

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gb606-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams⁽¹⁾ (Continued)

,	1	2	3	4	5	6	7	8	9	10	11
A	O RE4	RE3	R G13	RE0	RG0	RF1	⊖ N/C	⊖ N/C	RD12	RD2	RD1
в	O N/C	RG15	RE2	RE1	O RA7	RF0	O VCAP	RD5	RD3	O Vss	O RC14
с	RE6	O VDD	RG12	RG14	O RA6	O N/C	O RD7	RD4	O N/C	O RC13	RD11
D	RC1	RE7	RE5	O N/C	O N/C	O N/C	O RD6	RD13	RD0	O N/C	RD10
E	O RC4	RC3	O RG6	RC2	⊖ N/C	RG1	O N/C	RA15	RD8	RD9	RA14
F	MCLR	O RG8	O RG9	O RG7	O Vss	O N/C	O N/C		O RC12	O Vss	O RC15
G	RE8	O RE9	RA0	O N/C		O Vss	O Vss	O N/C	RA5	RA3	RA4
н	O RB5	O RB4	O N/C	O N/C	O N/C		⊖ N/C	UBUS/RF7	UUSB3V3	O D+/RG2	RA2
J	O RB3	O RB2	O RB7	O AVDD	O RB11	RA1	O RB12	⊖ N/C	O N/C	RF8	O D-/RG3
к	O RB1	O RB0	O RA10	O RB8	∩ N/C	RF12	O RB14		RD15	RF3	RF2
L	O RB6	O RA9	O AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5
	ole 7 for a c										

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
PMA8	32	32	50	50	L11	L11	I/O	DIG/ ST/TTL	Parallel Master Port Address (Demultiplexed Master mode) or
PMA9	31	31	49	49	L10	L10	I/O	DIG/ ST/TTL	Address/Data (Multiplexed Master modes)
PMA10	28	28	42	42	L7	L7	I/O	DIG/ ST/TTL	
PMA11	27	27	41	41	J7	J7	I/O	DIG/ ST/TTL	
PMA12	24	24	35	35	J5	J5	I/O	DIG/ ST/TTL	
PMA13	23	23	34	34	L5	L5	I/O	DIG/ ST/TTL	
PMA16	_	_	95	95	C4	C4	0	DIG	
PMA17	_		92	92	B5	B5	0	DIG	
PMA18	_		40	40	K6	K6	0	DIG	
PMA19	—		19	19	G2	G2	0	DIG	
PMA2/ PMALU	8	8	14	14	F3	F3	0	DIG	Parallel Master Port Address<2>/ Address Latch Upper
PMA3	6	6	12	12	F2	F2	0	DIG	Parallel Master Port Address
PMA4	5	5	11	11	F4	F4	0	DIG	
PMA5	4	4	10	10	E3	E3	0	DIG	
PMA20	_	_	59	59	G10	G10	0	DIG	Parallel Master Port Address
PMA21	—	_	60	60	G11	G11	0	DIG	(Demultiplexed Master mode) or
PMA22	_	—	66	66	E11	E11	0	DIG	Address/Data (Multiplexed Master modes)
PMACK1	50	50	77	77	A10	A10	I	ST/TTL	Parallel Master Port Acknowledge Input 1
PMACK2	43	43	69	69	E10	E10	I	ST/TTL	Parallel Master Port Acknowledge Input 2
PMBE0	51	51	78	78	B9	B9	0	DIG	Parallel Master Port Byte Enable 0 Strobe
PMBE1	-	—	67	67	E8	E8	0	DIG	Parallel Master Port Byte Enable 1 Strobe
PMCS1	_	—	18	18	G1	G1	0	DIG	Parallel Master Port Chip Select 1 Strobe
PMCS2	_	—	9	9	E1	E1	0	DIG	Parallel Master Port Chip Select 2 Strobe
PMPCS1	-	—	58	58	H11	H11	0	DIG	Parallel Master Port Chip Select 1

