sub>				
DuCy(scк)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{w(SCKL)}						
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}		Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	5	-	-	
t _{h(SI)}		Slave mode	1	-	-	ns
t _{a(SO)}	Data output access time	Slave mode	10	-	40	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	17	
	 is(SO) Data output disable time v(SO) Data output valid time 	Slave mode 2.7 <v<sub>DD<3.6V</v<sub>	-	12	20	
۷(SO)		Slave mode 2 <v<sub>DD<3.6V</v<sub>	-	12	27.5	
t _{v(MO)}		Master mode	-	1.5	5	
t _{h(SO)}	Data output hold time	Slave mode	7.5	-	-	1
t _{h(MO)}		Master mode	0	-	-	1

Table 63. SPI characteristics⁽¹⁾

1. Data based on characterization results, not tested in production.

 Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%.

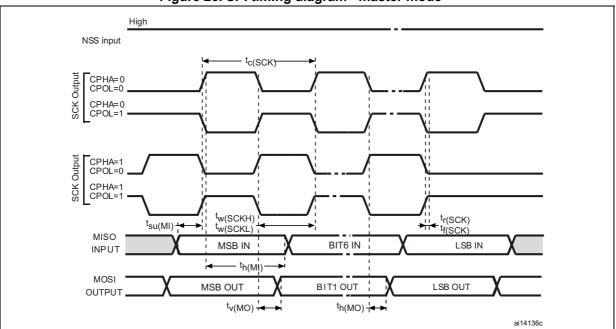


Figure 26. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

6.3.19 ADC characteristics

Unless otherwise specified, the parameters given in *Table 64* to *Table 67* are guaranteed by design, with conditions summarized in *Table 19*.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDA}	Analog supply voltage for ADC	-	2	-	3.6	V
		Single ended mode, 5 MSPS,	-	1011.3	1172.0	
		Single ended mode, 1 MSPS	-	214.7	322.3	
	, ADC current consumption	Single ended mode, 200 KSPS	-	54.7	81.1	
I _{DDA}	(Figure 27)	Differential mode,5 MSPS,	-	1061.5	1243.6	μA
		Differential mode, 1 MSPS	-	246.6	337.6	
		Differential mode, 200 KSPS	-	56.4	83.0	

 Table 64. ADC characteristics

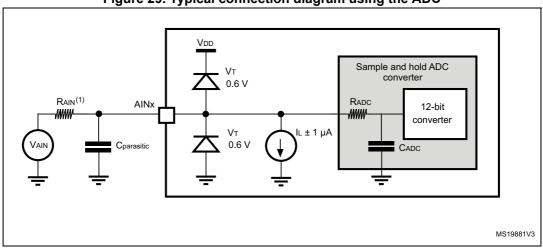


Figure 29. Typical connection diagram using the ADC

1. Refer to *Table 64* for the values of R_{AIN}.

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

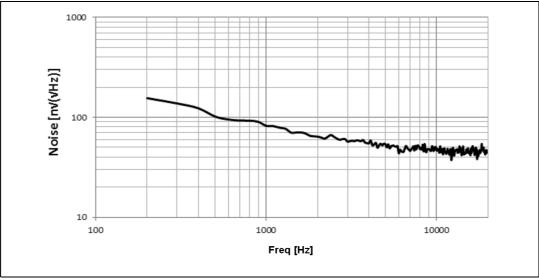
Power supply decoupling should be performed as shown in *Figure 10: Power-supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.20 DAC electrical specifications

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
V _{DDA}	Analog supply voltage	-	2.4	-	3.6	V			
R _{LOAD} ⁽¹⁾	Resistive load	DAC output buffer ON (to V_{SSA})	5	-	-	kΩ			
R _{LOAD} ⁽¹⁾	Resistive load	DAC output buffer ON (to V_{DDA})	25	-	-	kΩ			
R _O ⁽¹⁾	Output impedance	DAC output buffer OFF	-	-	15	kΩ			
C _{LOAD} ⁽¹⁾	Capacitive load	DAC output buffer ON	-	-	50	pF			
	Voltage on DAC_OUT	Corresponds to 12-bit input code (0x0E0) to (0xF1C) at V_{DDA} = 3.6 V and (0x155) and (0xEAB) at V_{DDA} = 2.4 V	0.2	-	V _{DDA} – 0.2	v			
			-	0.5	-	mV			
		DAC output buffer OFF			-	-	-	V _{DDA} – 1LSB	V
(2)	DAC DC current	With no load, middle code (0x800) on the input	-	-	380	μA			
'DDA` ´	consumption in quiescent mode ⁽²⁾	With no load, worst code (0xF1C) on the input.	-	-	480	μA			

Table 69. DAC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	@ 1KHz, Output loaded with 4 KΩ	-	109	-		
en	Voltage noise density	(@ 10KHz, Output loaded with 4 K Ω	-	43	-	<u>nV</u> √Hz


Table 71. Or	perational am	plifier charact	eristics ⁽¹⁾	(continued)

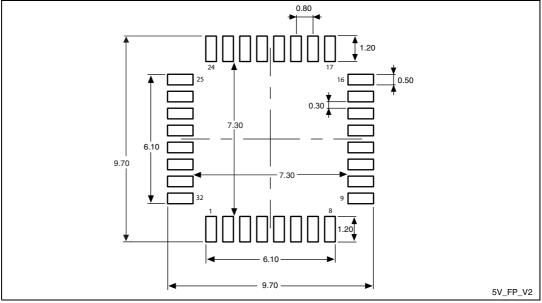
1. Guaranteed by design, not tested in production.

