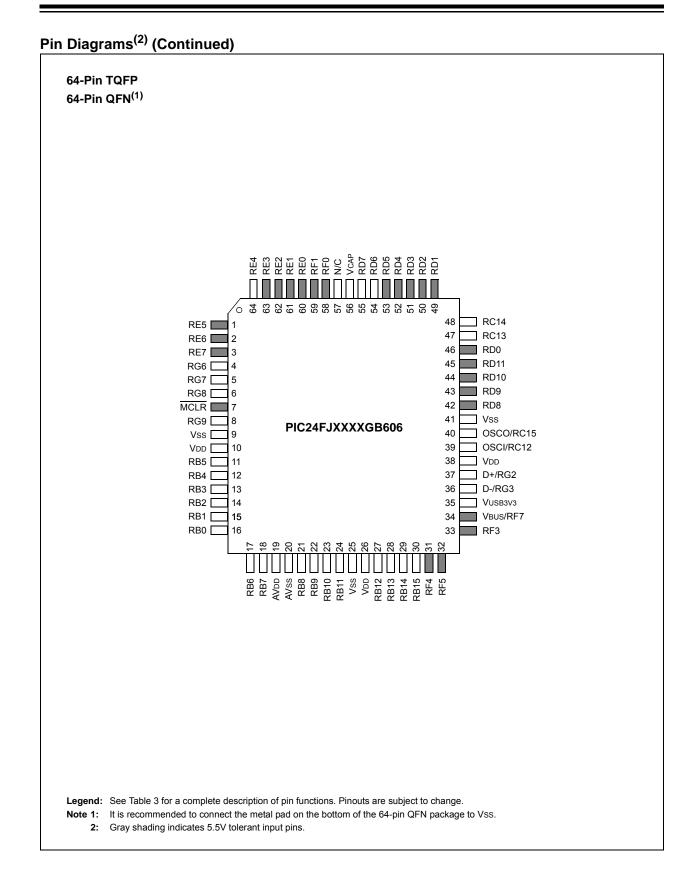


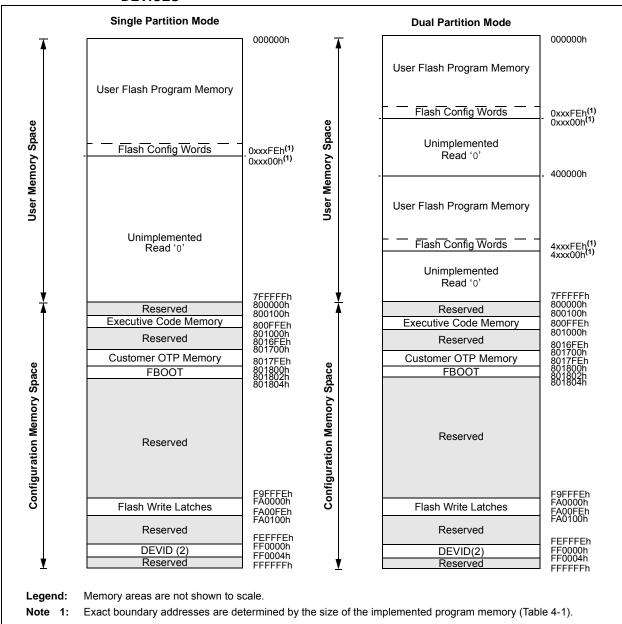
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga606-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ1024GA610/GB610 FAMILY DEVICES

TABLE 4-1: PROGRAM MEMORY SIZES AND BOUNDARIES⁽¹⁾

	Program Memory	y Upper Boundary (
Device	Single Partition	Dual Partition Mode		Write Blocks ⁽²⁾	Erase Blocks ⁽²⁾
	Mode	Active Partition	Inactive Partition		
PIC24FJ1024GX6XX	0ABFFEh (352K)	055FFEh (176K)	455FFEh (176K)	2752	344
PIC24FJ512GX6XX	055FFEh (176K)	02AFFEh (88k)	42AFFEh (88k)	1376	172
PIC24FJ256GX6XX	02AFFEh (88K)	0157FEh (44k)	4157FEh (44k)	688	86
PIC24FJ128GX6XX	015FFEh (44K)	00AFFEh (22k)	40AFFEh (22k)	352	44

Note 1: Includes Flash Configuration Words.