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend:

TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

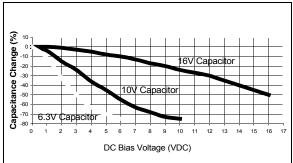
 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/ +80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

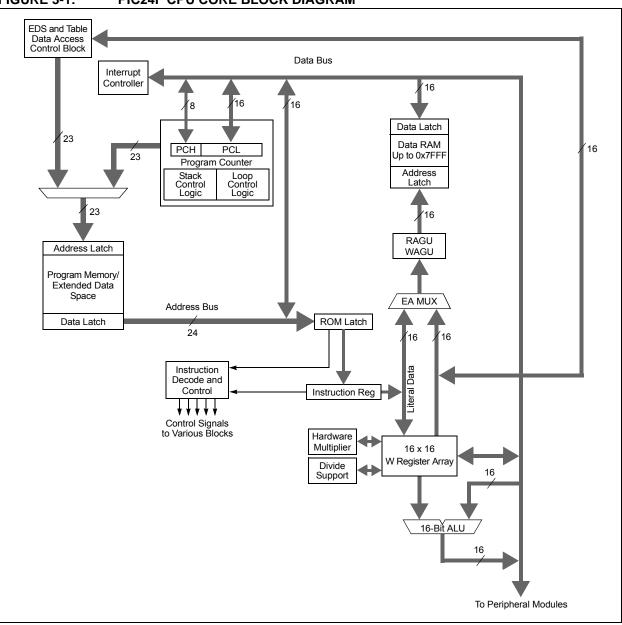
The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16V for the 1.8V core voltage. Suggested capacitors are shown in Table 2-1.


2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGECx/PGEDx), programmed into the device, match the physical connections for the ICSP to the Microchip debugger/ emulator tool.

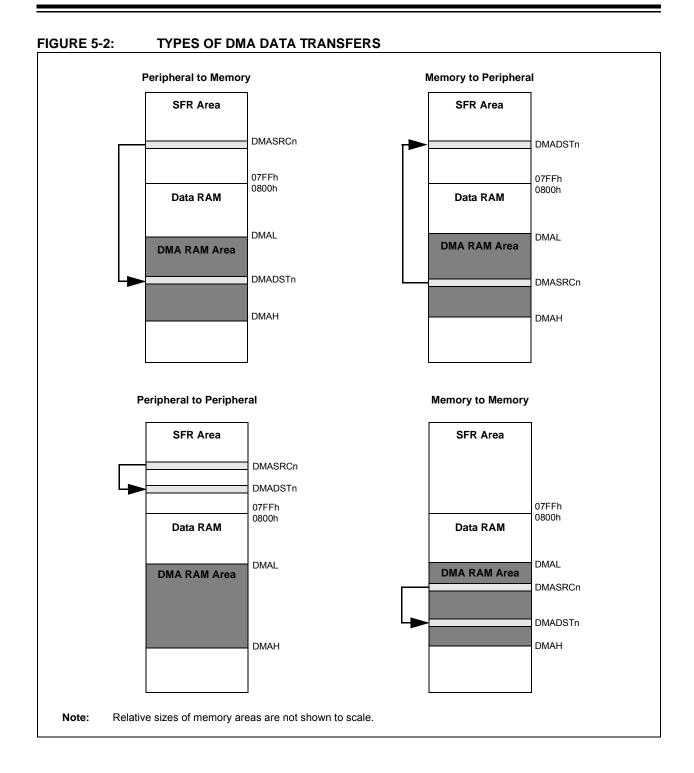

For more information on available Microchip development tools connection requirements, refer to **Section 31.0 "Development Support"**.

