

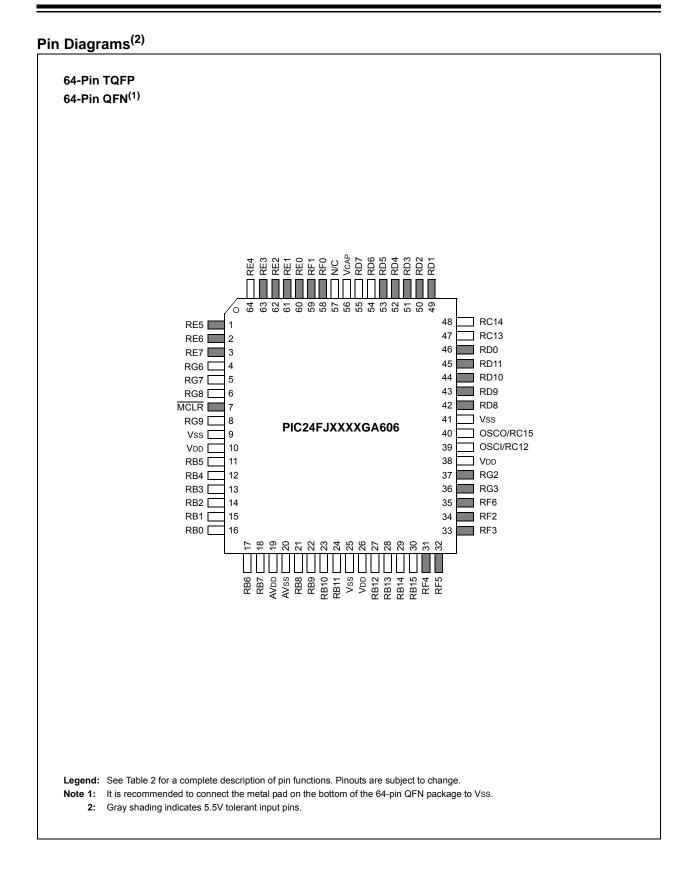
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Detuns	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	1MB (341.5K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj1024ga606-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24FJ1024GA610/GB610 FAMILY

Pin	Function	Pin	Function
1	OCM1C/CTED3/RG15	51	RP16/RF3
2	Vdd	52	RP30/RF2
3	IC4/CTED4/PMD5/RE5	53	RP15/RF8
4	SCL3/IC5/PMD6/RE6	54	RF7
5	SDA3/IC6/PMD7/RE7	55	INT0/RF6
6	RPI38/OCM1D/RC1	56	SDA1/RG3
7	RPI39/OCM2C/RC2	57	SCL1/RG2
8	RPI40/OCM2D/RC3	58	PMPCS1/SCL2/RA2
9	AN16/RPI41/OCM3C/PMCS2/RC4	59	SDA2/PMA20/RA3
10	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	AN18/C1INC/RP26/OCM1B/PMA4/RG7	61	TDO/RA5
12	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	62	VDD
13	MCLR	63	OSCI/CLKI/RC12
14	AN20/C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	64	OSCO/CLKO/RC15
15	Vss	65	Vss
16	Vdd	66	RPI36/PMA22/RA14
17	TMS/OCM3D/RA0	67	RPI35/PMBE1/RA15
18	RPI33/PMCS1/RE8	68	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
19	AN21/ RPI34 /PMA19/RE9	69	RP4/PMACK2/RD9
20	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	70	RP3/PMA15/PMCS2/RD10
21	PGED3/AN4/C1INB/RP28/OCM3B/RB4	71	RP12/PMA14/PMCS1/RD11
22	AN3/C2INA/RB3	72	CLC3OUT/RP11/U6CTS/ICM6/RD0
23	AN2/CTCMP/C2INB/RP13/CTED13/RB2	73	SOSCI/C3IND/RC13
24	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	74	SOSCO/C3INC/RPI37/PWRLCLK/RC14
25	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /RB0	75	Vss
26	PGEC2/AN6/ RP6 /RB6	76	RP24/U5TX/ICM4/RD1
27	PGED2/AN7/ RP7 /U6TX/RB7	77	RP23/PMACK1/RD2
28	CVREF-/VREF-/PMA7/RA9	78	RP22/ICM7/PMBE0/RD3
29	CVREF+/VREF+/PMA6/RA10	79	RPI42/OCM3E/PMD12/RD12
30	AVdd	80	OCM3F/PMD13/RD13
31	AVss	81	RP25/PMWR/PMENB/RD4
32	AN8/RP8/PWRGT/RB8	82	RP20/PMRD/PMWR/RD5
33	AN9/TMPR/ RP9 /T1CK/RB9	83	C3INB/U5RX/OC4/PMD14/RD6
34	CVREF/AN10/PMA13/RB10	84	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
35	AN11/REFI/PMA12/RB11	85	VCAP
36	Vss	86	N/C
37	Vdd	87	U5CTS/OC6/PMD11/RF0
38	TCK/RA1	88	PMD10/RF1
39	RP31 /RF13	89	PMD9/RG1
40	RPI32/CTED7/PMA18/RF12	90	PMD8/RG0
41	AN12/U6RX/CTED2/PMA11/RB12	91	AN23/OCM1E/RA6
42	AN13/CTED1/PMA10/RB13	92	AN22/OCM1F/PMA17/RA7
43	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	93	PMD0/RE0
44	AN15/RP29/CTED6/PMA0/PMALL/RB15	94	PMD1/RE1
45	Vss	95	CTED11/PMA16/RG14
46	Vdd	96	OCM2E/RG12
47	RPI43/RD14	97	OCM2F/CTED10/RG13
48	RP5 /RD15	98	PMD2/RE2
49	RP10/PMA9/RF4	99	CTED9/PMD3/RE3
50	RP17 /PMA8/RF5	100	HLVDIN/CTED8/PMD4/RE4

TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA610 TQFP)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

1.2 DMA Controller

PIC24FJ1024GA610/GB610 family devices have a Direct Memory Access (DMA) Controller. This module acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Eight independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.3 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- **Configurable Logic Cell:** The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins.
- **Timing Modules:** The PIC24FJ1024GA610/GB610 family provides five independent, general purpose, 16-bit timers (four of which can be combined into two 32-bit timers). The devices also include 3 multiple output and 4 single output advanced Capture/Compare/PWM/Timer peripherals, and 6 independent legacy Input Capture and 6 independent legacy Output Compare modules.
- Communications: The PIC24FJ1024GA610/ GB610 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are 3 independent I²C modules that support both Master and Slave modes of operation. Devices also have, through the PPS feature, 6 independent UARTs with built-in IrDA[®] encoders/decoders and 3 SPI modules.
- Analog Features: All members of the PIC24FJ1024GA610/GB610 family include the new 12-bit A/D Converter (A/D) module and a triple comparator module. The A/D module incorporates a range of new features that allow the converter to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ1024GA610/ GB610 family include the CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Enhanced Parallel Master/Parallel Slave Port: This module allows rapid and transparent access to the microcontroller data bus, and enables the CPU to directly address external data memory. The parallel port can function in Master or Slave mode, accommodating data widths of 4, 8 or 16 bits and address widths of up to 23 bits in Master modes.
- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

1.4 Details on Individual Family Members

Devices in the PIC24FJ1024GA610/GB610 family are available in 64-pin, 100-pin and 121-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in six ways:

- Flash program memory (128 Kbytes for PIC24FJ128GX6XX devices, 256 Kbytes for PIC24FJ256GX6XX devices, 512 Kbytes for PIC24FJ512GX6XX devices and 1024 Kbytes for PIC24FJ1024GX6XX devices).
- Available I/O pins and ports (53 pins on 6 ports for 64-pin devices and 85 pins on 7 ports for 100-pin and 121-pin devices).
- Available Interrupt-on-Change Notification (IOC) inputs (53 on 64-pin devices and 85 on 100-pin and 121-pin devices).
- 4. Available remappable pins (29 pins on 64-pin devices, 44 pins on 100-pin and 121-pin devices).
- Available USB peripheral (available on PIC24FJXXXGB6XX devices; not available on PIC24FJXXXGA6XX devices).
- 6. Analog input channels (16 channels for 64-pin devices and 24 channels for 100-pin and 121-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1, Table 1-2 and Table 1-3.

