

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	1MB (341.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj1024gb610t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
1	OCM1C/CTED3/RG15	51	RP16/RF3
2	Vdd	52	RP30/RF2
3	IC4/CTED4/PMD5/RE5	53	RP15/RF8
4	SCL3/IC5/PMD6/RE6	54	RF7
5	SDA3/IC6/PMD7/RE7	55	INT0/RF6
6	RPI38/OCM1D/RC1	56	SDA1/RG3
7	RPI39/OCM2C/RC2	57	SCL1/RG2
8	RPI40/OCM2D/RC3	58	PMPCS1/SCL2/RA2
9	AN16/RPI41/OCM3C/PMCS2/RC4	59	SDA2/PMA20/RA3
10	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	AN18/C1INC/RP26/OCM1B/PMA4/RG7	61	TDO/RA5
12	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	62	VDD
13	MCLR	63	OSCI/CLKI/RC12
14	AN20/C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	64	OSCO/CLKO/RC15
15	Vss	65	Vss
16	Vdd	66	RPI36/PMA22/RA14
17	TMS/OCM3D/RA0	67	RPI35/PMBE1/RA15
18	RPI33/PMCS1/RE8	68	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
19	AN21/ RPI34 /PMA19/RE9	69	RP4/PMACK2/RD9
20	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	70	RP3/PMA15/PMCS2/RD10
21	PGED3/AN4/C1INB/RP28/OCM3B/RB4	71	RP12/PMA14/PMCS1/RD11
22	AN3/C2INA/RB3	72	CLC3OUT/RP11/U6CTS/ICM6/RD0
23	AN2/CTCMP/C2INB/RP13/CTED13/RB2	73	SOSCI/C3IND/RC13
24	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	74	SOSCO/C3INC/RPI37/PWRLCLK/RC14
25	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /RB0	75	Vss
26	PGEC2/AN6/ RP6 /RB6	76	RP24/U5TX/ICM4/RD1
27	PGED2/AN7/ RP7 /U6TX/RB7	77	RP23/PMACK1/RD2
28	CVREF-/VREF-/PMA7/RA9	78	RP22/ICM7/PMBE0/RD3
29	CVREF+/VREF+/PMA6/RA10	79	RPI42/OCM3E/PMD12/RD12
30	AVdd	80	OCM3F/PMD13/RD13
31	AVss	81	RP25/PMWR/PMENB/RD4
32	AN8/RP8/PWRGT/RB8	82	RP20/PMRD/PMWR/RD5
33	AN9/TMPR/ RP9 /T1CK/RB9	83	C3INB/U5RX/OC4/PMD14/RD6
34	CVREF/AN10/PMA13/RB10	84	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
35	AN11/REFI/PMA12/RB11	85	VCAP
36	Vss	86	N/C
37	Vdd	87	U5CTS/OC6/PMD11/RF0
38	TCK/RA1	88	PMD10/RF1
39	RP31 /RF13	89	PMD9/RG1
40	RPI32/CTED7/PMA18/RF12	90	PMD8/RG0
41	AN12/U6RX/CTED2/PMA11/RB12	91	AN23/OCM1E/RA6
42	AN13/CTED1/PMA10/RB13	92	AN22/OCM1F/PMA17/RA7
43	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	93	PMD0/RE0
44	AN15/RP29/CTED6/PMA0/PMALL/RB15	94	PMD1/RE1
45	Vss	95	CTED11/PMA16/RG14
46	Vdd	96	OCM2E/RG12
47	RPI43/RD14	97	OCM2F/CTED10/RG13
48	RP5 /RD15	98	PMD2/RE2
49	RP10/PMA9/RF4	99	CTED9/PMD3/RE3
50	RP17 /PMA8/RF5	100	HLVDIN/CTED8/PMD4/RE4

TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA610 TQFP)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
IOCD0	46	46	72	72	D9	D9	Ι	ST	PORTD Interrupt-on-Change
IOCD1	49	49	76	76	A11	A11	Ι	ST	
IOCD2	50	50	77	77	A10	A10	Ι	ST	
IOCD3	51	51	78	78	B9	B9	Ι	ST	
IOCD4	52	52	81	81	C8	C8	Ι	ST	
IOCD5	53	53	82	82	B8	B8	Ι	ST	
IOCD6	54	54	83	83	D7	D7	Ι	ST	
IOCD7	55	55	84	84	C7	C7	Ι	ST	
IOCD8	42	42	68	68	E9	E9	Ι	ST	
IOCD9	43	43	69	69	E10	E10	Ι	ST	
IOCD10	44	44	70	70	D11	D11	Ι	ST	
IOCD11	45	45	71	71	C11	C11	Ι	ST	
IOCD12	_	_	79	79	A9	A9	Ι	ST	
IOCD13	_	—	80	80	D8	D8	Ι	ST	
IOCD14	—	—	47	47	L9	L9	Ι	ST	
IOCD15	_	_	48	48	K9	K9	Ι	ST	
IOCE0	60	60	93	93	A4	A4	Ι	ST	PORTE Interrupt-on-Change
IOCE1	61	61	94	94	B4	B4	Ι	ST	
IOCE2	62	62	98	98	B3	B3	Ι	ST	
IOCE3	63	63	99	99	A2	A2	Ι	ST	
IOCE4	64	64	100	100	A1	A1	Ι	ST	
IOCE5	1	1	3	3	D3	D3	Ι	ST	
IOCE6	2	2	4	4	C1	C1	Ι	ST	
IOCE7	3	3	5	5	D2	D2	Ι	ST	
IOCE8		_	18	18	G1	G1	Ι	ST	
IOCE9	_	_	19	19	G2	G2	Ι	ST	

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer XCVR = Dedicated Transceiver

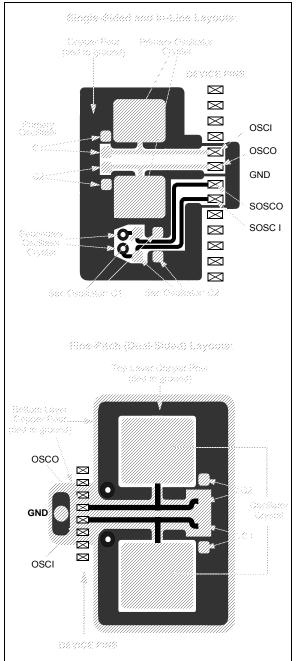
2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to **Section 9.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.


In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator"