FIGURE 3-1: PIC24F CPU CORE BLOCK DIAGRAM

TABLE 3-1: CI	PU CORE REGISTERS
---------------	-------------------

Register(s) Name	Description			
W0 through W15	Working Register Array			
PC	23-Bit Program Counter			
SR	ALU STATUS Register			
SPLIM	Stack Pointer Limit Value Register			
TBLPAG	Table Memory Page Address Register			
RCOUNT	REPEAT Loop Counter Register			
CORCON	CPU Control Register			
DISICNT	Disable Interrupt Count Register			
DSRPAG	Data Space Read Page Register			
DSWPAG	Data Space Write Page Register			

6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user to erase blocks of eight rows (1024 instructions) at a time and to program one row at a time. It is also possible to program two instruction word blocks.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 128 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set the Table Pointer to point to the programming latches, do a series of TBLWT instructions to load the buffers and set the NVMADRU/NVMADR registers to point to the destination. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the Table Write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an onboard bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

6.5 Control Registers

There are four SFRs used to read and write the program Flash memory: NVMCON, NVMADRU, NVMADR and NVMKEY.

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 6.6 "Programming Operations"** for further details.

The NVMADRU/NVMADR registers contain the upper byte and lower word of the destination of the NVM write or erase operation. Some operations (chip erase, Inactive Partition erase) operate on fixed locations and do not require an address value.

6.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

In Dual Partition mode, programming or erasing the Inactive Partition will not stall the processor; the code in the Active Partition will still execute during the programming operation.

It is important to mask interrupts for a minimum of 5 instruction cycles during Flash programming. This can be done in Assembly using the DISI instruction (see Example 6-1).

DANCO							
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-0
ROEN		ROSIDL	ROOUT	ROSLP	—	ROSWEN	ROACTIVE
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_	_	ROSEL3	ROSEL2	ROSEL1	ROSEL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Reference	ence Oscillator e Oscillator mo e Oscillator is d	dule is enabled	1			
bit 14	Unimplement	ted: Read as '	0'				
bit 13	ROSIDL: REF	O Stop in Idle	Mode bit				
		ues module op s module opera		levice enters Idl de	e mode		
bit 12	ROOUT: Refe	erence Clock O	utput Enable b	bit			
		e clock is driver e clock is not d		•			
bit 11	ROSLP: Refe	rence Oscillato	or Output Stop	in Sleep bit			
		e Oscillator cor e Oscillator is d					
bit 10	Unimplement	ted: Read as '	0'				
bit 9	ROSWEN: Re	eference Clock	RODIV<14:0>	/ROTRIM<0:8>	Switch Enable	e bit	
		ock divider; cloo der switch has		ching is currently	y in progress		
bit 8	ROACTIVE: F	Reference Cloc	k Request Sta	tus bit			
				not change the pdate the REF		s)	
bit 7-4	Unimplement	ted: Read as '	0'				
bit 3-0	ROSEL<3:0>	: Reference Cl	ock Source Se	elect bits			
	1111-1001 = 1000 = REFI 0111 = Reser 0110 = PLL (0101 = SOSC 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = Peript 0000 = Oscilla	pin ved 4/6/8x or 96 MI C heral clock	Hz)				

