

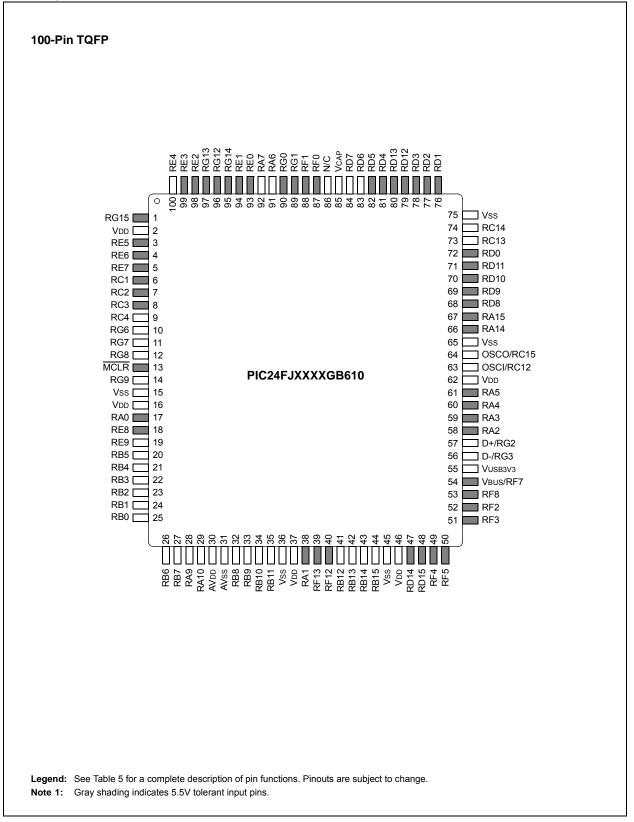
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	1MB (341.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj1024gb610t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams⁽¹⁾ (Continued)

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33/PlC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the PIC24FJ1024GA610/GB610 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "CPU with Extended Data Space (EDS)" (DS39732)
- "Data Memory with Extended Data Space (EDS)" (DS39733)
- "Direct Memory Access Controller (DMA)" (DS39742)
- "PIC24F Flash Program Memory" (DS30009715)
- "Reset" (DS39712)
- "Interrupts" (DS70000600)
- "Power-Saving Features" (DS39698)
- "I/O Ports with Peripheral Pin Select (PPS)" (DS39711)
- "Timers" (DS39704)
- "Input Capture with Dedicated Timer" (DS70000352)
- "Output Compare with Dedicated Timer" (DS70005159)
- "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS33035A)
- "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136)
- "Inter-Integrated Circuit (I²C)" (DS70000195)
- "UART" (DS39708)
- "USB On-The-Go (OTG)" (DS39721)
- "Enhanced Parallel Master Port (EPMP)" (DS39730)
- "RTCC with Timestamp" (DS70005193)
- "RTCC with External Power Control" (DS39745)
- "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729)
- "12-Bit A/D Converter with Threshold Detect" (DS39739)
- "Scalable Comparator Module" (DS39734)
- "Dual Comparator Module" (DS39710)
- "Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect" (DS30009743)
- "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)
- "Watchdog Timer (WDT)" (DS39697)
- "CodeGuard™ Intermediate Security" (DS70005182)
- "High-Level Device Integration" (DS39719)
- "Programming and Diagnostics" (DS39716)
- "Dual Partition Flash Program Memory" (DS70005156)