2: 1 Write Block = 128 Instruction Words; 1 Erase Block = 1024 Instruction Words.

File Name	Address	All Resets	File Name	Address	All Resets
SPI (CONTINUED))		CONFIGURABLE LC	GIC CELL (CLC) (C	ONTINUED)
SPI1BUFL	0400	0000	CLC3CONL	047C	0000
SPI1BUFH	0402	0000	CLC3CONH	047E	0000
SPI1BRGL	0404	xxxx	CLC3SELL	0480	0000
SPI1IMSK1	0408	0000	CLC3GLSL	0484	0000
SPI1IMSK2	040A	0000	CLC3GLSH	0486	0000
SPI1URDTL	040C	0000	CLC4CONL	0488	0000
SPI1URDTH	040E	0000	CLC4CONH	048A	0000
SPI2CON1	0410	0x00	CLC4SELL	048C	0000
SPI2CON2	0412	0000	CLC4GLSL	0490	0000
SPI2CON3	0414	0000	CLC4GLSH	0492	0000
SPI2STATL	0418	0028	l ² C		
SPI2STATH	041A	0000	I2C1RCV	0494	0000
SPI2BUFL	041C	0000	I2C1TRN	0496	00FF
SPI2BUFH	041E	0000	I2C1BRG	0498	0000
SPI2BRGL	0420	xxxx	I2C1CON1	049A	1000
SPI2IMSK1	0424	0000	I2C1CON2	049C	0000
SPI2IMSK2	0426	0000	I2C1STAT	049E	0000
SPI2URDTL	0428	0000	I2C1ADD	04A0	0000
SPI2URDTH	042A	0000	I2C1MSK	04A2	0000
SPI3CON1	042C	0x00	I2C2RCV	04A4	0000
SPI3CON2	042E	0000	I2C2TRN	04A6	00FF
SPI3CON3	0430	0000	I2C2BRG	04A8	0000
SPI3STATL	0434	0028	I2C2CON1	04AA	1000
SPI3STATH	0436	0000	I2C2CON2	04AC	0000
SPI3BUFL	0438	0000	I2C2STAT	04AE	0000
SPI3BUFH	043A	0000	I2C2ADD	04B0	0000
SPI3BRGL	043C	xxxx	I2C2MSK	04B2	0000
SPI3IMSK1	0440	0000	I2C3RCV	04B4	0000
SPI3IMSK2	0442	0000	I2C3TRN	04B6	00FF
SPI3URDTL	0444	0000	I2C3BRG	04B8	0000
SPI3URDTH	0446	0000	I2C3CON1	04BA	1000
CONFIGURABLE	LOGIC CELL (CLC)		I2C3CON2	04BC	0000
CLC1CONL	0464	0000	I2C3STAT	04BE	0000
CLC1CONH	0466	0000	I2C3ADD	04C0	0000
CLC1SELL	0468	0000	I2C3MSK	04C2	0000
CLC1GLSL	046C	0000	DMA		
CLC1GLSH	046E	0000	DMACON	04C4	0000
CLC2CONL	0470	0000	DMABUF	04C6	0000
CLC2CONH	0472	0000	DMAL	04C8	0000
CLC2SELL	0474	0000	DMAH	04CA	0000
CLC2GLSL	0478	0000	DMACH0	04CC	0000
CLC2GLSH	047A	0000	DMAINT0	04CE	0000

