

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	1MB (341.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj1024ga610t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	21
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	41
3.0	CPU	47
4.0	Memory Organization	53
5.0	Direct Memory Access Controller (DMA)	81
6.0	Flash Program Memory	89
7.0	Resets	97
8.0	Interrupt Controller	. 103
9.0	Oscillator Configuration	. 115
10.0	Power-Saving Features	. 137
11.0	I/O Ports	. 149
12.0	Timer1	. 185
13.0	Timer2/3 and Timer4/5	. 187
14.0	Input Capture with Dedicated Timers	. 193
15.0	Output Compare with Dedicated Timers	. 199
16.0	Capture/Compare/PWM/Timer Modules (MCCP and SCCP)	. 209
17.0	Serial Peripheral Interface (SPI)	. 227
18.0	Inter-Integrated Circuit (I ² C)	. 247
19.0	Universal Asynchronous Receiver Transmitter (UART)	. 255
20.0	Universal Serial Bus with On-The-Go Support (USB OTG)	. 265
21.0	Enhanced Parallel Master Port (EPMP)	. 299
22.0	Real-Time Clock and Calendar with Timestamp	. 311
23.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	. 331
24.0	Configurable Logic Cell (CLC)	. 337
25.0	12-Bit A/D Converter with Threshold Detect	. 347
26.0	Triple Comparator Module	. 369
27.0	Comparator Voltage Reference	. 375
28.0	Charge Time Measurement Unit (CTMU)	. 377
29.0	High/Low-Voltage Detect (HLVD)	. 387
30.0	Special Features	. 389
31.0	Development Support.	. 407
32.0	Instruction Set Summary	. 411
33.0	Electrical Characteristics	. 419
34.0	Packaging information	. 441
Appe		. 455
Index		457
Inel	viicrochip vved Site	. 463
Custo	omer Change Notification Service	. 463
Custo	omer Suppon	. 463
Prod	JCI IDENTIFICATION SYSTEM	. 465

FIGURE 3-1: PIC24F CPU CORE BLOCK DIAGRAM

TABLE 3-1: CPU CORE REGISTERS

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
RCOUNT	REPEAT Loop Counter Register
CORCON	CPU Control Register
DISICNT	Disable Interrupt Count Register
DSRPAG	Data Space Read Page Register
DSWPAG	Data Space Write Page Register

File Name	Address	All Resets	File Name	Address	All Resets		
SPI (CONTINUED)	I	I	CONFIGURABLE LOGIC CELL (CLC) (CONTINUED)				
SPI1BUFL	0400	0000	CLC3CONL	047C	0000		
SPI1BUFH	0402	0000	CLC3CONH	047E	0000		
SPI1BRGL	0404	xxxx	CLC3SELL	0480	0000		
SPI1IMSK1	0408	0000	CLC3GLSL	0484	0000		
SPI1IMSK2	040A	0000	CLC3GLSH	0486	0000		
SPI1URDTL	040C	0000	CLC4CONL	0488	0000		
SPI1URDTH	040E	0000	CLC4CONH	048A	0000		
SPI2CON1	0410	0x00	CLC4SELL	048C	0000		
SPI2CON2	0412	0000	CLC4GLSL	0490	0000		
SPI2CON3	0414	0000	CLC4GLSH	0492	0000		
SPI2STATL	0418	0028	l ² C	•	•		
SPI2STATH	041A	0000	I2C1RCV	0494	0000		
SPI2BUFL	041C	0000	I2C1TRN	0496	OOFF		
SPI2BUFH	041E	0000	I2C1BRG	0498	0000		
SPI2BRGL	0420	xxxx	I2C1CON1	049A	1000		
SPI2IMSK1	0424	0000	I2C1CON2	049C	0000		
SPI2IMSK2	0426	0000	I2C1STAT	049E	0000		
SPI2URDTL	0428	0000	I2C1ADD	04A0	0000		
SPI2URDTH	042A	0000	I2C1MSK	04A2	0000		
SPI3CON1	042C	0x00	I2C2RCV	04A4	0000		
SPI3CON2	042E	0000	I2C2TRN	04A6	OOFF		
SPI3CON3	0430	0000	I2C2BRG	04A8	0000		
SPI3STATL	0434	0028	I2C2CON1	04AA	1000		
SPI3STATH	0436	0000	I2C2CON2	04AC	0000		
SPI3BUFL	0438	0000	I2C2STAT	04AE	0000		
SPI3BUFH	043A	0000	I2C2ADD	04B0	0000		
SPI3BRGL	043C	xxxx	I2C2MSK	04B2	0000		
SPI3IMSK1	0440	0000	I2C3RCV	04B4	0000		
SPI3IMSK2	0442	0000	I2C3TRN	04B6	OOFF		
SPI3URDTL	0444	0000	I2C3BRG	04B8	0000		
SPI3URDTH	0446	0000	I2C3CON1	04BA	1000		
CONFIGURABLE LO	OGIC CELL (CLC)		I2C3CON2	04BC	0000		
CLC1CONL	0464	0000	I2C3STAT	04BE	0000		
CLC1CONH	0466	0000	I2C3ADD	04C0	0000		
CLC1SELL	0468	0000	I2C3MSK	04C2	0000		
CLC1GLSL	046C	0000	DMA				
CLC1GLSH	046E	0000	DMACON	04C4	0000		
CLC2CONL	0470	0000	DMABUF	04C6	0000		
CLC2CONH	0472	0000	DMAL	04C8	0000		
CLC2SELL	0474	0000	DMAH	04CA	0000		
CLC2GLSL	0478	0000	DMACH0	04CC	0000		
CLC2GLSH	047A	0000	DMAINT0	04CE	0000		

