

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	1MB (341.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj1024gb610-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG<9> is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> decides which word should be addressed; when the bit is '0', the lower word, and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-15 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

DSRPAG (Data Space Read Register)	Source Address while Indirect Addressing	23-Bit EA Pointing to EDS	Comment
200h		000000h to 007FFEh	Lower words of 4M program
•		•	instructions; (8 Mbytes) for
•		•	read operations only.
•		•	
2FFh		7F8000h to 7FFFFEh	
300h	8000h to FFFFh	000001h to 007FFFh	Upper words of 4M program
•		•	instructions (4 Mbytes remaining;
•		•	4 Mbytes are phantom bytes) for
•		•	read operations only.
3FFh		7F8001h to 7FFFFFh	
000h		Invalid Address	Address error trap. ⁽¹⁾

TABLE 4-15: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: When the source/destination address is above 8000h and DSRPAG/DSWPAG is '0', an address error trap will occur.

EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY

; Set the EDS page from where the data to be read						
mov	#0x0202, w0					
mov	w0, DSRPAG	;page 0x202, consisting lower words, is selected for read				
mov	#0x000A, w1	;select the location (0x0A) to be read				
bset	w1, #15	;set the MSB of the base address, enable EDS mode				
;Read a by	;Read a byte from the selected location					
mov.b	[w1++], w2	;read Low byte				
mov.b	[w1++], w3	;read High byte				
;Read a wo	rd from the selected locati	on				
mov	[w1], w2	i				
;Read Doub	;Read Double - word from the selected location					
mov.d	[w1], w2	;two word read, stored in w2 and w3				

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	
bit 15						•	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	
bit 7							bit C	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-14	Unimplemer	nted: Read as ')'					
bit 13	IC6MD: Inpu	t Capture 6 Moo	dule Disable bi	t				
	1 = Module i							
	-	power and clock						
bit 12		t Capture 5 Moo	dule Disable bi	t				
	1 = Module i 0 = Module i	is disabled	sources are e	enabled				
bit 11		t Capture 4 Mod						
	1 = Module i	•						
	0 = Module	power and clock	sources are e	enabled				
bit 10	•	t Capture 3 Moo	dule Disable bi	t				
	1 = Module i 0 = Module i	is disabled power and clocł	sources are e	enabled				
bit 9	-	t Capture 2 Mo						
	1 = Module i							
		power and clock						
bit 8		t Capture 1 Moo	dule Disable bi	t				
	1 = Module i 0 = Module j	is disabled power and clock	sources are e	enabled				
bit 7-6	Unimplemer	nted: Read as '	י)					
bit 5	OC6MD: Out	tput Capture 6 N	/lodule Disable	e bit				
	1 = Module i							
L:1 4	•	power and clock						
bit 4	1 = Module i	tput Capture 5 N						
		power and clock	sources are e	enabled				
bit 3	-							
		OC4MD: Output Capture 4 Module Disable bit 1 = Module is disabled						
	0 = Module	power and clock	sources are e	enabled				
bit 2		tput Capture 3 N	/lodule Disable	e bit				
	1 = Module i	is disabled power and clocł		nabled				
bit 1	-	tput Capture 2 N						
	1 = Module i							
		power and clock	sources are e	enabled				
bit 0	OC1MD: Out	tput Capture 1 N	/lodule Disable	e bit				
	1 = Module i							
	0 = Module	power and clock	sources are e	enabled				

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

REGISTER 11-14:	RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2
-----------------	--

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		OCTRIG2R5	OCTRIG2R4	OCTRIG2R3	OCTRIG2R2	OCTRIG2R1	OCTRIG2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0
bit 7							bit 0

Legend:				
R = Readable bit	bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	OCTRIG2R<5:0>: Assign Output Compare Trigger 2 to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT4R<5:0>: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits

REGISTER 11-15: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 T3CKR<5:0>: Assign Timer3 Clock to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 T2CKR<5:0>: Assign Timer2 Clock to Corresponding RPn or RPIn Pin bits

REGISTER 11-18: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	r-1	r-1	r-1	r-1	r-1	r-1
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	Reserved: Maintain as '1'

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **Reserved**: Maintain as '1'

REGISTER 11-19: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

REGISTER 11-26: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-27: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