File Name	Address	All Resets	File Name	Address	All Resets
SPI (CONTINUED))		CONFIGURABLE LC	GIC CELL (CLC) (C	ONTINUED)
SPI1BUFL	0400	0000	CLC3CONL	047C	0000
SPI1BUFH	0402	0000	CLC3CONH	047E	0000
SPI1BRGL	0404	xxxx	CLC3SELL	0480	0000
SPI1IMSK1	0408	0000	CLC3GLSL	0484	0000
SPI1IMSK2	040A	0000	CLC3GLSH	0486	0000
SPI1URDTL	040C	0000	CLC4CONL	0488	0000
SPI1URDTH	040E	0000	CLC4CONH	048A	0000
SPI2CON1	0410	0x00	CLC4SELL	048C	0000
SPI2CON2	0412	0000	CLC4GLSL	0490	0000
SPI2CON3	0414	0000	CLC4GLSH	0492	0000
SPI2STATL	0418	0028	l ² C		
SPI2STATH	041A	0000	I2C1RCV	0494	0000
SPI2BUFL	041C	0000	I2C1TRN	0496	00FF
SPI2BUFH	041E	0000	I2C1BRG	0498	0000
SPI2BRGL	0420	xxxx	I2C1CON1	049A	1000
SPI2IMSK1	0424	0000	I2C1CON2	049C	0000
SPI2IMSK2	0426	0000	I2C1STAT	049E	0000
SPI2URDTL	0428	0000	I2C1ADD	04A0	0000
SPI2URDTH	042A	0000	I2C1MSK	04A2	0000
SPI3CON1	042C	0x00	I2C2RCV	04A4	0000
SPI3CON2	042E	0000	I2C2TRN	04A6	00FF
SPI3CON3	0430	0000	I2C2BRG	04A8	0000
SPI3STATL	0434	0028	I2C2CON1	04AA	1000
SPI3STATH	0436	0000	I2C2CON2	04AC	0000
SPI3BUFL	0438	0000	I2C2STAT	04AE	0000
SPI3BUFH	043A	0000	I2C2ADD	04B0	0000
SPI3BRGL	043C	xxxx	I2C2MSK	04B2	0000
SPI3IMSK1	0440	0000	I2C3RCV	04B4	0000
SPI3IMSK2	0442	0000	I2C3TRN	04B6	00FF
SPI3URDTL	0444	0000	I2C3BRG	04B8	0000
SPI3URDTH	0446	0000	I2C3CON1	04BA	1000
CONFIGURABLE	LOGIC CELL (CLC)		I2C3CON2	04BC	0000
CLC1CONL	0464	0000	I2C3STAT	04BE	0000
CLC1CONH	0466	0000	I2C3ADD	04C0	0000
CLC1SELL	0468	0000	I2C3MSK	04C2	0000
CLC1GLSL	046C	0000	DMA		
CLC1GLSH	046E	0000	DMACON	04C4	0000
CLC2CONL	0470	0000	DMABUF	04C6	0000
CLC2CONH	0472	0000	DMAL	04C8	0000
CLC2SELL	0474	0000	DMAH	04CA	0000
CLC2GLSL	0478	0000	DMACH0	04CC	0000
CLC2GLSH	047A	0000	DMAINT0	04CE	0000

TABLE 4-8: SFR MAP: 0400h BLOCK

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

File Name	Address	All Resets	File Name	Address	All Resets
A/D	·	·	PERIPHERAL PIN S	ELECT	
ADC1BUF0	0712	xxxx	RPINR0	0790	3F3F
ADC1BUF1	0714	xxxx	RPINR1	0792	3F3F
ADC1BUF2	0716	xxxx	RPINR2	0794	3F3F
ADC1BUF3	0718	xxxx	RPINR3	0796	3F3F
ADC1BUF4	071A	xxxx	RPINR4	0798	3F3F
ADC1BUF5	071C	xxxx	RPINR5	079A	3F3F
ADC1BUF6	071E	xxxx	RPINR6	079C	3F3F
ADC1BUF7	0720	xxxx	RPINR7	079E	3F3F
ADC1BUF8	0722	xxxx	RPINR8	07A0	003F
ADC1BUF9	0724	xxxx	RPINR11	07A6	3F3F
ADC1BUF10	0726	xxxx	RPINR12	07A8	3F3F
ADC1BUF11	0728	xxxx	RPINR14	07AC	3F3F
ADC1BUF12	072A	xxxx	RPINR15	07AE	003F
ADC1BUF13	072C	xxxx	RPINR17	07B2	3F00
ADC1BUF14	072E	xxxx	RPINR18	07B4	3F3F
ADC1BUF15	0730	xxxx	RPINR19	07B6	3F3F
ADC1BUF16	0732	xxxx	RPINR20	07B8	3F3F
ADC1BUF17	0734	xxxx	RPINR21	07BA	3F3F
ADC1BUF18	0736	xxxx	RPINR22	07BC	3F3F
ADC1BUF19	0738	xxxx	RPINR23	07BE	3F3F
ADC1BUF20	073A	xxxx	RPINR25	07C2	3F3F
ADC1BUF21	073C	xxxx	RPINR27	07C6	3F3F
ADC1BUF22	073E	xxxx	RPINR28	07C8	3F3F
ADC1BUF23	0740	xxxx	RPINR29	07CA	003F
ADC1BUF24	0742	xxxx	RPOR0	07D4	0000
ADC1BUF25	0744	xxxx	RPOR1	07D6	0000
AD1CON1	0746	0000	RPOR2	07D8	0000
AD1CON2	0748	0000	RPOR3	07DA	0000
AD1CON3	074A	0000	RPOR4	07DC	0000
AD1CHS	074C	0000	RPOR5	07DE	0000
AD1CSSH	074E	0000	RPOR6	07E0	0000
AD1CSSL	0750	0000	RPOR7	07E2	0000
AD1CON4	0752	0000	RPOR8	07E4	0000
AD1CON5	0754	0000	RPOR9	07E6	0000
AD1CHITH	0756	0000	RPOR10	07E8	0000
AD1CHITL	0758	0000	RPOR11	07EA	0000
AD1CTMENH	075A	0000	RPOR12	07EC	0000
AD1CTMENL	075C	0000	RPOR13	07EE	0000
AD1RESDMA	075E	0000	RPOR14	07F0	0000
NVM			RPOR15	07F2	0000
NVMCON	0760	0000			
NVMADR	0762	xxxx			
NVMADRU	0764	00xx			
NVMKEY	0766	0000			