REGISTER 9-8: REFOCONL: REFERENCE OSCILLATOR CONTROL REGISTER LOW

REGISTER 16-7:	CCPxSTATL: CCPx STATUS REGISTER LOW	

U-0	U-0	U-0	U-0	U-0	W-0	U-0	U-0
_				_	ICGARM		_
bit 15							bit 8
	14/4 0	14/4 0	D /0.0	D (0, 0	D /0.0	D /0.0	D /0.0
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7							bit
Legend:		C = Clearable	e bit	W = Writable	bit		
R = Readab	le bit	W1 = Write '1	' Only bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	It POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-11	Unimplemer	nted: Read as '	0'				
bit 10		put Capture Ga					
		' to this location = 01 or 10; real		nput Capture	x module for a	one-shot gatin	ig event whe
bit 9-8	Unimplemer	nted: Read as '	0'				
bit 7	CCPTRIG: C	CPx Trigger St	atus bit				
		as been triggere		0			
		as not been trig	-	eld in Reset			
bit 6		Px Trigger Set F	-				(- 1)
L:1 F				when TRIGEN	I = 1 (location al	ways reads as	·0 [·]).
bit 5		Px Trigger Clea	•	Triggor whon ⁻		ation alwaya r	
bit 4		Px Auto-Shutdo			TRIGEN = 1 (loc	alion always r	eaus as 0).
DIL 4					n the shutdown s		
		utputs operate r				hate	
bit 3	SCEVT: Sing	gle Edge Compa	are Event Statu	s bit			
	0	edge compare					
	-	edge compare		occurred			
bit 2	-	Capture x Disa					
		ו Input Capture ו Input Capture	• • •	•	ate a capture eve	ent	
bit 1		Capture x Buffe		-	event		
		ut Capture x FIF					
		ut Capture x FIF					
bit 0	ICBNE: Inpu	t Capture x Buf	fer Status bit				
bit o	1 = Input Ca	apture x buffer l apture x buffer i	has data availa	ble			

REGISTER 19-5: UxBRG: UARTx BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BRG	6<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.00-0	1000-0	10,00-0		G<7:0>	10.00-0	10.00-0	1000-0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				d as '0'			
-n = Value at I	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 BRG<15:0>: Baud Rate Divisor bits

REGISTER 19-6: UxADMD: UARTx ADDRESS DETECT AND MATCH REGISTER

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ADMMASK7 | ADMMASK6 | ADMMASK5 | ADMMASK4 | ADMMASK3 | ADMMASK2 | ADMMASK1 | ADMMASK0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ADMADDR7 | ADMADDR6 | ADMADDR5 | ADMADDR4 | ADMADDR3 | ADMADDR2 | ADMADDR1 | ADMADDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	ADMMASK<7:0>: ADMADDR<7:0> (UxADMD<7:0>) Masking bits
	For ADMMASKx:
	1 = ADMADDRx is used to detect the address match
	0 = ADMADDRx is not used to detect the address match
bit 7-0	ADMADDR<7:0>: Address Detect Task Off-Load bits
	Used with the ADMMASK<7:0> bits (UxADMD<15:8> to off-load the task of detecting the address character from the processor during Address Detect mode.

20.7.2 USB INTERRUPT REGISTERS

REGISTER 20-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15 bit 8							

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	K = Write '1' to Clear bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state is detected
	0 = No ID state change is detected
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	 1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from the last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS is detected
	0 = No activity on the D+/D- lines or VBUS is detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the <i>"USB 2.0 Specification"</i>) ⁽¹⁾ 0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	1 = VBUS change on B-device is detected; VBUS has crossed VB_SESS_END (as defined in the "USB 2.0 Specification") ⁽¹⁾
	0 = VBUS has not crossed VB_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF: A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the "USB 2.0 Specification") ⁽¹⁾
	0 = No VBUS change on A-device is detected
Note 1:	VBUS threshold crossings may either be rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits, at the moment of the write, to become cleared.

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	
IBF	IBOV	—	—	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾	
bit 15						•	bit 8	
D (1100				<u> </u>		D (1100		
R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC	
OBE	OBUF	—	_	OB3E	OB2E	OB1E	OB0E	
bit 7							bit	
Legend:		HS = Hardware	e Settable bit	HSC = Hardw	are Settable/C	learable bit		
R = Readable	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 14	 0 = Some or IBOV: Input B 1 = A write at 	Buffer Overflow Stempt to a full li	le Input Buffer Status bit	registers are er ccurred (must b		oftware)		
	0 = No overfl							
bit 13-12	•	ted: Read as '0						
bit 11-8	1 = Input buff	put Buffer x Sta fer contains unr fer does not cor	ead data (read	ling the buffer w	ill clear this bit)		
bit 7	1 = All readal	Buffer Empty Sible Output Buffer all of the readal	er registers are	empty fer registers are	full			
bit 6	OBUF: Output Buffer Underflow Status bit							
	1 = A read or 0 = No under		empty Output	Buffer register	(must be cleare	ed in software)		
bit 5-4	Unimplemen	ted: Read as '0	,					
h:+ 0 0	-	Output Buffer >		' bit				
bit 3-0		•			clear this bit)			