TABLE 4-8: SFR MAP: 0400h BLOCK

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "PIC24F Flash Program Memory" (DS30009715), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ1024GA610/GB610 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ1024GA610/GB610 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 128 instructions (384 bytes) at a time and erase program memory in blocks of 1024 instructions (3072 bytes) at a time.

The device implements a 7-bit Error Correcting Code (ECC). The NVM block contains a logic to write and read ECC bits to and from the Flash memory. The Flash is programmed at the same time as the corresponding ECC parity bits. The ECC provides improved resistance to Flash errors. ECC single bit errors can be transparently corrected. ECC Double-Bit Errors (ECCDBE) result in a trap.

6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

I 1 I. 24 Bits \neg Using Program Counter 0 Program 0 Counter Working Reg EA Using TBLPAG Reg Table 1/0Instruction -16 Bits 8 Bits |♠∕ User/Configuration Byte 24-Bit EA Space Select Select 1 1 1 I.

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

R/W-0	R/W-0	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR	(1) IOPUWR ⁽¹⁾	SBOREN	RETEN ⁽²⁾	—	_	CM ⁽¹⁾	VREGS ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾
bit 7							bit 0
l egend:							
R = Read	able bit	W = Writable t	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
							-
bit 15	TRAPR: Trap	Reset Flag bit	1)				
	1 = A Trap Co	onflict Reset has	s occurred				
	0 = A Trap Co	nflict Reset has	s not occurred		(1)		
bit 14		gal Opcode or I	Jninitialized W	Access Reset	Flag bit(")	ad W/ namiatan	
	⊥ = An illegal Address I	Pointer and cau	ised a Reset	address mode		ed w register	is used as an
	0 = An illegal	opcode or Unir	nitialized W reg	gister Reset has	s not occurred		
bit 13	SBOREN: So	ftware Enable/[Disable of BOF	R bit			
	1 = BOR is tur	rned on in softw	/are				
hit 10		rnea oπ in soπw	/are				
DIL 12	1 = Retention	mode is enable	able bits / ad while device	e is in Sleen mo	ndes (1 2V regi	ilator enabled)	
	0 = Retention	mode is disable	ed		1.2 v roge		
bit 11-10	Unimplement	ted: Read as '0	3				
bit 9	CM: Configura	ation Word Misi	match Reset F	lag bit ⁽¹⁾			
	1 = A Configu	ration Word Mis	smatch Reset	has occurred	, al		
hit 8	0 = A Conligu VPECS: East		Smatch Reset	nas not occurre	ed .		
DILO	1 = Fast wake	-up is enabled	(uses more po	ower)			
	0 = Fast wake	-up is disabled	(uses less por	wer)			
bit 7	EXTR: Extern	al Reset (MCLI	R) Pin bit ⁽¹⁾				
	1 = A Master (Clear (pin) Res	et has occurre	d urred			
bit 6	SWR: Softwar	e Reset (Instru	ction) Flag bit	(1)			
	1 = A RESET i	nstruction has	been executed	i			
	0 = A reset i	nstruction has	not been exec	uted			
Note 1:	All of the Reset sta cause a device Re	atus bits may b eset.	e set or cleare	d in software. S	etting one of th	iese bits in soff	ware does not
2:	If the LPCFG Con bit has no effect.	figuration bit is Retention mode	'1' (unprograme preserves the	nmed), the rete e SRAM conten	ntion regulator ts during Sleep	is disabled and).	d the RETEN
3:	Re-enabling the re Sleep. Application	egulator after it is that do not u	enters Standb se the voltage	y mode will add regulator shoul	d a delay, T∨RE d set this bit to	G, when wakin prevent this d	g up from elay from
4:	If the FWDTEN<1 of the SWDTEN b	:0> Configurati it setting.	on bits are '11	' (unprogramme	ed), the WDT is	s always enabl	ed, regardless