FIGURE 2-5:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

File Name	Address	All Resets	File Name	Address	All Resets
SPI (CONTINUED))		CONFIGURABLE LC	GIC CELL (CLC) (C	ONTINUED)
SPI1BUFL	0400	0000	CLC3CONL	047C	0000
SPI1BUFH	0402	0000	CLC3CONH	047E	0000
SPI1BRGL	0404	xxxx	CLC3SELL	0480	0000
SPI1IMSK1	0408	0000	CLC3GLSL	0484	0000
SPI1IMSK2	040A	0000	CLC3GLSH	0486	0000
SPI1URDTL	040C	0000	CLC4CONL	0488	0000
SPI1URDTH	040E	0000	CLC4CONH	048A	0000
SPI2CON1	0410	0x00	CLC4SELL	048C	0000
SPI2CON2	0412	0000	CLC4GLSL	0490	0000
SPI2CON3	0414	0000	CLC4GLSH	0492	0000
SPI2STATL	0418	0028	l ² C		
SPI2STATH	041A	0000	I2C1RCV	0494	0000
SPI2BUFL	041C	0000	I2C1TRN	0496	00FF
SPI2BUFH	041E	0000	I2C1BRG	0498	0000
SPI2BRGL	0420	xxxx	I2C1CON1	049A	1000
SPI2IMSK1	0424	0000	I2C1CON2	049C	0000
SPI2IMSK2	0426	0000	I2C1STAT	049E	0000
SPI2URDTL	0428	0000	I2C1ADD	04A0	0000
SPI2URDTH	042A	0000	I2C1MSK	04A2	0000
SPI3CON1	042C	0x00	I2C2RCV	04A4	0000
SPI3CON2	042E	0000	I2C2TRN	04A6	00FF
SPI3CON3	0430	0000	I2C2BRG	04A8	0000
SPI3STATL	0434	0028	I2C2CON1	04AA	1000
SPI3STATH	0436	0000	I2C2CON2	04AC	0000
SPI3BUFL	0438	0000	I2C2STAT	04AE	0000
SPI3BUFH	043A	0000	I2C2ADD	04B0	0000
SPI3BRGL	043C	xxxx	I2C2MSK	04B2	0000
SPI3IMSK1	0440	0000	I2C3RCV	04B4	0000
SPI3IMSK2	0442	0000	I2C3TRN	04B6	00FF
SPI3URDTL	0444	0000	I2C3BRG	04B8	0000
SPI3URDTH	0446	0000	I2C3CON1	04BA	1000
CONFIGURABLE	LOGIC CELL (CLC)		I2C3CON2	04BC	0000
CLC1CONL	0464	0000	I2C3STAT	04BE	0000
CLC1CONH	0466	0000	I2C3ADD	04C0	0000
CLC1SELL	0468	0000	I2C3MSK	04C2	0000
CLC1GLSL	046C	0000	DMA		
CLC1GLSH	046E	0000	DMACON	04C4	0000
CLC2CONL	0470	0000	DMABUF	04C6	0000
CLC2CONH	0472	0000	DMAL	04C8	0000
CLC2SELL	0474	0000	DMAH	04CA	0000
CLC2GLSL	0478	0000	DMACH0	04CC	0000
CLC2GLSH	047A	0000	DMAINT0	04CE	0000

TABLE 4-8: SFR MAP: 0400h BLOCK

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

REGISTER 8-5: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/C-0	R/C-0
—	—	—	—	—	—	ECCDBE	SGHT
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 ECCDBE: ECC Double-Bit Error Trap bit 1 = ECC Double-Bit Error trap has occurred 0 = ECC Double-Bit Error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

11.3 Interrupt-on-Change (IOC)

The Interrupt-on-Change function of the I/O ports allows the PIC24FJ1024GA610/GB610 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode when the clocks are disabled.

Interrupt-on-Change functionality is enabled on a pin by setting the IOCPx and/or IOCNx register bit for that pin. For example, PORTC has register names, IOCPC and IOCNC, for these functions. Setting a value of '1' in the IOCPx register enables interrupts for low-to-high transitions, while setting a value of '1' in the IOCNx register enables interrupts for high-to-low transitions. Setting a value of '1' in both register bits will enable interrupts for either case (e.g., a pulse on the pin will generate two interrupts). In order for any IOC to be detected, the global IOC Interrupt Enable bit (IEC1<3>) must be set, the IOCON bit (PADCON<15>) set and the associated IFSx flag cleared.

When an interrupt request is generated for a pin, the corresponding status flag (IOCFx register bit) will be set, indicating that a Change-of-State occurred on that pin. The IOCFx register bit will remain set until cleared by writing a zero to it. When any IOCFx flag bit in a given port is set, the corresponding IOCPxF bit in the IOCSTAT register will be set. This flag indicates that a change was detected on one of the bits on the given port. The IOCPxF flag will be cleared when all IOCFx<15:0> bits are cleared.

Multiple individual status flags can be cleared by writing a zero to one or more bits using a Read-Modify-Write operation. If another edge is detected on a pin whose status bit is being cleared during the Read-Modify-Write sequence, the associated change flag will still be set at the end of the Read-Modify-Write sequence. The user should use the instruction sequence (or equivalent) shown in Example 11-1 to clear the Interrupt-on-Change Status registers.

At the end of this sequence, the W0 register will contain a zero for each bit for which the port pin had a change detected. In this way, any indication of a pin changing will not be lost.