TABLE 4-8:SFR MAP: 0400h BLOCK

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

File Name	Address	All Resets	File Name	Address	All Resets	
I/O			PORTD (CONTINUED)			
PADCON	065E	0000	ANSD	06A6	FFFF	
IOCSTAT	0660	0000	IOCPD	06A8	0000	
PORTA ⁽¹⁾	1 1		IOCND	06AA	0000	
TRISA	0662	FFFF	IOCFD	06AC	0000	
PORTA	0664	0000	IOCPUD	06AE	0000	
LATA	0666	0000	IOCPDD	06B0	0000	
ODCA	0668	0000	PORTE		4	
ANSA	066A	FFFF	TRISE	06B2	FFFF	
IOCPA	066C	0000	PORTE	06B4	0000	
IOCNA	066E	0000	LATE	06B6	0000	
IOCFA	0670	0000	ODCE	06B8	0000	
IOCPUA	0672	0000	ANSE	06BA	FFFF	
IOCPDA	0674	0000	IOCPE	06BC	0000	
PORTB	· ·		IOCNE	06BE	0000	
TRISB	0676	FFFF	IOCFE	06C0	0000	
PORTB	0678	0000	IOCPUE	06C2	0000	
LATB	067A	0000	IOCPDE	06C4	0000	
ODCB	067C	0000	PORTF		1	
ANSB	067E	FFFF	TRISF	06C6	FFFF	
IOCPB	0680	0000	PORTF	06C8	0000	
IOCNB	0682	0000	LATF	06CA	0000	
IOCFB	0684	0000	ODCF	06CC	0000	
IOCPUB	0686	0000	IOCPF	06D0	0000	
IOCPDB	0688	0000	IOCNF	06D2	0000	
PORTC			IOCFF	06D4	0000	
TRISC	068A	FFFF	IOCPUF	06D6	0000	
PORTC	068C	0000	IOCPDF	06D8	0000	
LATC	068E	0000	PORTG			
ODCC	0690	0000	TRISG	06DA	FFFF	
ANSC	0692	FFFF	PORTG	06DC	0000	
IOCPC	0694	0000	LATG	06DE	0000	
IOCNC	0696	0000	ODCG	06E0	0000	
IOCFC	0698	0000	ANSG	06E2	FFFF	
IOCPUC	069A	0000	IOCPG	06E4	0000	
IOCPDC	069C	0000	IOCNG	06E6	0000	
PORTD	I		IOCFG	06E8	0000	
TRISD	069E	FFFF	IOCPUG	06EA	0000	
PORTD	06A0	0000	IOCPDG	06EC	0000	
LATD	06A2	0000				
ODCD	06A4	0000				

TABLE 4-10:SFR MAP: 0600h BLOCK

 $\label{eq:legend: Legend: Legend: Legend: Legend: Legend: Constant of the set of the s$

Note 1: PORTA and all associated bits are unimplemented in 64-pin devices and read as '0'.

File Name	Address	All Resets	File Name	Address	All Resets
A/D	·	·	PERIPHERAL PIN SELECT		
ADC1BUF0	0712	xxxx	RPINR0	0790	3F3F
ADC1BUF1	0714	xxxx	RPINR1	0792	3F3F
ADC1BUF2	0716	xxxx	RPINR2	0794	3F3F
ADC1BUF3	0718	xxxx	RPINR3	0796	3F3F
ADC1BUF4	071A	xxxx	RPINR4	0798	3F3F
ADC1BUF5	071C	xxxx	RPINR5	079A	3F3F
ADC1BUF6	071E	xxxx	RPINR6	079C	3F3F
ADC1BUF7	0720	xxxx	RPINR7	079E	3F3F
ADC1BUF8	0722	xxxx	RPINR8	07A0	003F
ADC1BUF9	0724	xxxx	RPINR11	07A6	3F3F
ADC1BUF10	0726	xxxx	RPINR12	07A8	3F3F
ADC1BUF11	0728	xxxx	RPINR14	07AC	3F3F
ADC1BUF12	072A	xxxx	RPINR15	07AE	003F
ADC1BUF13	072C	xxxx	RPINR17	07B2	3F00
ADC1BUF14	072E	xxxx	RPINR18	07B4	3F3F
ADC1BUF15	0730	xxxx	RPINR19	07B6	3F3F
ADC1BUF16	0732	xxxx	RPINR20	07B8	3F3F
ADC1BUF17	0734	xxxx	RPINR21	07BA	3F3F
ADC1BUF18	0736	xxxx	RPINR22	07BC	3F3F
ADC1BUF19	0738	xxxx	RPINR23	07BE	3F3F
ADC1BUF20	073A	xxxx	RPINR25	07C2	3F3F
ADC1BUF21	073C	xxxx	RPINR27	07C6	3F3F
ADC1BUF22	073E	xxxx	RPINR28	07C8	3F3F
ADC1BUF23	0740	xxxx	RPINR29	07CA	003F
ADC1BUF24	0742	xxxx	RPOR0	07D4	0000
ADC1BUF25	0744	xxxx	RPOR1	07D6	0000
AD1CON1	0746	0000	RPOR2	07D8	0000
AD1CON2	0748	0000	RPOR3	07DA	0000
AD1CON3	074A	0000	RPOR4	07DC	0000
AD1CHS	074C	0000	RPOR5	07DE	0000
AD1CSSH	074E	0000	RPOR6	07E0	0000
AD1CSSL	0750	0000	RPOR7	07E2	0000
AD1CON4	0752	0000	RPOR8	07E4	0000
AD1CON5	0754	0000	RPOR9	07E6	0000
AD1CHITH	0756	0000	RPOR10	07E8	0000
AD1CHITL	0758	0000	RPOR11	07EA	0000
AD1CTMENH	075A	0000	RPOR12	07EC	0000
AD1CTMENL	075C	0000	RPOR13	07EE	0000
AD1RESDMA	075E	0000	RPOR14	07F0	0000
NVM			RPOR15	07F2	0000
NVMCON	0760	0000			
NVMADR	0762	xxxx			
NVMADRU	0764	00xx			
NVMKEY	0766	0000			