TABLE 4-11: SFR MAP: 0700h BLOCK

REGISTER 5-1:	DMACON: DMA ENGINE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
DMAEN	—	—	_	—	—	—	—	
bit 15				- -		•	bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—	—	PRSSEL	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bi		x = Bit is unkn	is unknown		
bit 15	DMAEN: DM	A Module Enab	le bit					
	1 - Enchlos	modulo						

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round-robin scheme

0 = Fixed priority scheme

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "PIC24F Flash Program Memory" (DS30009715), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ1024GA610/GB610 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ1024GA610/GB610 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 128 instructions (384 bytes) at a time and erase program memory in blocks of 1024 instructions (3072 bytes) at a time.

The device implements a 7-bit Error Correcting Code (ECC). The NVM block contains a logic to write and read ECC bits to and from the Flash memory. The Flash is programmed at the same time as the corresponding ECC parity bits. The ECC provides improved resistance to Flash errors. ECC single bit errors can be transparently corrected. ECC Double-Bit Errors (ECCDBE) result in a trap.

6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

I 1 I. 24 Bits \neg Using Program Counter 0 Program 0 Counter Working Reg EA Using TBLPAG Reg Table 1/0Instruction -16 Bits 8 Bits |♠∕ User/Configuration Byte 24-Bit EA Space Select Select T 1 1 I.

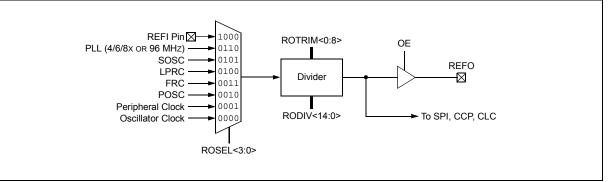
FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

R/W-0	R/W-0	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR ⁽¹⁾	IOPUWR ⁽¹⁾	SBOREN	RETEN ⁽²⁾	—		CM ⁽¹⁾	VREGS ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR ⁽¹⁾	SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾
bit 7							bit (
Legend:							
R = Readabl	e hit	W = Writable b	sit	U = Unimpleme	ented hit read	as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clear		x = Bit is unkr	NOWD
					cu		
bit 15	TRAPR: Trap	Reset Flag bit(1)				
	1 = A Trap Co	onflict Reset has	s occurred				
	0 = A Trap Co	onflict Reset has	not occurred				
bit 14	IOPUWR: Ille	gal Opcode or l	Jninitialized W	Access Reset F	lag bit ⁽¹⁾		
	•	•	•	l address mode	or Uninitialized	ed W register	is used as ar
		Pointer and cau		gister Reset has	not occurred		
bit 13	-	ftware Enable/[-			
DIL 15		rned on in softw		χ Dit			
		rned off in softw					
bit 12	RETEN: Rete	ntion Mode Ena	able bit ⁽²⁾				
	1 = Retention		ed while device	e is in Sleep moo	des (1.2V regu	llator enabled)	
bit 11-10	Unimplement	ted: Read as '0	,				
bit 9	CM: Configura	ation Word Misr	natch Reset F	lag bit ⁽¹⁾			
		ration Word Mis ration Word Mis		has occurred has not occurred	ł		
bit 8	VREGS: Fast	Wake-up from	Sleep bit ⁽³⁾				
	1 = Fast wake	-up is enabled	(uses more po	ower)			
	0 = Fast wake	-up is disabled	(uses less por	wer)			
bit 7	EXTR: Extern	al Reset (MCLF	R) Pin bit ⁽¹⁾				
		Clear (pin) Res Clear (pin) Res					
bit 6		re Reset (Instru					
		nstruction has I					
		nstruction has i					
	ll of the Reset sta ause a device Re	•	e set or cleare	d in software. Se	etting one of th	ese bits in soft	ware does not
2: If	the LPCFG Con it has no effect. F	figuration bit is					d the RETEN
3 : R	e-enabling the release	egulator after it	enters Standb	y mode will add	a delay, TVRE	G, when wakin	
	ccurring.						
	the FWDTEN<1	A. A. C	on hito are 11 1	· /			