Due to the asynchronous and real-time nature of the Interrupt-on-Change, the value read on the port pins may not indicate the state of the port when the change was detected, as a second change can occur during the interval between clearing the flag and reading the port. It is up to the user code to handle this case if it is a possibility in their application. To keep this interval to a minimum, it is recommended that any code modifying the IOCFx registers be run either in the interrupt handler or with interrupts disabled.

Each Interrupt-on-Change (IOC) pin has both a weak pull-up and a weak pull-down connected to it. The pullups act as a current source connected to the pin, while the pull-downs act as a current sink connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected.

The pull-ups and pull-downs are separately enabled using the IOCPUx registers (for pull-ups) and the IOCPDx registers (for pull-downs). Each IOC pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

Note: Pull-ups and pull-downs on pins should always be disabled whenever the pin is configured as a digital output.

EXAMPLE 11-1: IOC STATUS READ/CLEAR IN ASSEMBLY

MOV	OxFFFF, WO	; Initial mask value 0xFFFF -> W0
XOR	IOCFx, W0	; W0 has '1' for each bit set in IOCFx
AND	IOCFx	; IOCFx & WO ->IOCFx

EXAMPLE 11-2: PORT READ/WRITE IN ASSEMBLY

MOV 0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV W0, TRISB	; and PORTB<7:0> as outputs
NOP	; Delay 1 cycle
BTSS PORTB, #13	; Next Instruction

EXAMPLE 11-3: PORT READ/WRITE IN 'C'

TRISB = 0xFF00;	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
Nop();	// Delay 1 cycle
<pre>If (PORTBbits.RB13){ };</pre>	// Test if RB13 is a `1'

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for Single-Shot or Continuous mode pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OCx module you are using. Otherwise, configure the dedicated OCx output pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure Trigger operation and TRIGSTAT to select a hardware or software Trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the Trigger or Sync source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/Trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a Trigger source event occurs.

REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾	
	 1 = Transmit happens on transition from active clock state to Idle clock state 0 = Transmit happens on transition from Idle clock state to active clock state 	
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾	
	1 = \overline{SSx} pin is used by the macro in Slave mode; \overline{SSx} pin is used as the slave select 0 = \overline{SSx} pin is not used by the macro (\overline{SSx} pin will be controlled by the port I/O)	input
bit 6	CKP: SPIx Clock Polarity Select bit	
	 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level 	
bit 5	MSTEN: Master Mode Enable bit	
	1 = Master mode 0 = Slave mode	
bit 4	DISSDI: Disable SDIx Input Port bit	
	 1 = SDIx pin is not used by the module; pin is controlled by the port function 0 = SDIx pin is controlled by the module 	
bit 3	DISSCK: Disable SCKx Output Port bit	
	 1 = SCKx pin is not used by the module; pin is controlled by the port function 0 = SCKx pin is controlled by the module 	
bit 2	MCLKEN: Master Clock Enable bit ⁽³⁾	
	 1 = REFO output is used by the BRG 0 = Peripheral clock is used by the BRG 	
bit 1	SPIFE: Frame Sync Pulse Edge Select bit	
	 1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock 0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock 	
bit 0	ENHBUF: Enhanced Buffer Mode Enable bit	
	1 = Enhanced Buffer mode is enabled 0 = Enhanced Buffer mode is disabled	
Note	When AUDEN = 1, this module functions as if $CKE = 0$, regardless of its actual value.	

- 2: When FRMEN = 1, SSEN is not used.
- **3:** MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.

19.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternatively, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

19.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 19.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

19.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

19.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- Enable the UARTx by setting the URXEN bit (UxSTA<12>).
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

19.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware-controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

19.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

19.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

19.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	URXEN	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend: C = Clearable bit		HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
HS = Hardware Settable bit	HC = Hardware Clearable b	it		

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

11 = Reserved; do not use

bit 7

- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾

	IREN = 0:
	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	IREN = 1:
	1 = UxTX Idle state is '1'
	0 = UxTX Idle state is '0'
bit 12	URXEN: UARTx Receive Enable bit
	1 = Receive is enabled, UxRX pin is controlled by UARTx
	0 = Receive is disabled, UxRX pin is controlled by the port
bit 11	UTXBRK: UARTx Transmit Break bit
	1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit;
	cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽²⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is
	controlled by the port
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
Note 4-	The value of this hit only effects the transmit properties of the module when the $IrD^{(R)}$ are derived as the transmit properties of the module when the $IrD^{(R)}$
Note 1:	The value of this bit only affects the transmit properties of the module when the $IrDA^{(R)}$ encoder is enabled
	(IREN = 1).

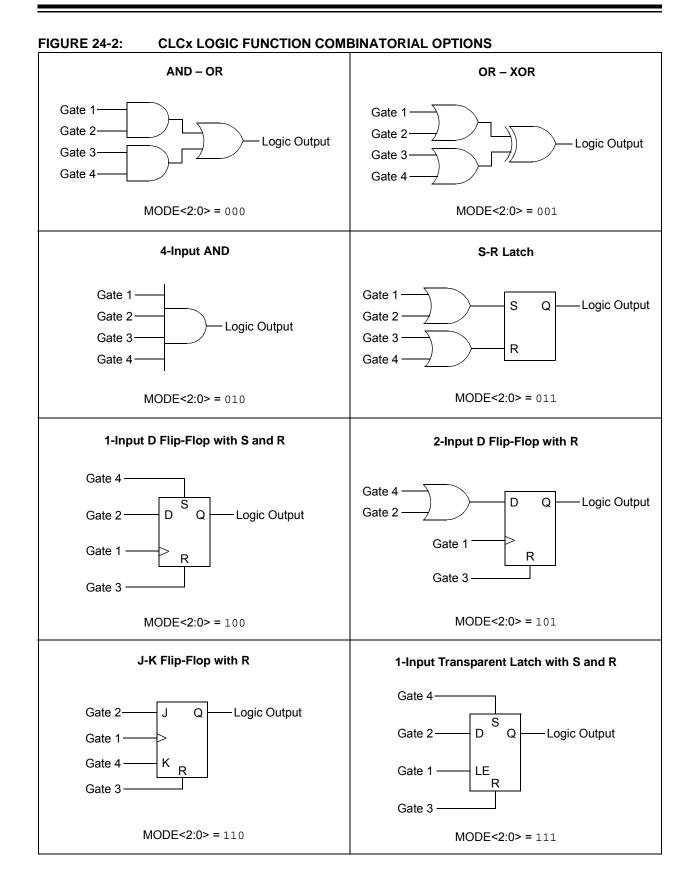
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

© 2015-2016 Microchip Technology Inc.

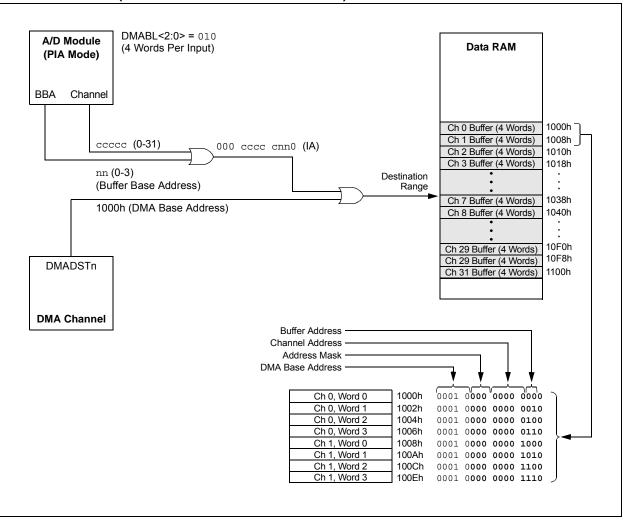
bit 0

REGISTER 20-2: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	r-0	r-0	R/W-x	R/W-x	R/W-x, HSC	R/W-x, HSC
UOWN	DTS ⁽¹⁾	—	—	DTSEN	BSTALL	BC9	BC8
bit 15							bit 8


| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend: r = Reserved bit		HSC = Hardware Setta	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'r' = Reserved bit	x = Bit is unknown		


bit 15	UOWN: USB Own bit
	 0 = The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all other fields in the BD
bit 14	DTS: Data Toggle Packet bit ⁽¹⁾
	1 = Data 1 packet
	0 = Data 0 packet
bit 13-12	Reserved: Maintain as '0'
bit 11	DTSEN: Data Toggle Synchronization Enable bit
	 1 = Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored 0 = No data toggle synchronization is performed
bit 10	BSTALL: Buffer STALL Enable bit
	 1 = Buffer STALL is enabled; STALL handshake issued if a token is received that would use the BD in the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit will get set on any STALL handshake 0 = Buffer STALL is disabled
bit 9-0	BC<9:0>: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.
Note 1: ⊺	his bit is ignored unless DTSEN = 1.

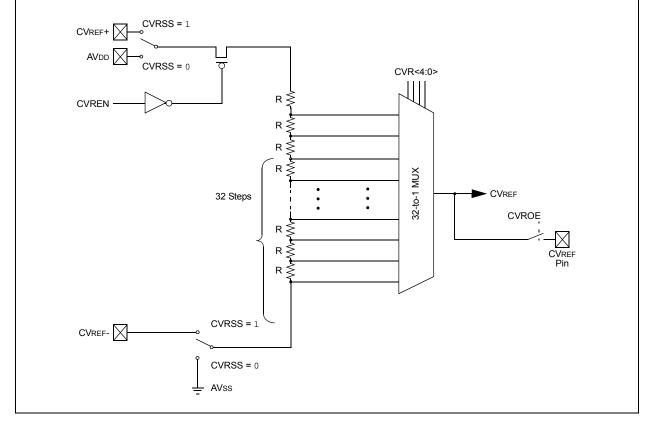
NOTES:

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 25-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)

27.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Dual Comparator Module" (DS39710), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.


27.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 27-1). The comparator voltage reference provides two ranges of output voltage, each with 32 distinct levels.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

REGISTER 30-1: FBOOT CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—		—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/PO-1	R/PO-1
	—	—	—	_	_	BTMODE<1:0>	

bit	7
-----	---

Legend:	PO = Program Once bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '1'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-2 Unimplemented: Read as '1'

bit 1-0 BTMODE<1:0>: Device Partition Mode Configuration Status bits

- 11 = Single Partition mode
- 10 = Dual Partition mode
- 01 = Protected Dual Partition mode (Partition 1 is write-protected when inactive)
- 00 = Reserved; do not use

REGISTER 30-2: FBTSEQ CONFIGURATION REGISTER

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IBSEQ11	IBSEQ10	IBSEQ9	IBSEQ8	IBSEQ7	IBSEQ6	IBSEQ5	IBSEQ4
bit 23							bit 16

| R/PO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| IBSEQ3 | IBSEQ2 | IBSEQ1 | IBSEQ0 | BSEQ11 | BSEQ10 | BSEQ9 | BSEQ8 |
| bit 15 | | | | | | | bit 8 |

| R/PO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| BSEQ7 | BSEQ6 | BSEQ5 | BSEQ4 | BSEQ3 | BSEQ2 | BSEQ1 | BSEQ0 |
| bit 7 | | | | | | | bit 0 |

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-12 **IBSEQ<11:0>:** Inverse Boot Sequence Number bits (Dual Partition modes only) The one's complement of BSEQ<11:0>; must be calculated by the user and written into device programming.

bit 11-0 **BSEQ<11:0>:** Boot Sequence Number bits (Dual Partition modes only) Relative value defining which partition will be active after a device Reset; the partition containing a lower boot number will be active.