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1, or Byte 2 and 3) get cleared, even on byte reading.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0	
bit 15 bit 8								
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkn	iown	

REGISTER 22-16: TSATIMEH: RTCC TIMESTAMP A TIME REGISTER (HIGH)⁽¹⁾

bit 15-14	Unimplemented: Read as '0'
bit 13-12	HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits
	Contains a value from 0 to 2.
bit 11-8	HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits
	Contains a value from 0 to 5.
bit 3-0	MINONE<3:0>: Binary Coded Decimal Value of Minutes '1' Digit bits
	Contains a value from 0 to 9.

Note 1: If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

23.1 User Interface

23.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the 32^{nd} order, using up to 32 bits.

Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit and the other a 32-bit equation.

EQUATION 23-1: 16-BIT, 32-BIT CRC POLYNOMIALS

X16 + X12 + X5 + 1

and

 $\begin{array}{c} X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + \\ X8 + X7 + X5 + X4 + X2 + X + 1 \end{array}$

To program these polynomials into the CRC generator, set the register bits, as shown in Table 23-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The '0' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32, it is assumed that the 32^{nd} bit will be used. Therefore, the X<31:1> bits do not have the 32^{nd} bit.

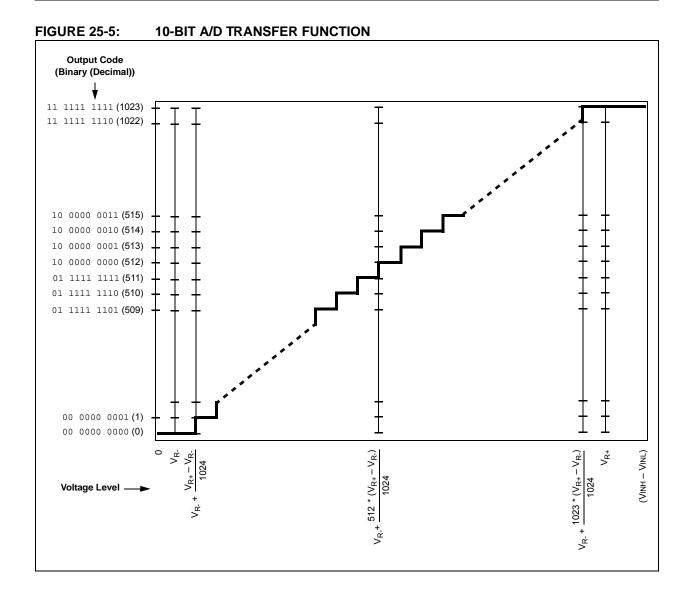
23.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between 1 and 32 bits using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is 4 words deep. When the DWIDTHx bits are between 15 and 8, the FIFO is 8 words deep. When the DWIDTHx bits are less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is 1 byte. For example, if the DWIDTHx bits are 5, then the size of the data is DWIDTH<4:0> + 1 or 6. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, the MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTHx bits are 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit (CRCCON1<4>) is set and the value of the VWORDx bits is greater than zero.