TABLE 4-11: SFR MAP: 0700h BLOCK

EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB XC16 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory location to	be written
NVMADRU = progAddr>>16;	// Initialize PM Page Boundary SFR
NVMADR = progAddr & 0xFFFF;	// Initialize lower word of address
$NVMCON = 0 \times 4003;$	// Initialize NVMCON
asm("DISI #5");	// Block all interrupts with priority <7
	// for next 5 instructions
builtin_write_NVM();	// check function to perform unlock
	// sequence and set WR

EXAMPLE 6-2: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7 ; for next 5 instructions
MOV.B	#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV.B	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the OxAA key
BSET	NVMCON, #WR	; Start the programming sequence
NOP		; Required delays
NOP		
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 11-20: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
bit 7		•			•	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 11-21: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
						bit 8
U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
						bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		ared	x = Bit is unknown	
		U-0 R/W-1 — OCFAR5 — OCFAR5 bit W = Writable	OCFBR5 OCFBR4 U-0 R/W-1 R/W-1 — OCFAR5 OCFAR4 bit W = Writable bit	OCFBR5 OCFBR4 OCFBR3 U-0 R/W-1 R/W-1 R/W-1 — OCFAR5 OCFAR4 OCFAR3 bit W = Writable bit U = Unimplem	OCFBR5 OCFBR4 OCFBR3 OCFBR2 U-0 R/W-1 R/W-1 R/W-1 — OCFAR5 OCFAR4 OCFAR3 OCFAR2 bit W = Writable bit U = Unimplemented bit, read	OCFBR5 OCFBR4 OCFBR3 OCFBR2 OCFBR1 U-0 R/W-1 R/W-1 R/W-1 R/W-1 — OCFAR5 OCFAR4 OCFAR3 OCFAR2 OCFAR1 bit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-14 Unimplemented: Read as '0'

bit 13-8 OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

16.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD<3:0> = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 16-1).

T32 (CCPxCON1L<5>)	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

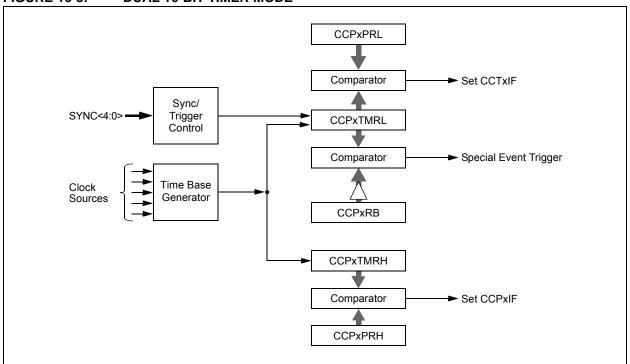
TABLE 16-1: TIMER OPERATION MODE

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses the CCPxTMRL and CCPxPRL registers. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCPx modules. It can also use the SYNC<4:0> bits signal generated by other modules.

The secondary timer uses the CCPxTMRH and CCPxPRH registers. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output Sync/Trigger signal like the primary time base. In Dual Timer mode, the Secondary Timer Period register, CCPxPRH, generates the MCCPx Compare Event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments

FIGURE 16-3: DUAL 16-BIT TIMER MODE


by one. This mode provides a simple timer function when it is important to track long time periods. Note that the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

16.2.1 SYNC AND TRIGGER OPERATION

In both 16-bit and 32-bit modes, the timer can also function in either Synchronization ("Sync") or Trigger mode operation. Both use the SYNC<4:0> bits (CCPxCON1H<4:0>) to determine the input signal source. The difference is how that signal affects the timer.