bit 0

DC CHARACTERISTICS				Operating Condit temperature		DV to 3.6V (unless otherwise stated) $D^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions		
Power-Dov	vn Current ⁽⁴	4,5)		-				
DC60	2.5	10	μA	-40°C				
	3.2	10	μA	+25°C	2.0V 3.3V			
	11.5	45	μA	+85°C		– Sleep ⁽²⁾		
	3.2	10	μA	-40°C		- Sleep, /		
	4.0	10	μA	+25°C				
	12.2	45	μA	+85°C				
DC61	165	_	nA	-40°C				
	190	_	nA	+25°C	2.0V			
	14.5		μA	+85°C		– Low-Voltage Retention Sleep ⁽³⁾		
	220		nA	-40°C				
	300		nA	+25°C	3.3V			
	15	_	μA	+85°C				

TABLE 33-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The retention low-voltage regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (FPOR<2>) = 1.

3: The retention low-voltage regulator is enabled; RETEN (RCON<12>) = 1, LPCFG (FPOR<2>) = 0.

4: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and driven low. WDT, etc., are all switched off.

5: These currents are measured on the device containing the most memory in this family.

TABLE 33-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

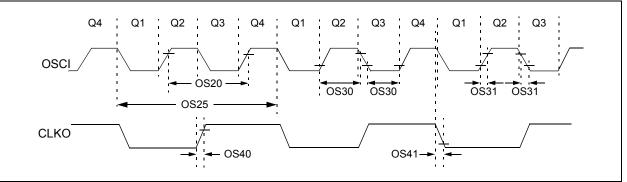

Operatin	Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
DVR	TVREG	Voltage Regulator Start-up Time		10		μS	VREGS = 0 with any POR or BOR		
DVR10	Vbg	Internal Band Gap Reference	1.14	1.2	1.26	V			
DVR11	Tbg	Band Gap Reference Start-up Time	_	1	_	ms			
DVR20	Vrgout	Regulator Output Voltage	1.6	1.8	2	V	VDD > 2.1V		
DVR21	Cefc	External Filter Capacitor Value	10	_	-	μF	Series resistance < 3Ω recommended; < 5Ω required		
DVR30	Vlvr	Low-Voltage Regulator Output Voltage		1.2	—	V	RETEN = 1, LPCFG = 0		

TABLE 33-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operati	Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)							
Param No.	Symbol	Characteristic			Тур	Max	Units	Conditions
DC18	VHLVD	HLVD Voltage on VDD	HLVDL<3:0> = 0100 ⁽¹⁾	3.40	_	3.74	V	
		Transition	HLVDL<3:0> = 0101	3.25	_	3.58	V	
			HLVDL<3:0> = 0110	2.95	_	3.25	V	
			HLVDL<3:0> = 0111	2.75	_	3.04	V	
		HLVDL<3:0> = 1000	2.65	_	2.93	V		
			HLVDL<3:0> = 1001	2.45		2.75	V	VDIR = 1
		HLVDL<3:0> = 1010	2.35		2.64	V		
		HLVDL<3:0> = 1011	2.25		2.50	V		
		HLVDL<3:0> = 1100	2.15		2.39	V		
			HLVDL<3:0> = 1101	2.08		2.28	V	
			HLVDL<3:0> = 1110	2.00		2.17	V	
DC101	VTHL	HLVD Voltage on HLVDIN Pin Transition	HLVDL<3:0> = 1111	—	1.20	_	V	
DC105	TONLVD	HLVD Module Enable 1	īme		5	_	μS	From POR or HLVDEN = 1

Note 1: Trip points for values of HLVD<3:0>, from '0000' to '0011', are not implemented.