Each word is copied out of the FIFO into a buffer register, which decrements the VWORDx bits. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORDx bits reach zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

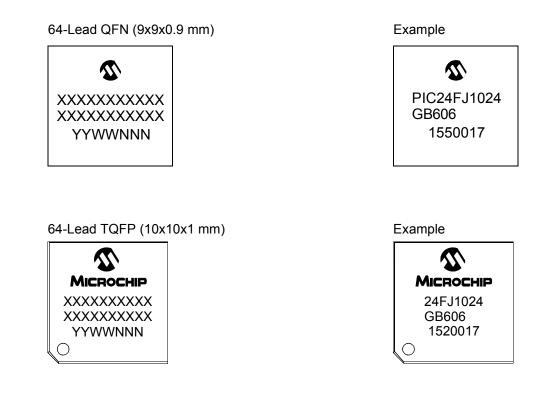
When the VWORDx bits reach the maximum value for the configured value of the DWIDTHx bits (4, 8 or 16), the CRCFUL bit (CRCCON1<7>) becomes set. When the VWORDx bits reach zero, the CRCMPT bit (CRCCON1<6>) becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

TABLE 23-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS

CRC Control Bits	Bit Values					
	16-Bit Polynomial	32-Bit Polynomial				
PLEN<4:0>	01111	11111				
X<31:16>	0000 0000 0000 0001	0000 0100 1100 0001				
X<15:1>	0001 0000 0010 000	0001 1101 1011 011				

AC CH	ARACTER	Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
	Clock Parameters								
AD50	TAD	A/D Clock Period	278		_	ns			
AD51	tRC	A/D Internal RC Oscillator Period	_	250	_	ns			
		Conve	ersion Ra	te					
AD55	tCONV	SAR Conversion Time, 12-Bit Mode		14		Tad			
AD55A		SAR Conversion Time, 10-Bit Mode	_	12	_	Tad			
AD56	FCNV	Throughput Rate	_		200	ksps	AVDD > 2.7V ⁽²⁾		
AD57	t SAMP	Sample Time		1		TAD	(Note 1)		
	Clock Synchronization								
AD61	tpss	Sample Start Delay from Setting Sample bit (SAMP)	1.5		2.5	Tad			


TABLE 33-26: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: Throughput rate is based on AD55 + AD57 + AD61 and the period of TAD.

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

Legen	d: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 2015-2016 Microchip Technology Inc.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	N		64		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1 1.00 REF				
Foot Angle	ø	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

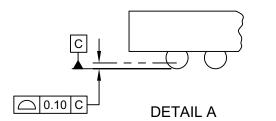
Notes:

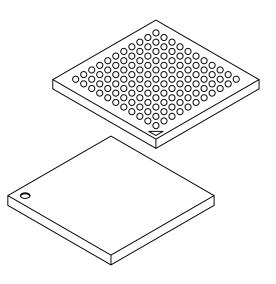
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

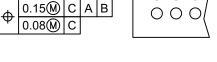
2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.


Microchip Technology Drawing C04-085C Sheet 2 of 2

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

NX Øb

000

0 O C

	Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Contacts	Ν		121		
Contact Pitch	е	0.80 BSC			
Overall Height	Α	1.00 1.10 1.20		1.20	
Ball Height	A1	0.25	0.30	0.35	
Overall Width	E	10.00 BSC			
Array Width	E1	8.00 BSC			
Overall Length	D	10.00 BSC			
Array Length	D1	8.00 BSC			
Contact Diameter	b	0.35 0.40 0.45			

Notes:

- 1. Ball A1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.
- 4. Ball interface to package body: 0.37mm nominal diameter.

Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2

PIC24FJ1024GA610/GB610 FAMILY

F

Flash Program Memory	89
and Table Instructions	
Control Registers	90
Double-Word Programming	95
Enhanced ICSP Operation	90
JTAG Operation	90
Operations	90
Programming Algorithm	93
RTSP Operation	

G

Guidelines for Getting Started with 16-Bit MCUs	41
Analog/Digital Pins Configuration During ICSP	46
External Oscillator Pins	45
ICSP Pins	44
Master Clear (MCLR) Pin	42
Power Supply Pins	42
Unused I/Os	46
Voltage Regulator Pin (VCAP)	43

Н

High/Low-Voltage Detect (HLVD)	. 387
High/Low-Voltage Detect. See HLVD.	

I

I/O Ports 1	49
Analog Port Pins Configuration (ANSx) 1	50
Configuring Analog/Digital Function of I/O Pins 1	150
Input Voltage Levels for Port/Pin Tolerated	
Description Input 1	50
Open-Drain Configuration1	
Parallel (PIO)1	
Peripheral Pin Select1	
Write/Read Timing1	
I ² C	
Clock Rates2	249
Communicating as Master in Single	
Master Environment2	247
Reserved Addresses2	249
Setting Baud Rate as Bus Master2	249
Slave Address Masking	
In-Circuit Debugger	106
Input Capture	
32-Bit Cascaded Mode1	194
Operations1	194
Synchronous and Trigger Modes1	193
Input Capture with Dedicated Timers1	93
Instruction Set	
Overview	113
Summary4	¥11
Symbols Used in Opcode Descriptions4	1 12
Interfacing Program and Data Memory Spaces	76
Inter-Integrated Circuit. See I ² C.	
Internet Address4	1 63
Interrupt Controller 1	
Alternate Interrupt Vector Table 1	03
Control and Status Registers1	08
Interrupt Vector Details 1	
Interrupt Vector Table (IVT) 1	103
Reset Sequence1	103
Resources1	108
Trap Vectors 1	104
Vector Tables1	04
Interrupt-on-Change (IOC) 1	154

JTAG Interface	406
к	
Key Features	389
L	
Low-Voltage/Retention Regulator	403

Μ

J

Memory Organization	53
Program Memory Space	53
Microchip Internet Web Site	463
MPLAB ASM30 Assembler, Linker, Librarian	408
MPLAB Integrated Development	
Environment Software	407
MPLAB PM3 Device Programmer	409
MPLAB REAL ICE In-Circuit Emulator System	409
MPLINK Object Linker/MPLIB Object Librarian	408

Ν

Near Data Space 6	60
-------------------	----

Ο

-	
On-Chip Voltage Regulator	403
POR	403
Standby Mode	403
Oscillator Configuration	115
Clock Switching	126
Sequence	126
Configuration Bit Values for Clock Selection	117
Control Registers	117
FRC Self-Tuning	127
Initial Configuration on POR	116
USB Operation	128
Special Considerations	130
Output Compare with Dedicated Timers	199
Operating Modes	199
32-Bit Cascaded Mode	199
Synchronous and Trigger Modes	199
Operations	200

Ρ

Packaging	
Details	443
Marking	441
Peripheral Enable Bits	139
Peripheral Module Disable Bits	139
Peripheral Pin Select (PPS)	159
Available Peripherals and Pins	159
Configuration Control	162
Considerations for Selection	163
Control Registers	164
Input Mapping	160
Mapping Exceptions	162
Output Mapping	161
Peripheral Priority	159
Selectable Input Sources	160
Selectable Output Sources	161
PIC24FJ1024GA610/GB610 Family	
Pinout Descriptions	26