A list of the pin features available on the PIC24FJ1024GA610/GB610 family devices, sorted by function, is shown in Table 1-3. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

Features	PIC24FJ128GX606	PIC24FJ256GX606	PIC24FJ512GX606	PIC24FJ1024GX606				
Operating Frequency		DC –	32 MHz					
Program Memory (bytes)	128K	256K	512K	1024K				
Program Memory (instructions)	44,032	88,064	176,128	352,256				
Data Memory (bytes)		3	2K					
Interrupt Sources (soft vectors/ NMI traps)		103	(97/6)					
I/O Ports	Ports B, C, D, E, F, G							
Total I/O Pins		{	53					
Remappable Pins		29 (28 I/O,	1 input only)					
Timers: Total Number (16-bit)		5 ⁽¹⁾						
32-Bit (from paired 16-bit timers)			2					
Input Capture Channels	6 ⁽¹⁾							
Output Compare/PWM Channels		6	(1)					
Input Change Notification Interrupt	53							
Serial Communications: UART	6 ⁽¹⁾							
SPI (3-wire/4-wire)		3	(1)					
I ² C			3					
Configurable Logic Cell (CLC)		4	(1)					
Parallel Communications (EPMP/PSP)		Y	<i>ï</i> es					
Capture/Compare/PWM/Timer Modules		3 Multiple Outputs	and 4 Single Outputs					
JTAG Boundary Scan		Ŷ	íes 🛛					
12/10-Bit Analog-to-Digital Converter (A/D) Module (input channels)			16					
Analog Comparators			3					
CTMU Interface		Y	<i>ï</i> es					
Universal Serial Bus Controller		Yes (PIC24FJ1024	GB606 devices only)					
Resets (and Delays)	BOR, RESET Instructi code, REPEAT Instruc guration Word Misma 'LL Lock)	tion,						
Instruction Set	76 Bas	e Instructions, Multipl	e Addressing Mode V	ariations				
Packages		64-Pin TQI	FP and QFN					

TABLE 1-1:DEVICE FEATURES FOR THE PIC24FJ1024GA606/GB606: 64-PIN DEVICES

Note 1: Some peripherals are accessible through remappable pins.

EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB XC16 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory location to	be written
NVMADRU = progAddr>>16;	// Initialize PM Page Boundary SFR
NVMADR = progAddr & 0xFFFF;	// Initialize lower word of address
$NVMCON = 0 \times 4003;$	// Initialize NVMCON
asm("DISI #5");	// Block all interrupts with priority <7
	// for next 5 instructions
builtin_write_NVM();	// check function to perform unlock
	// sequence and set WR

EXAMPLE 6-2: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV.B	#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV.B	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the OxAA key
BSET	NVMCON, #WR	; Start the programming sequence
NOP		; Required delays
NOP		
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