In Sync operation, the Timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H<7>) is cleared. The SYNC<4:0> bits can have any value except '11111'.

In Trigger operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a Trigger event as long as the CCPTRIG bit (CCPxSTATL< 7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the Trigger event, reset the timer and hold it at zero until another Trigger event occurs. On PIC24FJ1024GA610/GB610 family devices, Trigger operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).

© 2015-2016 Microchip Technology Inc.

16.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCPx or SCCPx modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

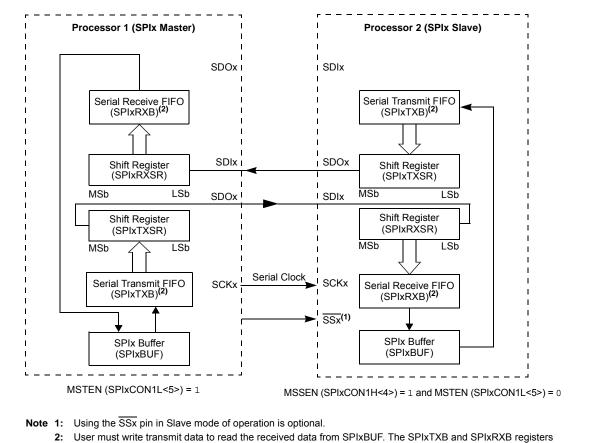
On the PIC24FJ1024GA610/GB610 family of devices, only the CTMU discharge Trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	х	xxxx	Auxiliary Output Disabled	No Output
01	0	0000	Time Base Modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare Modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11		1111		Output Compare Signal
01	1	xxxx	Input Capture Modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 16-4: AUXILIARY OUTPUT

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CCPON	—	CCPSIDL	CCPSLP	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0				
bit 7							bit C				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15	CCPON: CC	Px Module Ena	ole bit								
	1 = Module is	s enabled with	an operating m	node specified b	by the MOD<3:	0> control bits					
	0 = Module is										
bit 14	•	ted: Read as '									
bit 13		CCPSIDL: CCPx Stop in Idle Mode Bit									
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 										
bit 12		0 = Continues module operation in Idle mode CCPSLP: CCPx Sleep Mode Enable bit									
	1 = Module continues to operate in Sleep modes										
	0 = Module does not operate in Sleep modes										
bit 11	TMRSYNC: Time Base Clock Synchronization bit										
	1 = Module time base clock is synchronized to the internal system clocks; timing restrictions apply										
	0 = Module time base clock is not synchronized to the internal system clocks										
bit 10-8	CLKSEL<2:0>: CCPx Time Base Clock Select bits										
	111 = TCKIA pin										
		110 = TCKIB pin 101 = PLL clock									
	100 = 2x peripheral clock										
	010 = SOSC clock										
	001 = Reference clock output 000 = System clock										
	For MCCP1 and SCCP4:										
	011 = CLC1 output										
	For MCCP2 and SCCP5:										
	011 = CLC2 output										
	For MCCP3 and SCCP6: 011 = CLC3 output										
	For SCCP7: 011 = CLC4 output										
bit 7-6	TMRPS<1:0>: Time Base Prescale Select bits										
	11 = 1:64 Prescaler										
		10 = 1:16 Prescaler									
	01 = 1:4 Pres										
hit 5	00 = 1:1 Pres		•t hit								
bit 5	T32: 32-Bit Ti	ime Base Selec		edge output co	mpare or input	canture function	n an				