REGISTER 7-1: RCON: RESET CONTROL REGISTER

9.6.1 CONSIDERATIONS FOR USB OPERATION

When using the USB On-The-Go module in PIC24FJ1024GA610/GB610 devices, users must always observe these rules in configuring the system clock:


- The system clock frequency must be 16 MHz or 32 MHz. System clock frequencies below 16 MHz are not allowed for USB module operation.
- The Oscillator modes listed in Table 9-3 are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module.
- For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- When the FRCPLL Oscillator mode is used for USB applications, the FRC self-tune system should be used as well. While the FRC is accurate, the only two ways to ensure the level of accuracy, required by the "USB 2.0 Specification" throughout the application's operating range, are either the self-tune system or manually changing the TUN<5:0> bits.

- The user must always ensure that the FRC source is configured to provide a frequency of 4 MHz or 8 MHz (RCDIV<2:0> = 001 or 000) and that the USB PLL prescaler is configured appropriately.
- All other Oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is Sleeping and waiting for a bus attachment).

9.7 Reference Clock Output

In addition to the CLKO output (Fosc/2), the PIC24FJ1024GA610/GB610 family devices can be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. CLKO is enabled by Configuration bit, OSCIOFCN, and is independent of the REFO reference clock. REFO is mappable to any I/O pin that has mapped output capability. Refer to Table 11-4 for more information. The REFO module block diagram is shown on Figure 9-3.

FIGURE 9-3: REFERENCE CLOCK GENERATOR

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15	·	-					bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unir			U = Unimplem	J = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

REGISTER 11-28: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-29: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear-to-Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

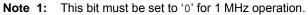
- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the Sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired Sync/Trigger source.
- 5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected Sync/Trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- Set the IC32 bits for both modules (ICyCON2<8> and ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same Sync/Trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bits settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its Trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the Sync source as the last step. Both input capture modules are held in Reset until the Sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the Sync/Trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).


NOTES:

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 4 OCFLT0: PWM Fault 0 (OCFA pin) Condition Status bit^(2,4)
 - 1 = PWM Fault 0 has occurred
 - 0 = No PWM Fault 0 has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on OCx⁽²⁾
 - 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initialize the OCx pin low; toggle the OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize the OCx pin low; toggle the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low; compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC3 channels, Comparator 2 output controls the OC4-OC6 channels, Comparator 3 output controls the OC7-OC9 channels.
 - 4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	_	_	—	_	_	_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	PCIE	SCIE	BOEN	SDAHT ⁽¹⁾	SBCDE	AHEN	DHEN				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own				
bit 15-7	Unimplemen	ted: Read as '	0'								
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit ((I ² C Slave mode	only)						
	1 = Enables ir	nterrupt on det	ection of Stop	condition	•						
	0 = Stop dete	ction interrupts	are disabled								
bit 5				(I ² C Slave mode	• ·						
	1 = Enables interrupt on detection of Start or Restart conditions										
L:1 4	0 = Start detection interrupts are disabled										
bit 4		BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only) 1 = I2CxRCV is updated and an ACK is generated for a received address/data byte, ignoring the stat									
		COV bit only if				stata byte, igit	oring the stat				
		/ is only update		∕ is clear							
bit 3	SDAHT: SDA	x Hold Time Se	election bit ⁽¹⁾								
				after the falling							
				after the falling	-						
bit 2				Enable bit (I ² C		• ·					
				ampled low when Detection mode							
	sequences.	and the bus g		Detection mode							
		alave bus collis									
		0 = Slave bus collision interrupts are disabled									
bit 1		ess Hold Enable	-								
				CLx for a mate		address byte;	; SCLREL b				
		holding is disal		SCLx will be hel							
bit 0		Hold Enable bi		ode only)							
			-	for a received da	ata byte; slave	hardware clears	s the SCLRE				
	hit (I2Cx	CONL<12>) an	d SCI v is hold	d low							
	•	ding is disabled		1 IOW							

REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

20.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 20-3: U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

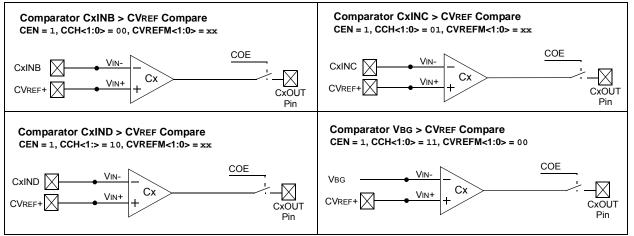
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	_	_	—	_	—	_		
bit 15							bit 8		
R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC		
ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD		
bit 7							bit		
Levende			antad hit was	d aa (0)					
Legend:	la hit	U = Unimplem			are Cetteble/C	laavabla bit			
R = Readab		W = Writable	DIE		are Settable/C				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15-8	Unimplemen	tod: Pood as '(۱'						
bit 7	Unimplemented: Read as '0' ID: ID Pin State Indicator bit								
on i	1 = No plug is attached or a Type B cable has been plugged into the USB receptacle								
	0 = A Type A plug has been plugged into the USB receptacle								
bit 6	Unimplemented: Read as '0'								
bit 5	LSTATE: Line State Stable Indicator bit								
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms 								
				e for the previou	us 1 ms				
bit 4	•	ted: Read as '							
bit 3	SESVD: Session Valid Indicator bit								
	1 = The VBUS voltage is above VA_SESS_VLD (as defined in the "USB 2.0 Specification") on the A o B-device								
	0 = The VBUS voltage is below VA SESS VLD on the A or B-device								
bit 2	SESEND: B Session End Indicator bit								
	1 = The VBUS voltage is below VB_SESS_END (as defined in the "USB 2.0 Specification") on the B-device								
	0 = The VBUS voltage is above VB_SESS_END on the B-device								
	Unimplemented: Read as '0'								
bit 1	VBUSVD: A VBUS Valid Indicator bit								
bit 1 bit 0	•	VBUS Valid India	ator bit						
	VBUSVD: A V 1 = The VBU	s voltage is ab		S_VLD (as defin	ned in the <i>"US</i>	B 2.0 Specifi	<i>cation"</i>) on th		
	VBUSVD: A 1 = The VBU A-device	s voltage is ab	ove VA_VBUS	S_VLD (as defin		B 2.0 Specifi	<i>cation"</i>) on th		

Bit Field Value		Input Source						
		CLC1	CLC1 CLC2		CLC4			
DS4<2:0> 011		SDI1	SDI2	SDI3	Unimplemented			
	001	CLC2 Output	CLC1 Output	CLC4 Output	CLC3 Output			
DS3<2:0> 100		U1RX	U2RX	U3RX	U4RX			
011		SDO1	SDO2	SDO3	Unimplemented			
	001	CLC1 Output	CLC2 Output	CLC3 Output	CLC4 Output			
DS2<2:0> 011		U1TX	U2TX	U3TX	U4TX			
001		CLC2 Output	CLC1 Output	CLC4 Output	CLC3 Output			

TABLE 24-1: MODULE-SPECIFIC INPUT DATA SOURCES

REGISTER 24-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N
bit 15							bit 8


| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| G1D4T | G1D4N | G1D3T | G1D3N | G1D2T | G1D2N | G1D1T | G1D1N |
| bit 7 | | | | | • | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	G2D4T: Gate 2 Data Source 4 True Enable bit
	1 = The Data Source 4 signal is enabled for Gate 20 = The Data Source 4 signal is disabled for Gate 2
bit 14	G2D4N: Gate 2 Data Source 4 Negated Enable bit
	 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2
bit 13	G2D3T: Gate 2 Data Source 3 True Enable bit
	1 = The Data Source 3 signal is enabled for Gate 20 = The Data Source 3 signal is disabled for Gate 2
bit 12	G2D3N: Gate 2 Data Source 3 Negated Enable bit
	 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2
bit 11	G2D2T: Gate 2 Data Source 2 True Enable bit
	1 = The Data Source 2 signal is enabled for Gate 20 = The Data Source 2 signal is disabled for Gate 2
bit 10	G2D2N: Gate 2 Data Source 2 Negated Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2
bit 9	G2D1T: Gate 2 Data Source 1 True Enable bit
	 1 = The Data Source 1 signal is enabled for Gate 2 0 = The Data Source 1 signal is disabled for Gate 2

© 2015-2016 Microchip Technology Inc.