TABLE 8-2: INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source	IRQ	IVT Address	Int	errupt Bit Lo	ocation
	#	IVI Address	Flag	Enable	Priority
OC5 – Output Compare 5	41	000066h	IFS2<9>	IEC2<9>	OC5Interrupt
OC6 – Output Compare 6	42	000068h	IFS2<10>	IEC2<10>	OC6Interrupt
CCT3 – Capture/Compare Timer3	43	00006Ah	IFS2<11>	IEC2<11>	CCT3Interrupt
CCT4 – Capture/Compare Timer4	44	00006Ch	IFS2<12>	IEC2<12>	CCT4Interrupt
PMP – Parallel Master Port	45	00006Eh	IFS2<13>	IEC2<13>	PMPInterrupt
DMA4 – Direct Memory Access 4	46	000070h	IFS2<14>	IEC2<14>	DMA4Interrupt
CCT5 – Capture/Compare Timer5	47	000072h	IFS2<15>	IEC2<15>	CCT5Interrupt
CCT6 – Capture/Compare Timer6	48	000074h	IFS3<0>	IEC3<0>	CCT6Interrupt
SI2C2 – I2C2 Slave Events	49	000076h	IFS3<1>	IEC3<1>	SI2C2Interrupt
MI2C2 – I2C2 Master Events	50	000078h	IFS3<2>	IEC3<2>	MI2C2Interrupt
CCT7 – Capture/Compare Timer7	51	00007Ah	IFS3<3>	IEC3<3>	CCT7Interrupt
—	52	—	—	_	—
INT3 – External Interrupt 3	53	00007Eh	IFS3<5>	IEC3<5>	INT3Interrupt
INT4 – External Interrupt 4	54	000080h	IFS3<6>	IEC3<6>	INT4Interrupt
—	55	—	_	_	—
—	56	—	—	—	—
—	57	—	—	—	—
SPI1RX – SPI1 Receive Done	58	000088h	IFS3<10>	IEC3<10>	SPI1RXInterrupt
SPI2RX – SPI2 Receive Done	59	00008Ah	IFS3<11>	IEC3<11>	SPI2RXInterrupt
SPI3RX – SPI3 Receive Done	60	00008Ch	IFS3<12>	IEC3<12>	SPI3RXInterrupt
DMA5 – Direct Memory Access 5	61	00008Eh	IFS3<13>	IEC3<13>	DMA5Interrupt
RTCC – Real-Time Clock and Calendar	62	000090h	IFS3<14>	IEC3<14>	RTCCInterrupt
CCP1 – Capture/Compare 1	63	000092h	IFS3<15>	IEC3<15>	CCP1Interrupt
CCP2 – Capture/Compare 2	64	000094h	IFS4<0>	IEC4<0>	CCP2Interrupt
U1E – UART1 Error	65	000096h	IFS4<1>	IEC4<1>	U1ErrInterrupt
U2E – UART2 Error	66	000098h	IFS4<2>	IEC4<2>	U2ErrInterrupt
CRC – Cyclic Redundancy Check	67	00009Ah	IFS4<3>	IEC4<3>	CRCInterrupt
DMA6 – Direct Memory Access 6	68	00009Ch	IFS4<4>	IEC4<4>	DMA6Interrupt
DMA7 – Direct Memory Access 7	69	00009Eh	IFS4<5>	IEC4<5>	DMA7Interrupt
SI2C3 – I2C3 Slave Events	70	0000A0h	IFS4<6>	IEC4<6>	SI2C3Interrupt
MI2C3 – I2C3 Master Events	71	0000A2h	IFS4<7>	IEC4<7>	MI2C3Interrupt
HLVD – High/Low-Voltage Detect	72	0000A4h	IFS4<8>	IEC4<8>	HLVDInterrupt
CCP7 – Capture/Compare 7	73	0000A6h	IFS4<9>	IEC4<9>	CCP7Interrupt
—	74	74	_	_	—
—	75	75	—	_	—
—	76	76	_	_	—
CTMU – Interrupt	77	0000AEh	IFS4<13>	IEC4<13>	CTMUInterrupt
	78	78	_	_	
	79	79		_	
_	80	80	—	_	_
U3E – UART3 Error	81	0000B6h	IFS5<1>	IEC5<1>	U3ErrInterrupt
U3RX – UART3 Receiver	82	0000B8h	IFS5<2>	IEC5<2>	U3RXInterrupt
U3TX – UART3 Transmitter	83	0000BAh	IFS5<3>	IEC5<3>	U3TXInterrupt

Oscillator Mode	Oscillator Source	FNOSC<2:0>	Notes							
Oscillator with Frequency Division (OSCFDIV)	Internal/External	111	1, 2, 3							
Digitally Controlled Oscillator (DCO)	Internal	110	3							
Low-Power RC Oscillator (LPRC)	Internal	101	3							
Secondary (Timer1) Oscillator (SOSC)	Secondary	100	3							
Primary Oscillator (XT, HS or EC) with PLL Module	Primary	011	4							
Primary Oscillator (XT, HS or EC)	Primary	010	4							
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	001	3							
Fast RC Oscillator (FRC)	Internal	000	3							

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: The input oscillator to the OSCFDIV Clock mode is determined by the RCDIV<2:0> (CLKDIV<10:8) bits. At POR, the default value selects the FRC module.

- **2:** This is the default oscillator mode for an unprogrammed (erased) device.
- 3: OSCO pin function is determined by the OSCIOFCN Configuration bit.
- 4: The POSCMD<1:0> Configuration bits select the oscillator driver mode (XT, HS or EC).

9.3 Control Registers

The operation of the oscillator is controlled by five Special Function Registers:

- OSCCON
- CLKDIV
- OSCTUN
- OSCDIV
- OSCFDIV

In addition, two registers are used to control the DCO:

- DCOCON
- DCOTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See **Section 9.4 "Clock Switching Operation**" for more information. The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscalers for the OSCFDIV Clock mode and the PLL module.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 1.5\%$. It also controls the FRC self-tuning features described in **Section 9.5 "FRC Active Clock Tuning"**.

The OSCDIV and OSCFDIV registers provide control for the system Oscillator Frequency Divider.