REGISTER 11-34: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

1	~~		nd	
	.eu	е	пu	I -

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-35: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

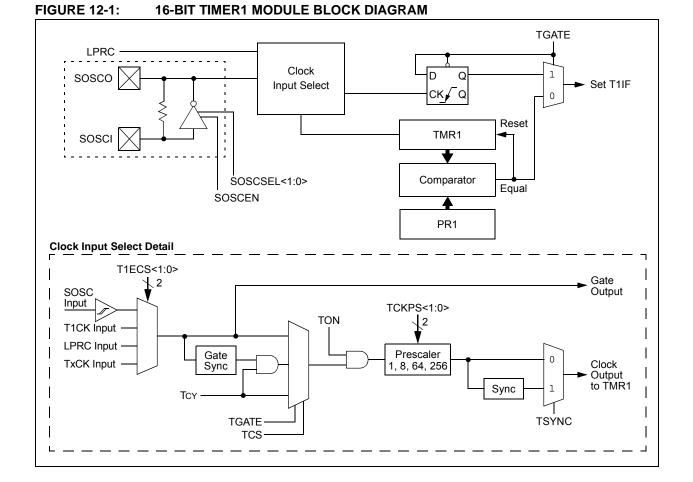
bit 5-0 SS3R<5:0>: Assign SPI3 Slave Select Input (SS3IN) to Corresponding RPn or RPIn Pin bits bit 0

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, *"Timers"* (DS39704), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Clear the TON bit (= 0).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS, TECS<1:0> and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.
- 7. Set the TON bit (= 1).

© 2015-2016 Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
<u> </u>	<u> </u>	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2 ⁽²⁾	ENFLT1 ⁽²⁾	
bit 15		OCCIDE	OUTOLLE	OUTOLLT	OUTOLLU		bit 8	
R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	
ENFLT0	(2) OCFLT2 ^(2,3)	OCFLT1 ^(2,4)	OCFLT0 ^(2,4)	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾	
bit 7	1		L	l		•	bit 0	
Legend:		HSC = Hardw	are Settable/C	learable bit				
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-14	Unimplemen	ted: Read as ')'					
bit 13	OCSIDL: Out	put Compare x	Stop in Idle Mo	ode Control bit				
		ompare x halts						
				e in CPU Idle m	node			
bit 12-10		>: Output Com		elect bits				
	111 = Periphe 110 = Reserv	eral clock (Fcy)						
	101 = Reserv							
			hchronous cloc	k is supported)				
	011 = Timer5	Timer5 clock						
	010 = Timer4 001 = Timer3							
	001 = Timer3 000 = Timer2							
bit 9		It Input 2 Enab	e bit (2)					
		Comparator 1/2		ed ⁽³⁾				
	0 = Fault 2 is		,					
bit 8		lt Input 1 Enab						
	1 = Fault 1 (0 0 = Fault 1 is	DCFB pin) is er	abled ⁽⁴⁾					
bit 7		It Input 0 Enab	e hit(2)					
		DCFA pin) is er						
	0 = Fault 0 is							
bit 6	OCFLT2: Out	put Compare x	PWM Fault 2 ((Comparator 1/2	2/3) Condition	Status bit ^(2,3)		
	1 = PWM Fa	ult 2 has occur	ed					
		Fault 2 has oc						
bit 5				(OCFB pin) Cor	ndition Status b	bit ^(2,4)		
		ult 1 has occur Fault 1 has oc						
		1 4411 1 1143 00	curred					
Note 1:	The OCx output n "Peripheral Pin \$	Select (PPS)".	•				Section 11.4	
2:	The Fault input er							
3:	The Comparator channels, Compa					put controls the	e OC4-OC6	
4:	The OCFA/OCFB	Fault inputs mu	ust also be conf	figured to an av	ailable RPn/RF	In pin. For mor	e information,	