REGISTER 7-1: RCON: RESET CONTROL REGISTER

REGISTER 11-5:	ANSE: PORTE ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	U-0	
_	—	—	—	—	—	ANSE9 ⁽¹⁾	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0	
_	—	—	ANSE4	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15-10	Unimplemen	ted: Read as 'o)'					
bit 9	ANSE9: POR	TE Analog Fun	ction Selectior	n bit ⁽¹⁾				
	1 = Pin is configured in Analog mode; I/O port read is disabled							
	0 = Pin is configured in Digital mode; I/O port read is enabled							
bit 8-5	Unimplemen	ted: Read as 'o)'					
bit 4	bit 4 ANSE4: PORTE Analog Function Selection bit							
	_	5						

- 1 = Pin is configured in Analog mode; I/O port read is disabled
 0 = Pin is configured in Digital mode; I/O port read is enabled
- bit 3-0 Unimplemented: Read as '0'
- Note 1: ANSE9 is not available on 64-pin devices.

REGISTER 11-6: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
—	—	_	—	—	—	ANSG<9:8>	
bit 15							bit 8
R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSO	G<7:6>	—	—	—	—	—	—
bit 7							bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	Unimplemented: Read as '0'
bit 9-6	ANSG<9:6>: PORTG Analog Function Selection bits
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 5-0	Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkn	iown

REGISTER 11-44: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8
 RP17R<5:0>: RP17 Output Pin Mapping bits

 Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 RP16R<5:0>: RP16 Output Pin Mapping bits
- Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

REGISTER 11-45: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP19R5	RP19R4	RP19R3	RP19R3 RP19R2		RP19R0	
bit 15 bit								
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	
bit 7							bit 0	
Legend:								

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers). For 32-bit cascaded operation, these steps are also necessary:

- 1. Set the OC32 bits for both registers (OCyCON2<8> and OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the Trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSEL<4:0> (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-Shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are doublebuffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OC module you are using. Otherwise, configure the dedicated OCx output pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer, and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

- bit 4 CCSEL: Capture/Compare Mode Select bit
 - 1 = Input capture peripheral
 - 0 = Output compare/PWM/timer peripheral (exact function is selected by the MOD<3:0> bits)
- bit 3-0 MOD<3:0>: CCPx Mode Select bits
 - For CCSEL = 1 (Input Capture modes):
 - 1xxx = Reserved
 - 011x = Reserved
 - 0101 = Capture every 16th rising edge
 - 0100 = Capture every 4th rising edge
 - 0011 = Capture every rising and falling edge
 - 0010 = Capture every falling edge
 - 0001 = Capture every rising edge
 - 0000 = Capture every rising and falling edge (Edge Detect mode)
 - For CCSEL = 0 (Output Compare/Timer modes):
 - 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
 - 1110 = Reserved
 - 110x = Reserved
 - 10xx = Reserved
 - 0111 = Variable Frequency Pulse mode
 - 0110 = Center-Aligned Pulse Compare mode, buffered
 - 0101 = Dual Edge Compare mode, buffered
 - 0100 = Dual Edge Compare mode
 - 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
 - 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
 - 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
 - 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled

17.3 Audio Mode Operation

To initialize the SPIx module for Audio mode, follow the steps to initialize it for Master/Slave mode, but also set the AUDEN bit (SPIxCON1H<15>). In Master+Audio mode:

Select

Control

- This mode enables the device to generate SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L<15>) = 1.
- The SPIx module generates LRC and SCKx continuously in all cases, regardless of the transmit data, while in Master mode.
- The SPIx module drives the leading edge of LRC and SCKx within 1 SCKx period, and the serial data shifts in and out continuously, even when the TX FIFO is empty.