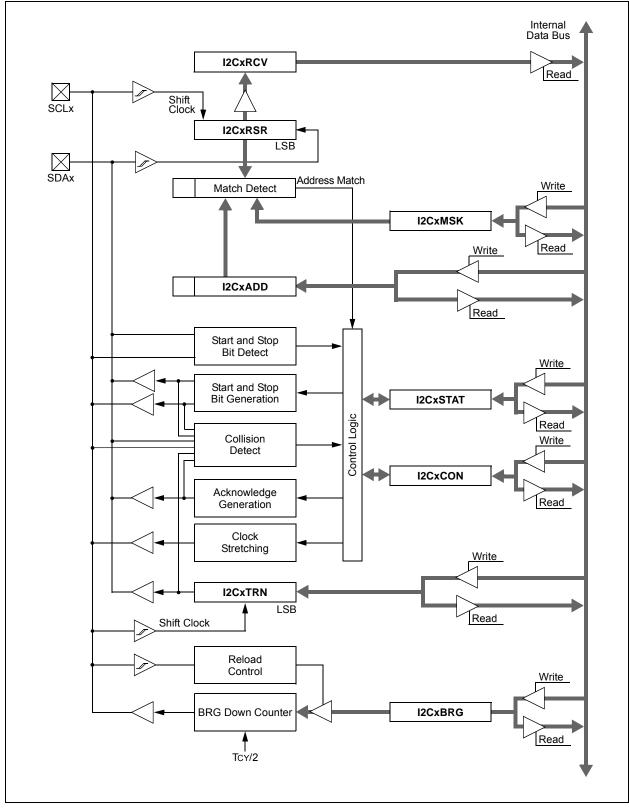
REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS


REGISTER '	16-6: CCPx	CON3H: CCI	Px CONTRO	3 HIGH RE	GISTERS		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
OETRIG	OSCNT2	OSCNT1	OSCNT0		OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15	1 = For Trigg		IGEN = 1): Mo	odule does not	drive enabled o	output pins unti	l triggered
bit 14-12	 0 = Normal output pin operation OSCNT<2:0>: One-Shot Event Count bits 111 = Extends one-shot event by 7 time base periods (8 time base periods total) 100 = Extends one-shot event by 6 time base periods (7 time base periods total) 101 = Extends one-shot event by 5 time base periods (6 time base periods total) 100 = Extends one-shot event by 4 time base periods (5 time base periods total) 101 = Extends one-shot event by 3 time base periods (4 time base periods total) 101 = Extends one-shot event by 2 time base periods (3 time base periods total) 101 = Extends one-shot event by 1 time base periods (2 time base periods total) 001 = Does not extend one-shot Trigger event 						
bit 11	Unimplemented: Read as '0'						
bit 10-8	OUTM<2:0>: PWMx Output Mode Control bits ⁽¹⁾ 111 = Reserved 110 = Output Scan mode 101 = Brush DC Output mode, forward 100 = Brush DC Output mode, reverse 011 = Reserved 010 = Half-Bridge Output mode 001 = Push-Pull Output mode 000 = Steerable Single Output mode						
bit 7-6	Unimplement	ted: Read as 'o)'				
bit 5	Unimplemented: Read as '0' POLACE: CCPx Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit 1 = Output pin polarity is active-low 0 = Output pin polarity is active-high						
bit 4	POLBDF: CCPx Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit ⁽¹⁾ 1 = Output pin polarity is active-low						
bit 3-2	 0 = Output pin polarity is active-high PSSACE<1:0>: PWMx Output Pins, OCMxA, OCMxC and OCMxE, Shutdown State Control bits 11 = Pins are driven active when a shutdown event occurs 10 = Pins are driven inactive when a shutdown event occurs 0x = Pins are tri-stated when a shutdown event occurs 						
bit 1-0	PSSBDF<1:0	>: PWMx Outp	ut Pins, OCMx	B, OCMxD, an	d OCMxF. Shu	itdown State Co	ontrol bits ⁽¹⁾
	11 = Pins are 10 = Pins are	driven active v driven inactive in a high-impe	/hen a shutdov when a shutdo	vn event occurs own event occu	s urs		

REGISTER 16-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

Note 1: These bits are implemented in MCCPx modules only.

PIC24FJ1024GA610/GB610 FAMILY



are memory-mapped to SPIxBUF.