FIGURE 33-3: EXTERNAL CLOCK TIMING

TABLE 33-18: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: Operating temperature			2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 48	MHz MHz	EC ECPLL (Note 2)	
		Oscillator Frequency	3.5 4 10 12 31		10 8 32 24 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC	
OS20	Tosc	Tosc = 1/Fosc	—	—	_	—	See Parameter OS10 for Fosc value	
OS25	Тсү	Instruction Cycle Time ⁽³⁾	62.5	_	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽⁴⁾	—	15	30	ns		
OS41	TckF	CLKO Fall Time ⁽⁴⁾	—	15	30	ns		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency shown in Figure 33-1.

3: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

PIC24FJ1024GA610/GB610 FAMILY

F

Flash Program Memory	89
and Table Instructions	
Control Registers	90
Double-Word Programming	95
Enhanced ICSP Operation	90
JTAG Operation	90
Operations	90
Programming Algorithm	93
RTSP Operation	

G

Guidelines for Getting Started with 16-Bit MCUs	41
Analog/Digital Pins Configuration During ICSP	46
External Oscillator Pins	45
ICSP Pins	44
Master Clear (MCLR) Pin	42
Power Supply Pins	42
Unused I/Os	46
Voltage Regulator Pin (VCAP)	43

Н

High/Low-Voltage Detect (HLVD)	. 387
High/Low-Voltage Detect. See HLVD.	

I

I/O Ports 1	49
Analog Port Pins Configuration (ANSx) 1	50
Configuring Analog/Digital Function of I/O Pins 1	150
Input Voltage Levels for Port/Pin Tolerated	
Description Input 1	50
Open-Drain Configuration1	
Parallel (PIO)1	
Peripheral Pin Select1	
Write/Read Timing1	
I ² C	
Clock Rates2	249
Communicating as Master in Single	
Master Environment2	247
Reserved Addresses2	249
Setting Baud Rate as Bus Master2	249
Slave Address Masking	
In-Circuit Debugger	106
Input Capture	
32-Bit Cascaded Mode1	194
Operations1	194
Synchronous and Trigger Modes1	193
Input Capture with Dedicated Timers1	93
Instruction Set	
Overview	113
Summary4	¥11
Symbols Used in Opcode Descriptions4	1 12
Interfacing Program and Data Memory Spaces	76
Inter-Integrated Circuit. See I ² C.	
Internet Address4	1 63
Interrupt Controller 1	
Alternate Interrupt Vector Table 1	03
Control and Status Registers1	08
Interrupt Vector Details 1	
Interrupt Vector Table (IVT) 1	103
Reset Sequence1	103
Resources1	108
Trap Vectors 1	104
Vector Tables1	04
Interrupt-on-Change (IOC) 1	154

JTAG Interface	406
к	
Key Features	389
L	
Low-Voltage/Retention Regulator	403

М

J

Memory Organization	53
Program Memory Space	53
Microchip Internet Web Site	463
MPLAB ASM30 Assembler, Linker, Librarian	408
MPLAB Integrated Development	
Environment Software	407
MPLAB PM3 Device Programmer	409
MPLAB REAL ICE In-Circuit Emulator System	409
MPLINK Object Linker/MPLIB Object Librarian	408

Ν

Ο

-	
On-Chip Voltage Regulator	403
POR	403
Standby Mode	403
Oscillator Configuration	115
Clock Switching	126
Sequence	126
Configuration Bit Values for Clock Selection	117
Control Registers	117
FRC Self-Tuning	127
Initial Configuration on POR	116
USB Operation	128
Special Considerations	130
Output Compare with Dedicated Timers	199
Operating Modes	199
32-Bit Cascaded Mode	199
Synchronous and Trigger Modes	199
Operations	200

Ρ

Packaging	
Details	443
Marking	441
Peripheral Enable Bits	139
Peripheral Module Disable Bits	139
Peripheral Pin Select (PPS)	159
Available Peripherals and Pins	159
Configuration Control	162
Considerations for Selection	163
Control Registers	164
Input Mapping	160
Mapping Exceptions	162
Output Mapping	161
Peripheral Priority	159
Selectable Input Sources	160
Selectable Output Sources	
PIC24FJ1024GA610/GB610 Family	
Pinout Descriptions	