28.4 Measuring Die Temperature

The CTMU can be configured to use the A/D to measure the die temperature using dedicated A/D Channel 24. Perform the following steps to measure the diode voltage:

- The internal current source must be set for either 5.5 μ A (IRNG<1:0> = 0x2) or 55 μ A (IRNG<1:0> = 0x3).
- In order to route the current source to the diode, the EDG1STAT and EDG2STAT bits must be equal (either both '0' or both '1').
- The CTMREQ bit (AD1CON5<13>) must be set to '1'.
- The A/D Channel Select bits must be 24 (0x18) using a single-ended measurement.

The voltage of the diode will vary over temperature according to the graphs shown below (Figure 28-4). Note that the graphs are different, based on the magnitude of

the current source selected. The slopes are nearly linear over the range of -40°C to +100°C and the temperature can be calculated as follows:

EQUATION 28-2:

For 5.5 µA Current Source:

$$Tdie = \frac{710 \ mV - V diode}{1.8}$$

where Vdiode is in mV, Tdie is in °C

For 55 µA Current Source:

$$Tdie = \frac{760 \ mV - V diode}{1.55}$$

where *Vdiode* is in *mV*, *Tdie* is in °C

FIGURE 28-4: DIODE VOLTAGE (mV) vs. DIE TEMPERATURE (TYPICAL)

31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

32.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 32-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 32-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register, 'Wb', without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

DC CHARACTERISTICS			Standard Operating Conditions:2.00Operating temperature-40°				V to 3.6V (unless otherwise stated) $^{9}C \le TA \le +85^{\circ}C$ for Industrial		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
	VIL	Input Low Voltage ⁽³⁾							
DI10		I/O Pins with ST Buffer	Vss	_	0.2 VDD	V			
DI11		I/O Pins with TTL Buffer	Vss	_	0.15 VDD	V			
DI15		MCLR	Vss	—	0.2 VDD	V			
DI16		OSCI (XT mode)	Vss	_	0.2 VDD	V			
DI17		OSCI (HS mode)	Vss	_	0.2 VDD	V			
DI18		I/O Pins with I ² C Buffer	Vss	_	0.3 VDD	V			
DI19		I/O Pins with SMBus Buffer	Vss	_	0.8	V	SMBus is enabled		
	VIH	Input High Voltage ⁽³⁾							
DI20		I/O Pins with ST Buffer: with Analog Functions, Digital Only	0.8 Vdd 0.8 Vdd	_	VDD 5.5	V V			
DI21		I/O Pins with TTL Buffer: with Analog Functions, Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8	_	VDD 5.5	V V			
DI25		MCLR	0.8 Vdd	_	Vdd	V			
DI26		OSCI (XT mode)	0.7 Vdd	—	Vdd	V			
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V			
DI28		I/O Pins with I ² C Buffer: with Analog Functions, Digital Only	0.7 Vdd 0.7 Vdd	_	VDD 5.5	V V			
DI29		I/O Pins with SMBus Buffer: with Analog Functions, Digital Only	2.1 2.1		Vdd 5.5	V V	$2.5V \le V\text{PIN} \le V\text{DD}$		
DI30	ICNPU	CNx Pull-up Current	150		450	μA	VDD = 3.3V, VPIN = VSS		
DI30A	ICNPD	CNx Pull-Down Current	230		500	μA	VDD = 3.3V, VPIN = VDD		
	lı∟	Input Leakage Current ⁽²⁾							
DI50		I/O Ports	—	—	±1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance		
DI51		Analog Input Pins	—	—	±1	μΑ	$VSS \le VPIN \le VDD,$ pin at high-impedance		
DI55		MCLR	_	—	±1	μA	$VSS \leq VPIN \leq VDD$		
DI56		OSCI/CLKI	—	—	±1	μA	$V_{SS} \le V_{PIN} \le V_{DD},$ EC, XT and HS modes		

TABLE 33-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-1 for I/O pin buffer types.