2. The saturation voltage can also be limited by the ${\sf I}_{\sf load}.$

 R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

4. Mostly TTa I/O leakage, when used in analog mode.

Figure 32. OPAMP Voltage Noise versus Frequency



Symbol	Millimeters			Inches ⁽¹⁾			
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
b	0.300	0.370	0.450	0.0118	0.0146	0.0177	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.600	-	-	0.2205	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.600	-	-	0.2205	-	
e	-	0.800	-	-	0.0315	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.100	-	-	0.0039	

Table 75. LQFP32 mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Drawing is not to scale.

2. Dimensions are expressed in millimeters.

7.3 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7mm low-profile quad flat package.

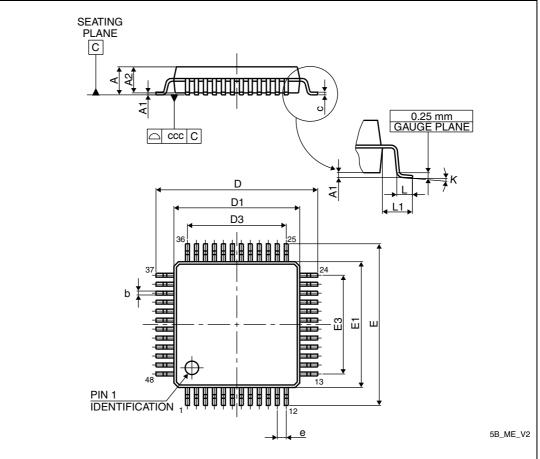
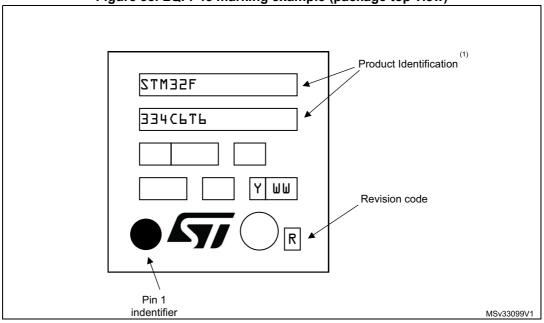
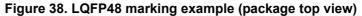


Figure 36. LQFP48 package outline

1. Drawing is not to scale.


Table 76. LQFP48 package mechanical data


Symbol	millimeters			inches ⁽¹⁾				
Symbol	Min	Тур Мах		Min	Тур	Max		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	-	0.200	0.0035	-	0.0079		
D	8.800	9.000	9.200	0.3465	0.3543	0.3622		
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835		
D3	-	5.500	-	-	0.2165	-		

Device marking for LQFP48

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Part numbering 8

Table 79. Ord	ering infor	natio	on sche	eme				
Example:	STM32	F	334	С	8	Т	6	хх
								ĺ
Device family								
STM32 = ARM [®] -based 32-bit microcontroller								
Product type								
F = general-purpose								
Device subfamily								
334 = STM32F334xx, 2.0 to 3.6 V operating volta	ge							
Pin count								
K = 32 pins								
C = 48 pins								
R = 64 pins								
Flash memory size								
4 = 16 Kbytes of Flash memory								
6 = 32 Kbytes of Flash memory								
8 = 64 Kbytes of Flash memory								
Package								
T = LQFP								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C								
7 = Industrial temperature range, –40 to 105 $^\circ\text{C}$								
Options								
xxx = programmed parts								

xxx = programmed parts

TR = tape and reel

9 Revision history

Date	Revision	Changes
19-Jun-2014	1	Initial release.
09-Dec-2014	2	Updated: Table 54: TIMx characteristics Table 14: STM32F303x6/8 pin definitions Table 59: ADC characteristics Table 34: Peripheral current consumption Table 40: HSI oscillator characteristics Table 17: HSI oscillator accuracy characterization results for soldered parts Table 2: STM32F334x4/6/8 family device features and peripheral counts
2-Feb-2015	3	Updated: <i>Figure 1: STM32F334x4/6/8 block diagram</i> <i>Table 38: HSE oscillator characteristics</i> <i>Table 43: Flash memory characteristics</i> Added Figure 13: High-speed external clock source AC timing diagram
09-Jun-2015	4	Udpated : Title Section 3.14.1: 217 ps high-resolution timer (HRTIM1) Section 6.1.6: Power-supply scheme Table 19: General operating conditions
27-Sep-2016	5	Updated: Section Table 69.: DAC characteristics, Section Table 64.: ADC characteristics, Table 53: NRST pin characteristics, Figure 2: Clock tree, Table 13: STM32F334x4/6/8 pin definitions, Table 71: Operational amplifier characteristics, Figure 20: Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port, Table 23: Embedded internal reference voltage, Table 39: LSE oscillator characteristics (fLSE = 32.768 kHz) Added: Table 35: Wakeup time using USART

Table 80. Document revision history