Normally Write-Only)263Resets97BOR (Brown-out Reset)97Brown-out Reset (BOR)100Clock Source Selection100Clock Source Selection100CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97WDT (Watchdog Timer Reset)97WDT (Watchdog Timer Reset)97RtCCAlarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers320Write Lock313	UxTXREG (UARTx Transmit,
BOR (Brown-out Reset)97Brown-out Reset (BOR)100Clock Source Selection100CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCCAlarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mapping313RTCVAL Register Mapping314Timestamp Registers324Value Registers324Value Registers324Value Registers324	Normally Write-Only)263
Brown-out Reset (BOR)100Clock Source Selection100CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97WDT (Watchdog Timer Reset)97RCCC41srAlarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mapping313RTCVAL Register Mapping314Livent Registers324Value Registers324Value Registers324Value Registers324	Resets
Clock Source Selection100CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCCAlarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers324	
CM (Configuration Mismatch Reset)97Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCCAlarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers324	Brown-out Reset (BOR)100
Delay Times101Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC41arm Configuration328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers324	Clock Source Selection 100
Device Times100IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mapping317Source Clock311Timestamp Registers324Value Registers320	CM (Configuration Mismatch Reset)97
IOPUWR (Illegal Opcode Reset)97MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers324Value Registers320	Delay Times101
MCLR (Master Clear Pin Reset)97POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	Device Times100
POR (Power-on Reset)97RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
RCON Flags, Operation99SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
SFR States100SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	POR (Power-on Reset)97
SWR (RESET Instruction)97TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	RCON Flags, Operation99
TRAPR (Trap Conflict Reset)97UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
UWR (Uninitialized W Register Reset)97WDT (Watchdog Timer Reset)97Revision History455RTCC455Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
WDT (Watchdog Timer Reset)97Revision History455RTCC328Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
Revision History455RTCCAlarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
RTCCAlarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
Alarm Configuration328Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
Alarm Mask Settings (figure)329Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
Alarm Value Registers322Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
Calibration328Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
Clock Source Selection313Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	•
Control Registers314Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
Event Timestamping330Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	
Power Control329Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	•
Register Mapping313RTCVAL Register Mappings317Source Clock311Timestamp Registers324Value Registers320	1 0
RTCVAL Register Mappings 317 Source Clock 311 Timestamp Registers 324 Value Registers 320	
Source Clock	
Timestamp Registers	
Value Registers	
8	
Write LOCK	0
	VVIITE LOCK

S

Secondary Oscillator Operation	132
Serial Peripheral Interface (SPI)	227
Serial Peripheral Interface. See SPI.	
Software Simulator (MPLAB SIM)	409
Software Stack	75
Special Features	22
Special Features of the CPU	389
SPI	
Audio Mode Operation	229
Control Registers	230
Master Mode Operation	228
Slave Mode Operation	228

т

Timer1	
Timer2/3 and Timer4/5	
Timing Diagrams	
CLKO and I/O Characteristics	434
DNL vs. Code (10-Bit Mode)	438
DNL vs. Code (12-Bit Mode)	439
External Clock	430
INL vs. Code (10-Bit Mode)	438
INL vs. Code (12-Bit Mode)	439
Triple Comparator	
Triple Comparator Module	

UART Baud Rate Generator (BRG)
Infrared Support
Infrared Support
Operation of UxCTS and UxRTS Pins
Receiving 8-Bit or 9-Bit Data Mode 258 Transmitting 8-Bit Data Mode 258 9-Bit Data Mode 258 Break and Sync Sequence 258 Unique Device Identifier (UDID) 402 Addresses 402 Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus. See USB OTG. USB OTG 265
Transmitting 8-Bit Data Mode 258 9-Bit Data Mode 258 Break and Sync Sequence 258 Unique Device Identifier (UDID) 402 Addresses 402 Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus. See USB OTG. USB OTG 265
8-Bit Data Mode
9-Bit Data Mode
Break and Sync Sequence
Unique Device Identifier (UDID) 402 Addresses 402 Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus. See USB OTG. USB OTG. 265
Addresses
Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus. See USB OTG. USB OTG
Universal Serial Bus. See USB OTG. USB OTG
USB OTG 265
Buffer Descriptors
Assignment in Different Buffering Modes 271
Buffer Descriptors and BDT 270
Control Registers 279
Device Mode Operation 275
DMA Interface271
Hardware
Calculating
Transceiver Power Requirements
Hardware Configuration
Device Mode
Host and OTG Modes
Host Mode Operation
Interrupts
Interrupts and USB Transactions
Operation
•
HNP 279 SRP 278

w

Watchdog Timer (WDT)	404
Control Register	404
Windowed Operation	404
WWW Address	463
WWW, On-Line Support	19