In Slave+Audio mode:

 This mode enables the device to receive SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L<15>) = 1.

Enable Master Clock

- The SPIx module drives zeros out of SDOx, but does not shift data out or in (SDIx) until the module receives the LRC (i.e., the edge that precedes the left channel).
- Once the module receives the leading edge of LRC, it starts receiving data if DISSDI (SPIxCON1L<4>) = 0 and the serial data shifts out continuously, even when the TX FIFO is empty.

REGISTER 24-5:	CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 15	0.2	0.201	0.20.1	0.52.	0.52.1	0.2.1	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	G4D4T: Gate	4 Data Source	4 Irue Enable	e bit r Cata 4			
	1 = The Data 0 = The Data	Source 4 signa	al is enabled to	or Gate 4			
bit 14	G4D4N: Gate	4 Data Source	4 Negated Er	nable bit			
	1 = The Data	Source 4 inver	ted signal is er	nabled for Gate	e 4		
	0 = The Data	Source 4 inver	ted signal is di	sabled for Gate	e 4		
bit 13	G4D3T: Gate	4 Data Source	3 True Enable	e bit			
	1 = The Data	Source 3 signa	I is enabled for	r Gate 4			
hit 10		A Data Source		or Gale 4			
DIL 12	1 = The Data	Source 3 inver	ted signal is er	habled for Gate	4		
	0 = The Data	Source 3 inver	ted signal is di	sabled for Gate	e 4		
bit 11	G4D2T: Gate	4 Data Source	2 True Enable	e bit			
	1 = The Data	Source 2 signa	I is enabled fo	r Gate 4			
	0 = The Data	Source 2 signa	al is disabled for	or Gate 4			
bit 10	G4D2N: Gate	4 Data Source	e 2 Negated Er	hable bit	. 4		
	1 = The Data 0 = The Data	Source 2 inver	ted signal is er	sabled for Gate	e 4 e 4		
bit 9	G4D1T: Gate	4 Data Source	1 True Enable	e bit			
	1 = The Data	Source 1 signa	I is enabled fo	r Gate 4			
	0 = The Data	Source 1 signa	al is disabled for	or Gate 4			
bit 8	G4D1N: Gate	4 Data Source	e 1 Negated Er	nable bit			
	1 = The Data	Source 1 inver	ted signal is er	habled for Gate	e 4		
bit 7	G3D4T: Gate	3 Data Source	4 True Enable	hit			
	1 = The Data	Source 4 signa	I is enabled fo	r Gate 3			
	0 = The Data	Source 4 signa	al is disabled for	or Gate 3			
bit 6	G3D4N: Gate	3 Data Source	e 4 Negated Er	nable bit			
	1 = The Data	Source 4 inver	ted signal is er	nabled for Gate	3		
	0 = The Data	Source 4 inver	ted signal is di	sabled for Gate	e 3		
bit 5	G3D31: Gate	3 Data Source	3 Irue Enable	e bit			
	1 = The Data 0 = The Data	Source 3 signa	al is disabled fo	or Gate 3			
bit 4	G3D3N: Gate	3 Data Source	3 Negated Er	nable bit			
	1 = The Data	Source 3 inver	ted signal is er	nabled for Gate	: 3		
	0 = The Data	Source 3 inver	ted signal is di	sabled for Gate	e 3		

NOTES:

NOTES:

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—	—	—	—	—	—	
bit 23 bit *								
r-0	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	—		—	—	—	—	—	
bit 15							bit 8	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—	—	—	—	—	—	
bit 7							bit 0	
-								
Legend:		PO = Program	n Once bit	r = Reserved	bit			

REGISTER 30-5: FSIGN CONFIGURATION REGISTER

Legend:	PO = Program Once bit	r = Reserved bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16 Unimplemented: Read as '1'

bit 15 Reserved: Maintain as '0'

bit 14-0 Unimplemented: Read as '1'

REGISTER 30-7: FOSC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1 U-1		U-1	
	—	—	—	_			—	
bit 23 bit								
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_	_	—			—	—	—	
bit 15							bit 8	
R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1 R/PO-1		R/PO-1	
FCKSM1	FCKSM0	IOL1WAY	PLLSS ⁽¹⁾	SOSCSEL	SOSCSEL OSCIOFCN POSCM		POSCMD0	
bit 7							bit 0	

Legend:	PO = Program Once bit				
R = Readable bit	eadable bit W = Writable bit		U = Unimplemented bit, read as '1'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 23-8	Unimplemented: Read as '1'
bit 7-6	FCKSM<1:0>: Clock Switching and Monitor Selection bits
	 1x = Clock switching and the Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching and the Fail-Safe Clock Monitor are enabled
bit 5	IOL1WAY: Peripheral Pin Select Configuration bit
	 1 = The IOLOCK bit can be set only once (with unlock sequence). 0 = The IOLOCK bit can be set and cleared as needed (with unlock sequence)
bit 4	PLLSS: PLL Source Selection Configuration bit ⁽¹⁾
	 1 = PLL is fed by the Primary Oscillator (EC, XT or HS mode) 0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator
bit 3	SOSCSEL: SOSC Selection Configuration bit
	1 = Crystal (SOSCI/SOSCO) mode 0 = Digital (SOSCI) mode
bit 2	OSCIOFCN: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configured for EC mode) 2 LKO = to the block
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected (10 MHz-32 MHz) 01 = XT Oscillator mode is selected (1.5 MHz-10 MHz) 00 = External Clock mode is selected

Note 1: When the primary clock source is greater than 8 MHz, this bit must be set to '0' to prevent overclocking the PLL.

30.5 Program Verification and Code Protection

PIC24FJ1024GA610/GB610 family devices offer basic implementation of CodeGuard[™] Security that supports General Segment (GS) security and Boot Segment (BS) security. This feature helps protect individual Intellectual Property.

Note:	For more information on usage, configura-						
	tion and operation, refer to the "dsPIC33/						
	PIC24 Family Reference Manual",						
	"CodeGuard™ Intermediate Security"						
	(DS70005182).						

30.6 JTAG Interface

PIC24FJ1024GA610/GB610 family devices implement a JTAG interface, which supports boundary scan device testing.

30.7 In-Circuit Serial Programming

PIC24FJ1024GA610/GB610 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (Vss) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

30.8 Customer OTP Memory

PIC24FJ1024GA610/GB610 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application checksums
- Code revision information
- Product information
- Serial numbers
- System manufacturing dates
- Manufacturing lot numbers

OTP memory cannot be written by program execution (i.e., TBLWT instructions); it can only be written during device programming. Data is not cleared by a chip erase.

Note: Data in the OTP memory section MUST NOT be programmed more than once.

30.9 In-Circuit Debugger

This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement $ICSP^{TM}$ connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair, designated by the ICS<1:0> Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

FIGURE 33-3: EXTERNAL CLOCK TIMING

TABLE 33-18: EXTERNAL CLOCK TIMING REQUIREMENTS

			Standard Operating Conditions: Operating temperature			2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial		
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4	_	32 48	MHz MHz	EC ECPLL (Note 2)	
		Oscillator Frequency	3.5 4 10 12 31		10 8 32 24 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC	
OS20	Tosc	Tosc = 1/Fosc	—	—	—	-	See Parameter OS10 for Fosc value	
OS25	Тсү	Instruction Cycle Time ⁽³⁾	62.5	—	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	—	ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽⁴⁾	—	15	30	ns		
OS41	TckF	CLKO Fall Time ⁽⁴⁾	_	15	30	ns		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency shown in Figure 33-1.

3: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

AC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse Width (Low)	2		_	μS	
SY12	TPOR	Power-on Reset Delay	_	2	_	μs	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 TCY + 2) or 700	_	(3 Tcy + 2)	μs	
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μS	$V \text{DD} \leq V \text{BOR}$
SY45	TRST	Internal State Reset Time	_	50	_	μs	
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with VREGS = 1
			—	1	—	μS	Sleep wake-up with VREGS = 0
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	—	μS	Sleep wake-up with VREGS = 1
			—	70	—	μS	Sleep wake-up with VREGS = 0

TABLE 33-24: RESET AND BROWN-OUT RESET REQUIREMENTS

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoq, KEELoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1204-5