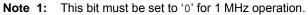

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 18-1: I2Cx BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_			—	_	_	_					
bit 15		·					bita					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	PCIE	SCIE	BOEN	SDAHT ⁽¹⁾	SBCDE	AHEN	DHEN					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own					
bit 15-7	Unimplemen	ted: Read as '	0'									
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit ((I ² C Slave mode	only)							
		1 = Enables interrupt on detection of Stop condition										
	0 = Stop detection interrupts are disabled											
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)											
	 Enables interrupt on detection of Start or Restart conditions Start detection interrupts are disabled 											
bit 4	BOEN: Buffer Overwrite Enable bit (I^2C Slave mode only)											
		 1 = I2CxRCV is updated and an ACK is generated for a received address/data byte, ignoring the state 										
	of the I2COV bit only if RBF bit = 0											
		' is only update		∕ is clear								
bit 3	SDAHT: SDAx Hold Time Selection bit ⁽¹⁾											
	1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx											
h # 0	0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx SPCDE: Slave Mode Rue Colligion Detect Enclose hit $(l^2 C Slave mode only)$											
bit 2	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only) If, on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the											
	BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transm											
	sequences.											
	1 = Enables slave bus collision interrupts											
L:1 4	0 = Slave bus collision interrupts are disabled											
bit 1	AHEN: Address Hold Enable bit (I ² C Slave mode only)											
	1 = Following the 8th falling edge of SCLx for a matching received address byte; SCLREL b (I2CxCONL<12>) will be cleared and SCLx will be held low											
	0 = Address holding is disabled											
bit 0	DHEN: Data I	Hold Enable bit	t (I ² C Slave m	ode only)								
	-	-	-	for a received da	ata byte; slave	hardware clears	s the SCLRE					
	•	,		bit (I2CxCONL<12>) and SCLx is held low 0 = Data holding is disabled								

REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

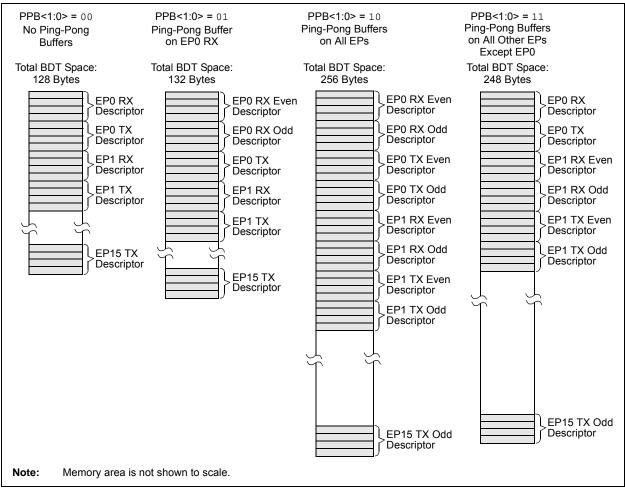
20.2 USB Buffer Descriptors and the BDT

Endpoint buffer control is handled through a structure called the Buffer Descriptor Table (BDT). This provides a flexible method for users to construct and control endpoint buffers of various lengths and configurations.

The BDT can be located in any available 512-byte, aligned block of data RAM. The BDT Pointer (U1BDTP1) contains the upper address byte of the BDT and sets the location of the BDT in RAM. The user must set this pointer to indicate the table's location.

The BDT is composed of Buffer Descriptors (BDs) which are used to define and control the actual buffers in the USB RAM space. Each BD consists of two 16-bit, "soft" (non-fixed-address) registers, BDnSTAT and BDnADR, where n represents one of the 64 possible BDs (range of 0 to 63). BDnSTAT is the status register for BDn, while BDnADR specifies the starting address for the buffer associated with BDn.

Note: Since BDnADR is a 16-bit register, only the first 64 Kbytes of RAM can be accessed by the USB module.


Depending on the endpoint buffering configuration used, there are up to 64 sets of Buffer Descriptors, for a total of 256 bytes. At a minimum, the BDT must be at least 8 bytes long. This is because the *"USB 2.0 Specification"* mandates that every device must have Endpoint 0 with both input and output for initial setup.

Endpoint mapping in the BDT is dependent on three variables:

- Endpoint number (0 to 15)
- Endpoint direction (RX or TX)
- Ping-pong settings (U1CNFG1<1:0>)

Figure 20-7 illustrates how these variables are used to map endpoints in the BDT.

In Host mode, only Endpoint 0 Buffer Descriptors are used. All transfers utilize the Endpoint 0 Buffer Descriptor and Endpoint Control register (U1EP0). For received packets, the attached device's source endpoint is indicated by the value of ENDPT<3:0> in the USB Status register (U1STAT<7:4>). For transmitted packets, the attached device's destination endpoint is indicated by the value written to the USB Token register (U1TOK).