9.3.1 DCO OVERVIEW

The DCO (Digitally Controlled Oscillator) is a lowpower alternative to the FRC. It can generate a wider selection of operating frequencies and can be trimmed to correct process variations if an exact frequency is required. However, the DCO is not designed for use with USB applications and cannot meet USB timing restrictions.

REGISTER							
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
CPDIV1	CPDIV0	PLLEN	0-0	0-0	0-0	0-0	0-0
bit 7	CFDIVU	FLLEIN	_	—		—	 bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14-12	1 = Interrupts 0 = Interrupts	have no effect			pheral clock ra	itio to 1:1	
	111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 (de 010 = 1:4 001 = 1:2 000 = 1:1	fault)					
bit 11	1 = DOZE<2		the CPU perip tio is set to 1:1	oheral clock ration	D		
bit 10-8	•	-		lock Source Se	lect hits		
	000 = Fast R 001 = Fast R 010 = Primar 011 = Primar 100 = Second 101 = Low-Pe 110 = Digital	C Oscillator (F C Oscillator (F y Oscillator (X y Oscillator (X dary Oscillator ower RC Oscill	RC) RC) with PLL n r, HS, EC) r, HS, EC) with (SOSC) ator (LPRC) scillator (DCO)	nodule (FRCPL PLL module (X	L)	, ECPLL)	
bit 7-6	11 = 4 MHz (10 = 8 MHz (01 = 16 MHz 00 = 32 MHz	divide-by-8) ⁽²⁾ divide-by-4) ⁽²⁾ (divide-by-2) (divide-by-1)	ŭ	stscaler select	from 96 MHz F	PLL, 32 MHz clo	ock branch)
bit 5	1 = PLL is alw 0 = PLL is on	ly active when	a PLL Oscillato	or mode is seled	cted (OSCCON	J<14:12> = 011	L or 001)
bit 4-0	Unimplemen	ted: Read as '	0'				
	his bit is automa his setting is not	-			n interrupt occu	Irs.	

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15	·	-					bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
R = Readable	Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

REGISTER 11-28: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-29: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	Vritable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear-to-Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

- bit 4 CCSEL: Capture/Compare Mode Select bit
 - 1 = Input capture peripheral
 - 0 = Output compare/PWM/timer peripheral (exact function is selected by the MOD<3:0> bits)
- bit 3-0 MOD<3:0>: CCPx Mode Select bits
 - For CCSEL = 1 (Input Capture modes):
 - 1xxx = Reserved
 - 011x = Reserved
 - 0101 = Capture every 16th rising edge
 - 0100 = Capture every 4th rising edge
 - 0011 = Capture every rising and falling edge
 - 0010 = Capture every falling edge
 - 0001 = Capture every rising edge
 - 0000 = Capture every rising and falling edge (Edge Detect mode)
 - For CCSEL = 0 (Output Compare/Timer modes):
 - 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
 - 1110 = Reserved
 - 110x = Reserved
 - 10xx = Reserved
 - 0111 = Variable Frequency Pulse mode
 - 0110 = Center-Aligned Pulse Compare mode, buffered
 - 0101 = Dual Edge Compare mode, buffered
 - 0100 = Dual Edge Compare mode
 - 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
 - 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
 - 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
 - 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
AUDEN ⁽¹⁾	SPISGNEXT	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1(4)	AUDMOD0(4)			
oit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0			
bit 7							bit C			
Legend:										
R = Readab	ole bit	W = Writable b	bit	U = Unimpleme	ented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	iown			
bit 15	1 = Audio pro		d; MSTEN cor	1) htrols the direction EN = 1, FRMSY			. ,			
		regardless of t tocol is disable		lues						
bit 14	SPISGNEXT:	SPIx Sign-Exte	end RX FIFO I	Read Data Enabl	e bit					
	1 = Data from	RX FIFO is sig RX FIFO is no	n-extended							
bit 13	IGNROV: Ignore Receive Overflow bit									
	1 = A Receive by the rec		V) is NOT a o	critical error; duri	ng ROV, data	in the FIFO is r	not overwritter			
bit 12	IGNTUR: Igno	ore Transmit Ur	derrun bit	-						
	1 = A Transm until the S		UR) is NOT a empty	critical error and	d data indicate	ed by URDTEN	is transmitted			
bit 11		Audio Data For	-	-						
		a is mono (i.e.,		rd is transmitted	on both left ar	nd right channel	s)			
bit 10	URDTEN: Tra	Insmit Underrur	n Data Enable	bit ⁽³⁾						
				egister during Tra Transmit Under						
bit 9-8	AUDMOD<1:	 0 = Transmits the last received data during Transmit Underrun conditions AUDMOD<1:0>: Audio Protocol Mode Selection bits⁽⁴⁾ 								
	11 = PCM/DS 10 = Right Jus 01 = Left Just	P mode stified mode: Tl ified mode: Thi	nis module fur s module func	nctions as if SPIF tions as if SPIFE f SPIFE = 0, rega	= 1, regardle	ss of its actual				
bit 7		ned SPIx Supp		-, -9-						
	1 = Framed S		enabled (SSx	pin is used as the	e FSYNC inpu	it/output)				
2: /	AUDEN can only AUDMONO can o JRDTEN is only	only be written	when the SPI	oit = 0. EN bit = 0 and is	only valid for	AUDEN = 1.				
4: /	AUDMOD<1:0> b	oits can only be	written when	the SPIEN bit =	0 and are only	y valid when AL	JDEN = 1.			

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

18.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 18-1.

EQUATION 18-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2,3)

FSCL = $\frac{FCY}{(I2CxBRG + 2) * 2}$ or: $I2CxBRG = \left[\frac{FCY}{(FSCL * 2)} - 2\right]$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various systemlevel parameters. The actual clock rate should be measured in its intended application.

3: BRG values of 0 and 1 are forbidden.

18.3 Slave Address Masking

The I2CxMSK register (Register 18-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 18-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Dominand Quatern Foot	Fox	I2CxB		
Required System Fsc∟	FCY	(Decimal)	(Hexadecimal)	Actual FSCL
100 kHz	16 MHz	78	4E	100 kHz
100 kHz	8 MHz	38	26	100 kHz
100 kHz	4 MHz	18	12	100 kHz
400 kHz	16 MHz	18	12	400 kHz
400 kHz	8 MHz	8	8	400 kHz
400 kHz	4 MHz	3	3	400 kHz
1 MHz	16 MHz	6	6	1.000 MHz
1 MHz	8 MHz	2	2	1.000 MHz

TABLE 18-1: I2Cx CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

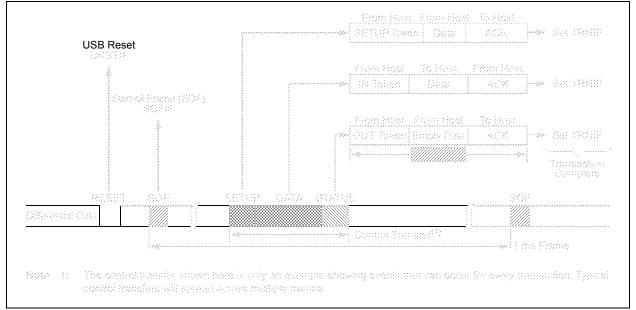
2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

TABLE 18-2:	I2Cx RESERVED ADDRESSES ⁽¹⁾

Slave Address	R/W Bit	Description
000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	CBus Address
0000 01x	х	Reserved
0000 1xx	x	HS Mode Master Code
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	х	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.


3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

20.3.1 CLEARING USB OTG INTERRUPTS

Unlike device-level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a MOV type instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a '1' to its location is referred to as "Write '1' to Clear". In register descriptions; this function is indicated by the descriptor, "K".

20.4 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

20.4.1 ENABLING DEVICE MODE

- Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit, PPBRST (U1CON<1>).
- 2. Disable all interrupts (U1IE and U1EIE = 00h).
- 3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
- 4. Verify that VBUS is present (non-OTG devices only).

- 5. Enable the USB module by setting the USBEN bit (U1CON<0>).
- Set the OTGEN bit (U1OTGCON<2>) to enable OTG operation.
- Enable the Endpoint 0 buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1).
- 8. Power up the USB module by setting the USBPWR bit (U1PWRC<0>).
- Enable the D+ pull-up resistor to signal an attach by setting the DPPULUP bit (U10TGCON<7>).

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	_	AWAITM1	AWAITM0	AWAITE
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_	_	_	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 14 bit 13 bit 12 bit 11	PTRDEN: Re 1 = PMRD/PI 0 = PMRD/PI PTBE1EN: Hi 1 = PMBE1 p 0 = PMBE1 p PTBE0EN: Lo 1 = PMBE0 p 0 = PMBE0 p	MENB port is of ad/Write Strobe MWR port is er MWR port is dis igh Nibble/Byte port is enabled port is disabled port is enabled port is enabled port is disabled	e Port Enable b habled sabled Enable Port E Enable Port Er	nable bit			
bit 11	•	ted: Read as '		o			
bit 10-9	AWAITM<1:0 11 = Wait of 3 10 = Wait of 2 01 = Wait of 1	21/2 TCY	ch Strobe Wait	States bits			
bit bit 8		Iress Hold Afte	r Address Latcl	n Strobe Wait S	States bits		
bit bit 8		Iress Hold Afte ¼ Tcγ	r Address Latcl	n Strobe Wait S	States bits		

REGISTER 21-3: PMCON3: EPMP CONTROL REGISTER 3

REGISTER 24-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Cell is a 1-input transparent latch with S and R
 - 110 = Cell is a JK flip-flop with R
 - 101 = Cell is a 2-input D flip-flop with R
 - 100 = Cell is a 1-input D flip-flop with S and R
 - 011 = Cell is an SR latch
 - 010 = Cell is a 4-input AND
 - 001 = Cell is an OR-XOR
 - 000 = Cell is a AND-OR

REGISTER 24-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—					—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0

l egend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	 1 = The output of Channel 4 logic is inverted when applied to the logic cell 0 = The output of Channel 4 logic is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = The output of Channel 3 logic is inverted when applied to the logic cell0 = The output of Channel 3 logic is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	 1 = The output of Channel 2 logic is inverted when applied to the logic cell 0 = The output of Channel 2 logic is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	 1 = The output of Channel 1 logic is inverted when applied to the logic cell 0 = The output of Channel 1 logic is not inverted

REGISTER 25-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)

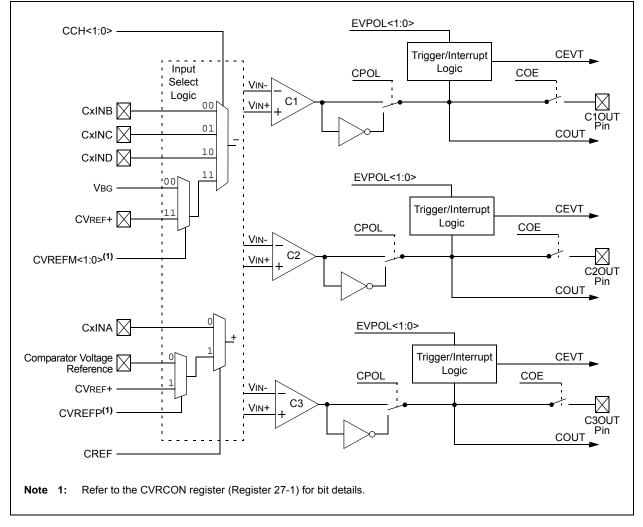
bit 1	SAMP: A/D Sample Enable bit
	1 = A/D Sample-and-Hold amplifiers are sampling
	0 = A/D Sample-and-Hold amplifiers are holding
bit 0	DONE: A/D Conversion Status bit
	1 = A/D conversion cycle has completed

- 0 = A/D conversion cycle has not started or is in progress
- Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

NOTES:

26.0 TRIPLE COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Scalable Comparator Module" (DS39734), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.


The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and CVREF+) and a

voltage reference input from one of the internal band gap references or the comparator voltage reference generator (VBG and CVREF).

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module in shown in Figure 26-1. Diagrams of the possible individual comparator configurations are shown in Figure 26-2 through Figure 26-4.

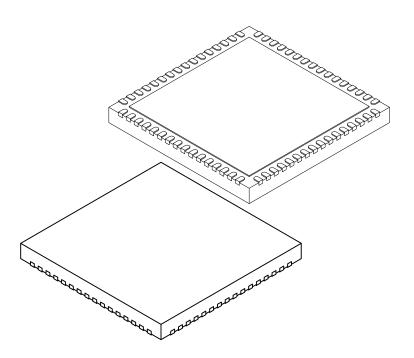

Each comparator has its own control register, CMxCON (Register 26-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 26-2).

FIGURE 26-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimension	MIN	NOM	MAX	
Number of Pins		64		
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	9.00 BSC		
Exposed Pad Width	E2	7.60	7.70	7.80
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	7.60	7.70	7.80
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-213B Sheet 2 of 2