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER '	16-6: CCPx	CON3H: CCI	Px CONTRO	3 HIGH RE	GISTERS		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
OETRIG	OSCNT2	OSCNT1	OSCNT0		OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15	1 = For Trigg	Px Dead-Time ered mode (TR utput pin opera	IGEN = 1): Mo	odule does not	drive enabled o	output pins unti	l triggered
bit 14-12	OSCNT<2:0> 111 = Extend 110 = Extend 101 = Extend 011 = Extend 010 = Extend 010 = Extend 001 = Extend	: One-Shot Eve s one-shot eve ot extend one-	ent Count bits nt by 7 time ba nt by 6 time ba nt by 5 time ba nt by 4 time ba nt by 3 time ba nt by 2 time ba nt by 1 time ba	ase periods (7 t use periods (6 t use periods (5 t use periods (4 t use periods (3 t use period (2 tir	ime base perio ime base perio ime base perio ime base perio ime base perio	ods total) ods total) ods total) ods total) ods total)	
bit 11	Unimplement	ted: Read as 'd)'				
bit 10-8	111 = Reserv 110 = Output 101 = Brush I 100 = Brush I 011 = Reserv 010 = Half-Br 001 = Push-P	Scan mode DC Output mod DC Output mod	le, forward le, reverse ode e	bits ⁽¹⁾			
bit 7-6	Unimplement	ted: Read as 'd)'				
bit 5	POLACE: CC 1 = Output pi	Px Output Pins n polarity is act n polarity is act	s, OCMxA, OC ive-low	MxC and OCM	IxE, Polarity Co	ontrol bit	
bit 4	1 = Output pi	Px Output Pins n polarity is act n polarity is act	ive-low	MxD and OCM	xF, Polarity Co	ntrol bit ⁽¹⁾	
bit 3-2	 0 = Output pin polarity is active-high PSSACE<1:0>: PWMx Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs 						
bit 1-0	PSSBDF<1:0	>: PWMx Outp	ut Pins, OCMx	B, OCMxD, an	d OCMxF. Shu	itdown State Co	ontrol bits ⁽¹⁾
	11 = Pins are 10 = Pins are	driven active v driven inactive in a high-impe	/hen a shutdov when a shutdo	vn event occurs own event occu	s urs		

REGISTER 16-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

Note 1: These bits are implemented in MCCPx modules only.

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

bit 6	FRMSYNC: Frame Sync Pulse Direction Control bit
	1 = Frame Sync pulse input (slave)
	0 = Frame Sync pulse output (master)
bit 5	FRMPOL: Frame Sync/Slave Select Polarity bit
	 1 = Frame Sync pulse/slave select is active-high 0 = Frame Sync pulse/slave select is active-low
bit 4	MSSEN: Master Mode Slave Select Enable bit
	1 = SPIx slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically driven during transmission in Master mode)
	0 = SPIx slave select support is disabled (SSx pin will be controlled by port IO)
bit 3	FRMSYPW: Frame Sync Pulse-Width bit
	 1 = Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>) 0 = Frame Sync pulse is one clock (SCK) wide
bit 2-0	FRMCNT<2:0>: Frame Sync Pulse Counter bits
	Controls the number of serial words transmitted per Sync pulse. 111 = Reserved
	110 = Reserved
	101 = Generates a Frame Sync pulse on every 32 serial words
	100 = Generates a Frame Sync pulse on every 16 serial words
	011 = Generates a Frame Sync pulse on every 8 serial words
	010 = Generates a Frame Sync pulse on every 4 serial words
	001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)
	000 = Generates a Frame Sync pulse on each serial word

- **Note 1:** AUDEN can only be written when the SPIEN bit = 0.
 - **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
 - **3:** URDTEN is only valid when IGNTUR = 1.
 - **4:** AUDMOD<1:0> bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

TXELM2

TXELM1

TXELMO

bit 0

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	_	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8
U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC

TXELM3⁽¹⁾

REGISTER 17-5: SPIxSTATH: SPIx STATUS REGISTER HIGH

TXELM5⁽³⁾

Legend:	HSC = Hardware Settab	le/Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

TXELM4⁽²⁾

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

20.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the *"USB 2.0 Specification"*.
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR<3>).

20.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in Chapter 9 of the "USB 2.0 Specification".
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- 4. When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Token Complete Interrupt Flag, TRNIF (U1IR<3>).

20.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

20.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

- Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U10TGCON<5:4>). Disable the D+ and Dpull-up resistors by clearing the DPPULUP and DMPULUP bits (U10TGCON<7:6>).
- At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-of-Frame (SOF) packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE<6>).
- Wait for the device attached interrupt (U1IR<6> = 1). This is signaled by the USB device changing the state of D+ or D- from '0' to '1' (SE0 to J-state). After it occurs, wait 100 ms for the device power to stabilize.
- Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON<7>) is '0', the connecting device is low speed. If the connecting device is low speed, set the LSPDEN and LSPD bits (U1ADDR<7> and U1EP0<7>) to enable low-speed operation.
- Reset the USB device by setting the USBRST bit (U1CON<4>) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- 8. In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by Chapter 9 of the "USB 2.0 Specification".

REGISTER 20-12: U1CNFG1: USB CONFIGURATION REGISTER 1

—
bit 8
R/W-0
PPB0
bit 0
own
)WN

Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.

20.7.2 USB INTERRUPT REGISTERS

REGISTER 20-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF
bit 7							bit 0

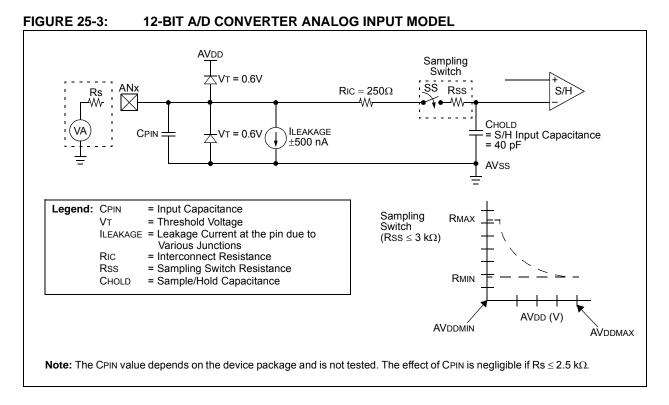
Legend:	HS = Hardware Settable bit		
R = Readable bit	K = Write '1' to Clear bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state is detected
	0 = No ID state change is detected
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	 1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from the last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS is detected
	0 = No activity on the D+/D- lines or VBUS is detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the <i>"USB 2.0 Specification"</i>) ⁽¹⁾ 0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	1 = VBUS change on B-device is detected; VBUS has crossed VB_SESS_END (as defined in the "USB 2.0 Specification") ⁽¹⁾
	0 = VBUS has not crossed VB_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF: A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the "USB 2.0 Specification") ⁽¹⁾
	0 = No VBUS change on A-device is detected
Note 1:	VBUS threshold crossings may either be rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

25.3 Registers

The 12-bit A/D Converter is controlled through a total of 13 registers:


- AD1CON1 through AD1CON5 (Register 25-1 through Register 25-5)
- AD1CHS (Register 25-6)
- AD1CHITH and AD1CHITL (Register 25-8 and Register 25-9)

- AD1CSSH and AD1CSSL (Register 25-10 and Register 25-11)
- AD1CTMENH and AD1CTMENL (Register 25-12 and Register 25-13)
- AD1DMBUF (not shown) The 16-bit conversion buffer for Extended Buffer mode

DMABL<2:0>	Buffer Size per Channel (words)	Generated Offset Address (lower 11 bits)	Available Input Channels	Allowable DMADSTn Addresses
000	1	000 00cc ccc0	32	xxxx xxxx xx00 0000
001	2	000 0ccc ccn0	32	xxxx xxxx x000 0000
010	4	000 cccc cnn0	32	xxxx xxxx 0000 0000
011	8	00c cccc nnn0	32	xxxx xxx0 0000 0000
100	16	0cc cccn nnn0	32	xxxx xx00 0000 0000
101	32	ccc ccnn nnn0	32	xxxx x000 0000 0000
110	64	ccc cnnn nnn0	16	xxxx x000 0000 0000
111	128	ccc nnnn nnn0	8	xxxx x000 0000 0000

Legend: ccc = Channel number (three to five bits), n = Base buffer address (zero to seven bits),

x = User-definable range of DMADSTn for base address, 0 = Masked bits of DMADSTn for IA

EQUATION 25-1: A/D CONVERSION CLOCK PERIOD

$$TAD = TCY (ADCS + 1)$$

$$ADCS = \frac{TAD}{TCY} - 1$$

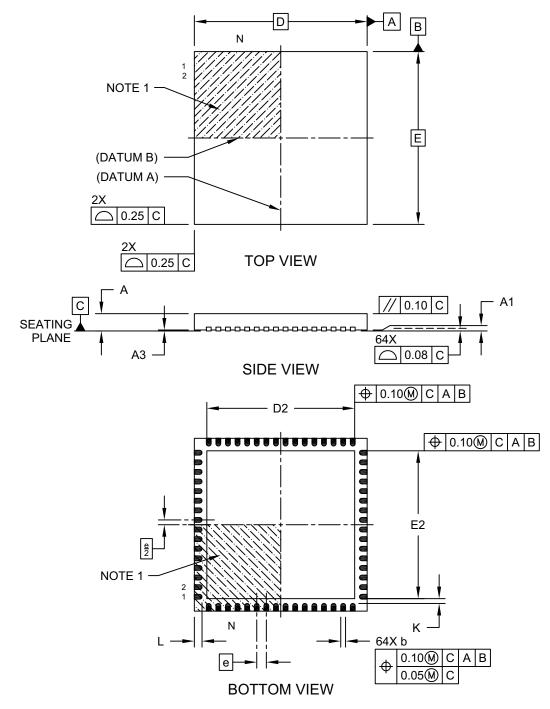
Note: Based on TCY = 2/FOSC; Doze mode and PLL are disabled.

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 30-11: FDEVOPT1 CONFIGURATION REGISTER

Legend:		PO = Progran					
bit 7		_	ALTVREF	SUSCHPUT	TMPRPIN	ALTCMPI	 bit 0
U-1	U-1	U-1	R/PO-1	R/PO-1 SOSCHP ⁽¹⁾	R/PO-1	R/PO-1	U-1
bit 15							bit 8
		—		—		—	—
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
bit 23							bit 16
—	—	—	—	—	—	—	—
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1

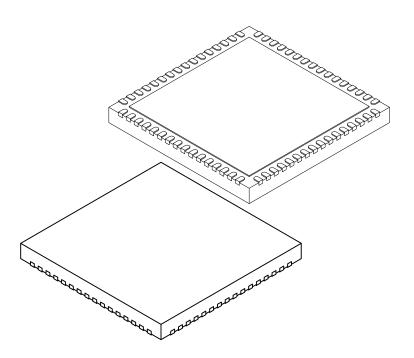
bit 4	ALTVREF: Alternate Voltage Reference Location Enable bit (100-pin and 121-pin devices only) 1 = VREF+ and CVREF+ on RA10, VREF- and CVREF- on RA9 0 = VREF+ and CVREF+ on RB0, VREF- and CVREF- on RB1
bit 3	SOSCHP: SOSC High-Power Enable bit (valid only when SOSCSEL = 1) ⁽¹⁾
	1 = SOSC High-Power mode is enabled 0 = SOSC Low-Power mode is enabled
bit 2	TMPRPIN: Tamper Pin Enable bit 1 = TMPR pin function is disabled
	0 = TMPR pin function is enabled
bit 1	ALTCMPI: Alternate Comparator Input Enable bit
	1 = C1INC, C2INC and C3INC are on their standard pin locations
	0 = C1INC, C2INC and C3INC are on RG9
bit 0	Unimplemented: Read as '1'


Note 1: High-Power mode is for crystals with 35K ESR (typical). Low-Power mode is for crystals with more than 65K ESR.

34.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-213B Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

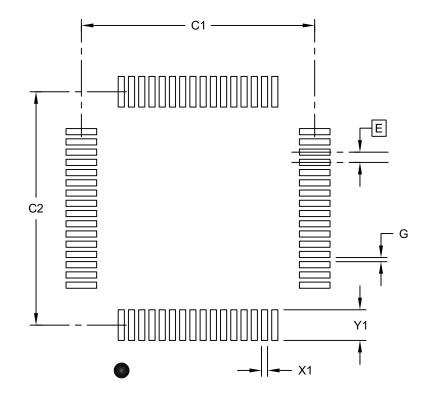
	Ν	IILLIMETER	S		
Dimension	MIN	NOM	MAX		
Number of Pins	N	64			
Pitch	е		0.50 BSC		
Overall Height	Α	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	7.60	7.70	7.80	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	7.60	7.70	7.80	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-213B Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1