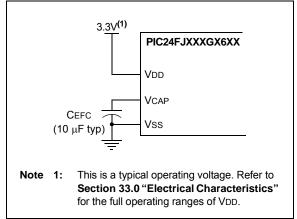
FIGURE 20-7: BDT MAPPING FOR ENDPOINT BUFFERING MODES

REGISTER 25-4: AD1CON4: A/D CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15		·		·			bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	I	DMABL<2:0>(1)
bit 7		·		bi			bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, rea		as '0'	
-n = Value at POR		alue at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unkn			nown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 DMABL<2:0>: DMA Buffer Size Select bits⁽¹⁾
 - 111 = Allocates 128 words of buffer to each analog input
 - 110 = Allocates 64 words of buffer to each analog input
 - 101 = Allocates 32 words of buffer to each analog input
 - 100 = Allocates 16 words of buffer to each analog input
 - 011 = Allocates 8 words of buffer to each analog input
 - 010 = Allocates 4 words of buffer to each analog input
 - 001 = Allocates 2 words of buffer to each analog input
 - 000 = Allocates 1 word of buffer to each analog input
- **Note 1:** The DMABL<2:0> bits are only used when AD1CON1<1> = 1 and AD1CON1<12> = 0; otherwise, their value is ignored.


30.3 On-Chip Voltage Regulator

All PIC24FJ1024GA610/GB610 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ1024GA610/ GB610 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

This regulator is always enabled. It provides a constant voltage (1.8V nominal) to the digital core logic, from a VDD of about 2.1V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then, the regulator output follows VDD with a typical voltage drop of 300 mV.

A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 30-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 33.1 "DC Characteristics"**.

FIGURE 30-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

30.3.1 ON-CHIP REGULATOR AND POR

The voltage regulator takes approximately 10 μ s for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON<8>) and the WDTWIN<1:0> Configuration bits (FWDT<9:8>). Refer to **Section 33.0 "Electrical Characteristics"** for more information on TVREG.

Note:	For more information, see Section 33.0
	"Electrical Characteristics". The infor-
	mation in this data sheet supersedes the
	information in the FRM.

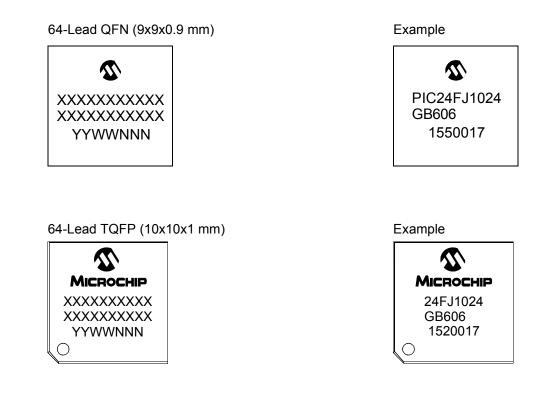
30.3.2 VOLTAGE REGULATOR STANDBY MODE

The on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON<8>). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

30.3.3 LOW-VOLTAGE/RETENTION REGULATOR

When in Sleep mode, PIC24FJ1024GA610/GB610 family devices may use a separate low-power, low-voltage/retention regulator to power critical circuits. This regulator, which operates at 1.2V nominal, main-tains power to data RAM and the RTCC while all other core digital logic is powered down. The low-voltage/retention regulator is described in more detail in **Section 10.2.4 "Low-Voltage Retention Regulator"**.

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		Clock	Paramete	ers			
AD50	TAD	A/D Clock Period	278		_	ns	
AD51	tRC	A/D Internal RC Oscillator Period	_	250	_	ns	
		Conve	ersion Ra	te			
AD55	tCONV	SAR Conversion Time, 12-Bit Mode		14		Tad	
AD55A		SAR Conversion Time, 10-Bit Mode	-	12	_	Tad	
AD56	FCNV	Throughput Rate	_		200	ksps	AVDD > 2.7V ⁽²⁾
AD57	tSAMP	Sample Time	_	1	_	Tad	(Note 1)
	Clock Synchronization						
AD61	tpss	Sample Start Delay from Setting Sample bit (SAMP)	1.5		2.5	Tad	


TABLE 33-26: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: Throughput rate is based on AD55 + AD57 + AD61 and the period of TAD.

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

Legen	d: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 2015-2016 Microchip Technology Inc.

NOTES: