

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga606-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
1	IC4/CTED4/PMD5/RE5	33	RP16/RF3
2	SCL3/IC5/PMD6/RE6	34	RP30/RF2
3	SDA3/IC6/PMD7/RE7	35	INT0/RF6
4	C1IND/RP21/ICM1/OCM1A/PMA5/RG6	36	SDA1/RG3
5	C1INC/RP26/OCM1B/PMA4/RG7	37	SCL1/RG2
6	C2IND/RP19/ICM2/OCM2A/PMA3/RG8	38	VDD
7	MCLR	39	OSCI/CLKI/RC12
8	C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	40	OSCO/CLKO/RC15
9	Vss	41	Vss
10	VDD	42	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
11	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	43	RP4/PMACK2/RD9
12	PGED3/AN4/C1INB/RP28/OCM3B/RB4	44	RP3/PMA15/PMCS2/RD10
13	AN3/C2INA/RB3	45	RP12/PMA14/PMCS1/RD11
14	AN2/CTCMP/C2INB/RP13/CTED13/RB2	46	CLC3OUT/RP11/U6CTS/ICM6/RD0
15	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	47	SOSCI/C3IND/RC13
16	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /PMA6/RB0	48	SOSCO/C3INC/RPI37/PWRLCLK/RC14
17	PGEC2/AN6/ RP6 /RB6	49	RP24/U5TX/ICM4/RD1
18	PGED2/AN7/ RP7 /U6TX/RB7	50	RP23/PMACK1/RD2
19	AVdd	51	RP22/ICM7/PMBE0/RD3
20	AVss	52	RP25/PMWR/PMENB/RD4
21	AN8/ RP8 /PWRGT/RB8	53	RP20/PMRD/PMWR/RD5
22	AN9/TMPR/RP9/T1CK/PMA7/RB9	54	C3INB/U5RX/OC4/RD6
23	TMS/CVREF/AN10/PMA13/RB10	55	C3INA/U5RTS/U5BCLK/OC5/RD7
24	TDO/AN11/REFI/PMA12/RB11	56	VCAP
25	Vss	57	N/C
26	VDD	58	U5CTS/OC6/RF0
27	TCK/AN12/U6RX/CTED2/PMA11/RB12	59	RF1
28	TDI/AN13/CTED1/PMA10/RB13	60	PMD0/RE0
29	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	61	PMD1/RE1
30	AN15/RP29/CTED6/PMA0/PMALL/RB15	62	PMD2/RE2
31	RP10/SDA2/PMA9/RF4	63	CTED9/PMD3/RE3
32	RP17/SCL2/PMA8/RF5	64	HLVDIN/CTED8/PMD4/RE4

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA606)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

REGISTER 8-5: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
-	—	—	—	—	—	—	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/C-0	R/C-0
—	—	—	—	—	—	ECCDBE	SGHT
bit 7							bit 0

Legend:	C = Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-2 Unimplemented: Read as '0'

bit 1 ECCDBE: ECC Double-Bit Error Trap bit 1 = ECC Double-Bit Error trap has occurred 0 = ECC Double-Bit Error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in W0 ;OSCCONH (high byte) Unlock Sequence					
MOV #OSCCONH, w1					
MOV #0x78, w2					
MOV #0x9A, w3					
MOV.b w2, [w1]					
MOV.b w3, [w1]					
;Set new oscillator selection					
MOV.b WREG, OSCCONH					
;OSCCONL (low byte) unlock sequence					
MOV #OSCCONL, w1					
MOV #0x46, w2					
MOV #0x57, w3					
MOV.b w2, [w1]					
MOV.b w3, [w1]					
;Start oscillator switch operation					
BSET OSCCON, #0					

9.5 FRC Active Clock Tuning

PIC24FJ1024GA610/GB610 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses active clock tuning from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that is well within the requirements of the *"USB 2.0 Specification"* regarding full-speed USB devices.

Note: The self-tune feature maintains sufficient accuracy for operation in USB Device mode. For applications that function as a USB host, a high-accuracy clock source (±0.05%) is still required.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the self-tuning feature, allowing the hardware to calibrate to a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 1, the system uses the Start-of-Frame (SOF) packets from an external USB host for its source. When STSRC = 0, the system uses the crystal-controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC Oscillator's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	To use the USB as a reference clock tuning source (STSRC = 1), the microcontroller must be configured for USB device opera- tion and connected to a non-suspended USB host or hub port.
	If the SOSC is to be used as the reference clock tuning source (STSRC = 0), the SOSC must also be enabled for clock tuning to occur.

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference, by greater than 0.2% in either direction, or whenever the frequency deviation is beyond the ability of the TUN<5:0> bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the Sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired Sync/Trigger source.
- 5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected Sync/Trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- Set the IC32 bits for both modules (ICyCON2<8> and ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same Sync/Trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bits settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its Trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the Sync source as the last step. Both input capture modules are held in Reset until the Sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the Sync/Trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = OCx Sync out⁽¹⁾ 11110 = OCTRIG1 pin 11101 = OCTRIG2 pin 11100 = CTMU Trigger⁽²⁾ 11011 = A/D interrupt⁽²⁾ 11010 = CMP3 Trigger⁽²⁾ 11001 = CMP2 Trigger⁽²⁾ 11000 = CMP1 Trigger⁽²⁾ 10111 = SCCP5 IC/OC interrupt 10110 = SCCP4 IC/OC interrupt 10101 = MCCP3 IC/OC interrupt 10100 = MCCP2 IC/OC interrupt 10011 = MCCP1 IC/OC interrupt 10010 = IC3 interrupt⁽²⁾ 10001 = IC2 interrupt⁽²⁾ 10000 = IC1 interrupt⁽²⁾ 01111 = SCCP7 IC/OC interrupt 01110 = SCCP6 IC/OC interrupt 01101 = Timer3 match event 01100 = Timer2 match event (default) 01011 = Timer1 match event 01010 = SCCP7 Sync/Trigger out 01001 = SCCP6 Sync/Trigger out 01000 = SCCP5 Sync/Trigger out 00111 = SCCP4 Sync/Trigger out 00110 = MCCP3 Sync/Trigger out 00101 = MCCP2 Sync/Trigger out 00100 = MCCP1 Sync/Trigger out 00011 = OC5 Sync/Trigger out⁽¹⁾ 00010 = OC3 Sync/Trigger out⁽¹⁾ 00001 = OC1 Sync/Trigger out⁽¹⁾
 - 00000 = Off, Free-Running mode with no synchronization and rollover at FFFFh
- **Note 1:** Never use an Output Compare x module as its own Trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as Trigger sources only and never as Sync sources.
 - 3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AUDEN ⁽¹) SPISGNEXT	IGNROV	IGNTUR	AUDMONO ⁽²⁾	URDTEN ⁽³⁾	AUDMOD1 ⁽⁴⁾	AUDMOD0(4)
bit 15	•	•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0
bit 7	•	•					bit 0
Legend:							
R = Reada	ıble bit	W = Writable b	oit	U = Unimpleme	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	own
bit 15	AUDEN: Aud	io Codec Suppo	ort Enable bit	(1)			
	1 = Audio pro	otocol is enabled	; MSTEN co	ntrols the direction	n of both the S	CKx and Frame	e (a.k.a. LRC),
	and this	module functior	ns as if FRM	EN = 1, FRMSY	NC = MSTEN	I, FRMCNT<2:0)> = 001 and
	SMP = 0	, regardless of t	heir actual va	alues			
h:+ 1 4				Deed Data Enabl	a hit		
DIC 14	1 = Data from	BY EIEO is sig	nu KX FIFU	Read Data Enabl	e dit		
	1 = Data from 0 = Data from 0	RX FIFO is sig	sian-extend	ed			
bit 13	IGNROV: lan	ore Receive Ov	erflow bit				
	1 = A Receiv	e Overflow (RO	V) is NOT a	critical error: duri	ng ROV. data	in the FIFO is n	ot overwritten
	by the re	ceive data	,	, ,	J ,		
	0 = A ROV is	a critical error t	hat stops SP	l operation			
bit 12	IGNTUR: Igno	ore Transmit Un	derrun bit				
	1 = A Transn	nit Underrun (Tl	JR) is NOT a	a critical error and	I data indicate	ed by URDTEN	is transmitted
	$0 = \Delta T I R is$	SPIXIXB IS NOt (empty hat stops SP	Loneration			
hit 11		Audio Data Forr	nat Transmit	hit(2)			
	1 = Audio dat	a is mono (i e	≏ach data wo	ord is transmitted	on both left an	d right channels	s)
	0 = Audio dat	a is stereo					0)
bit 10	URDTEN: Tra	ansmit Underrun	Data Enable	e bit ⁽³⁾			
	1 = Transmits	data out of SPI	xURDTL/H r	egister during Tra	nsmit Underru	In conditions	
	0 = Transmits	the last receive	ed data during	g Transmit Under	run conditions		
bit 9-8	AUDMOD<1:	0>: Audio Proto	col Mode Se	lection bits ⁽⁴⁾			
	11 = PCM/DS	P mode					
	10 = Right Ju	stified mode: If	ns module fu	nctions as if SPIF	E = 1, regardle	less of its actual	l value
	$01 = Left Just00 = I^2S mod$	e: This module f	functions as i	if SPIFE = 0, rea	rdless of its a	ctual value	alue
bit 7	FRMEN: Fran	ned SPIx Suppo	ort bit				
	1 = Framed S	Plx support is e	nabled (SSx	pin is used as the	e FSYNC inpu	it/output)	
	0 = Framed S	Plx support is d	isabled		Ŀ.	. /	
Note 1:		be written whe	n the SDIEN	hit – o			
2:	AUDMONO can	only be written v	when the SPI	EN bit = 0 and is	only valid for	AUDEN = 1	
3:	URDTEN is only	valid when IGN	TUR = 1.		ing rand for	···· ··	
4:	AUDMOD<1:0>I	oits can only be	written when	the SPIEN bit =	0 and are only	/ valid when AU	DEN = 1.

REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PCIE	SCIE	BOEN	SDAHT ⁽¹⁾	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-7	Unimplemen	ted: Read as 'd)'				
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (I ² C Slave mode	only)		
	1 = Enables in 0 = Stop dete	nterrupt on dete	ection of Stop of are disabled	condition			
bit 5	SCIE: Start C	ondition Interru	pt Enable bit (I ² C Slave mode	e onlv)		
	1 = Enables i	nterrupt on dete	ection of Start	or Restart condi	itions		
	0 = Start dete	ction interrupts	are disabled				
bit 4	BOEN: Buffer	r Overwrite Ena	ble bit (I ² C Sla	ave mode only)			
	\perp = 12CXRCV of the 120	COV bit only if F	BF bit = 0	nerated for a re	ceived address	s/data byte, igno	oring the state
	0 = I2CxRCV	is only update	d when I2COV	' is clear			
bit 3	SDAHT: SDA	x Hold Time Se	lection bit ⁽¹⁾				
	1 = Minimum	of 300 ns hold	time on SDAx	after the falling	edge of SCLx		
hit 2	SBCDE: Slav	or 100 ris riolu ve Mode Bus Cr	ullision Detect	Enable bit $(l^2 C)$	Slave mode or		
	If. on the risin	a edge of SCL	x. SDAx is sa	mpled low whe	n the module is	s outputting a h	high state, the
	BCL bit is set	and the bus go	bes Idle. This	Detection mode	is only valid d	uring data and	ACK transmit
	sequences.	lava hua colligi	on interrunte				
	1 = Enables s 0 = Slave bus	collision interr	upts are disabl	ed			
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slave	mode only)			
	1 = Following	the 8th fallin	g edge of SC	CLx for a mate	ching received	address byte;	SCLREL bit
	0 = Address	NL<12>) will be holding is disab	e cleared and S led	SCLX will be hel	d low		
bit 0	DHEN: Data I	Hold Enable bit	(I ² C Slave mo	ode only)			
	1 = Following	the 8th falling	edge of SCLx f	for a received da	ata byte; slave	hardware clears	s the SCLREL
	bit (I2Cx0	CONL<12>) and	d SCLx is held	low			
		ing is usabled					

REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

20.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the *"On-The-Go Supplement"* to the *"USB 2.0 Specification"* for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in the suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF, U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power down the VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

20.7 USB OTG Module Registers

There are a total of 37 memory-mapped registers associated with the USB OTG module. They can be divided into four general categories:

- USB OTG Module Control (12)
- USB Interrupt (7)
- USB Endpoint Management (16)
- USB VBUS Power Control (2)

This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 20-1 and Register 20-2, are shown separately in **Section 20.2** "**USB Buffer Descriptors and the BDT**".

All USB OTG registers are implemented in the Least Significant Byte (LSB) of the register. Bits in the upper byte are unimplemented and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.

The registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1, U1BDTP2 and U1BDTP3: Specifies the 256-word page in data RAM used for the BDT; 8-bit value with bit 0 fixed as '0' for boundary alignment.
- U1FRML and U1FRMH: Contains the 11-bit byte counter for the current data frame.

REGISTER 20-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
BTSEF	—	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
						EOFEF	
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to Clear bit	HS = Hardware Settable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	BTSEF: Bit Stuff Error Flag bit
	1 = Bit stuff error has been detected
	0 = No bit stuff error has been detected
bit 6	Unimplemented: Read as '0'
bit 5	DMAEF: DMA Error Flag bit
	 1 = A USB DMA error condition is detected; the data size indicated by the BD byte count field is less than the number of received bytes, the received data is truncated 0 = No DMA error
bit 4	BTOEF: Bus Turnaround Time-out Error Flag bit
	 1 = Bus turnaround time-out has occurred 0 = No bus turnaround time-out has occurred
bit 3	DFN8EF: Data Field Size Error Flag bit
	 1 = Data field was not an integral number of bytes 0 = Data field was an integral number of bytes
bit 2	CRC16EF: CRC16 Failure Flag bit
	1 = CRC16 failed 0 = CRC16 passed
bit 1	For Device mode:
	CRC5EF: CRC5 Host Error Flag bit
	1 = Token packet is rejected due to CRC5 error
	0 = Token packet is accepted (no CRC5 error)
	EOFEE: End-of-Frame (EOF) Error Flag bit
	1 = End-of-Frame error has occurred
	0 = End-of-Frame interrupt is disabled
bit 0	PIDEF: PID Check Failure Flag bit
	1 = PID check failed
	0 = PID check passed
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the
	entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause

all set bits, at the moment of the write, to become cleared.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
CSDIS	CSP	CSPTEN	BEP	—	WRSP	RDSP	SM				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
ACKP	PTSZ1	PTSZ0		_	_		_				
bit 7							bit 0				
Legend:	- 1-14		L :4	II Inducedous		L = = (O)					
R = Readable		vv = vvritable	DIt	U = Unimplen	nented bit, read	as^{-1}					
	PUR	I = DILIS SEL			areu	X = DILISUNKI	IOWI				
bit 15	CSDIS: Chip	Select x Disabl	e bit								
	1 = Disables	the Chip Selec	t x functionalit	у							
	0 = Enables	the Chip Select	t x functionality	/							
bit 14	CSP: Chip Se	elect x Polarity	bit								
	1 = Active-hi	gh <u>(PMCSx)</u>									
hit 12		W (PIVICSX) ICSy Dort Enak	alo hit								
DIL 15	1 = PMCSx	ort is enabled									
	0 = PMCSx	1 - PMCSx port is disabled0 = PMCSx port is disabled									
bit 12	BEP: Chip Se	elect x Nibble/B	yte Enable Po	larity bit							
	1 = Nibble/byte enable is active-high (PMBE0, PMBE1)										
bit 11	0 = Nibble/by	te enable is ac	tive-low (PMB	E0, PMBE1)							
DIL 11 bit 10		Soloot x Write 9) Strobo Dolority	hit							
	WRSP: Chip Select x Write Strobe Polarity bit										
	1 = Write structure	obe is active-hig	gh (PMWR)	<u>5141 - 0.</u>							
	0 = Write stre	obe is active-lov	w (PMWR)								
	For Master mode when $SM = 1$:										
	= Enable strobe is active-nign (PMENB) $ = Enable strobe is active-low (PMENB)$										
bit 9	RDSP: Chip 3	Select x Read S	Strobe Polarity	bit							
	For Slave modes and Master mode when $SM = 0$:										
	1 = Read strobe is active-high (PMRD)										
	0 = Read structure	obe is active-lo	w (PMRD)								
	For Master mode when $SM = 1$: 1 = Read/write stroke is active high (PMRD/RMWR)										
	0 = Read/Wr	ite strobe is act	tive-low (PMRI	D/PMWR)							
bit 8	SM: Chip Sel	ect x Strobe Mo	ode bit	,							
	1 = Reads/w 0 = Reads a	rites and enable nd writes strobe	es strobes (PN es (PMRD and	/IRD/ <mark>PMWR</mark> and PMWR)	d PMENB)						
bit 7	ACKP: Chip	Select x Acknow	wledge Polarity	y bit							
	1 = ACK is a	ctive-high (PMA	ACK1)								
bit 6-5	0 - ACK IS a	Chin Select x P	ort Size hits								
	11 = Reserve	ed									
	10 = 16-bit p	ort size (PMD<	15:0>)								
	01 = 4-bit por	rt size (PMD<3:	:0>) 0>)								
h:+ 4 C	00 = 8-bit po	rt size (PMD<7:	:U>)								
DIT 4-U	unimpiemen	itea: Read as 10	J								

REGISTER 21-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IBF	IBOV	_		IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾
bit 15	·	·		·			bit 8
R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC
OBE	OBUF	—		OB3E	OB2E	OB1E	OB0E
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit	HSC = Hardw	are Settable/C	learable bit	
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	IBF: Input But	ffer Full Status b	oit				
	1 = All writab	le Input Buffer r	egisters are fu	II			
	0 = Some or	all of the writab	le Input Buffer	registers are er	npty		
bit 14	IBOV: Input B	uffer Overflow	Status bit				
	1 = A write at 0 = No overfl	ttempt to a full li ow occurred	nput register o	ccurred (must b	e cleared in sc	oftware)	
bit 13-12	Unimplemen	ted: Read as '0	3				
bit 11-8	IB3F:IB0F: In	put Buffer x Sta	tus Full bits ⁽¹⁾				
	1 = Input buff 0 = Input buff	fer contains unr fer does not cor	ead data (read ntain unread da	ling the buffer w	vill clear this bit)	
bit 7	OBE: Output	Buffer Empty Si	tatus bit				
2	1 = All readal	ble Output Buffe	er registers are	empty			
	0 = Some or	all of the readal	ble Output Buf	fer registers are	e full		
bit 6	OBUF: Output	it Buffer Underfl	ow Status bit				
	1 = A read or 0 = No under	ccurred from an flow occurred	empty Output	Buffer register	(must be cleare	ed in software)	
bit 5-4	Unimplemen	ted: Read as '0	3				
bit 3-0	OB3E:OB0E:	Output Buffer >	K Status Empty	' bit			
	1 = Output B	uffer x is empty	(writing data to	o the buffer will	clear this bit)		
•• · · –							
Note 1: Ev	en though an ir	ndividual bit rep	resents the by	te in the buffer.	the bits corresp	onding to the	word

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1, or Byte 2 and 3) get cleared, even on byte reading.

23.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 23-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 23-2.

FIGURE 23-1: CRC BLOCK DIAGRAM CRCDATH CRCDATL **FIFO Empty** Variable FIFO (4x32, 8x16 or 16x8) Event CRCISEL CRCWDATH CRCWDATL 1 CRC Interrupt LENDIAN 0 Shift Buffer **CRC Shift Engine** Shift 0 Complete Event Shifter Clock 2 * Fcy

FIGURE 23-2: CRC SHIFT ENGINE DETAIL

© 2015-2016 Microchip Technology Inc.

FIGURE 25-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)

REGISTER 25-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)

bit 1	SAMP: A/D Sample Enable bit
	1 = A/D Sample-and-Hold amplifiers are sampling
	0 = A/D Sample-and-Hold amplifiers are holding
bit 0	DONE: A/D Conversion Status bit
	1 = A/D conversion cycle has completed

- 0 = A/D conversion cycle has not started or is in progress
- Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

-			_							
R/W-0	R/W-0	R/W-0	r-0	R/W-0	R/W-0	U-0	U-0			
PVCFG1	PVCFG0	NVCFG0		BUFREGEN	CSCNA	—	_			
bit 15							bit 8			
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7							bit 0			
Legend:		r = Reserved b	it							
R = Readable	e bit	W = Writable b	it	U = Unimpleme	ented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	own			
bit 15-14	PVCFG<1:0>	A/D Converter	Positive Vol	tage Reference C	Configuration	bits				
	1x = Unimple	emented, do not	use	0	0					
	01 = External VREF+									
	00 = AVDD									
bit 13	NVCFG0: A/I	D Converter Neg	ative Voltage	e Reference Conf	figuration bit					
	1 = External VREF-									
1.1.40	0 = AVSS									
DIT 12	Reserved: M	aintain as '0'								
bit 11	BUFREGEN:	A/D Buffer Reg	Ister Enable	bit						
	1 = Conversion = A/D result	on result is loade t buffer is treated	a into the du	Inter location dete	ermined by the	e converted chai	nnei			
bit 10		n Input Selection	a = a = a = a = a = a = a = a = a = a =	During Sample A	hit					
DIT TO	Locina: Scan input Selections for CHU+ During Sample A bit									
	0 = Does not scan inputs									
bit 9-8	Unimplemen	ted: Read as '0'	,							
bit 7	BUFS: Buffer	Fill Status bit								
2	When DMAE	N = 1 and DMAE	BM = 1:							
	1 = A/D is cu	irrently filling the	destination	buffer from [buffe	r start + (buffe	er size/2)] to				
	[buffer st	art + (buffer size	e – 1)]. User e	should access da	ta located fro	m [buffer start] t	0			
	[buffer start + (buffer size/2) – 1].									
	User sho	uld access data l	ocated from	[buffer start + (buf	fer size/2)] to	[buffer start + (buffer	uffer size -1].			
	When DMAE	<u>N = 0:</u>								
	1 = A/D is cu		C1BUF13-A	DC1BUF25, user	should acces	ss data in				
		Irrently filling AD	- C1BUF0-AD	C1BUF12. user s	should access	s data in				
	ADC1BUF13-ADC1BUF25									

REGISTER 25-2: AD1CON2: A/D CONTROL REGISTER 2

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
_	CTMEN<30:28>			—	CTMEN	<25:24>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			CTMEN	<23:16> (1)					
bit 7							bit 0		
Legend:									
R = Readat	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	Unimpleme	nted: Read as '0'							
bit 14-12	CTMEN<30	:28>: CTMU Enable	ed During C	Conversion bits					
	1 = CTMU is 0 = CTMU is	s enabled and conn s not connected to t	ected to the	e selected chanı	nel during con	/ersion			
bit 11-10	Unimplemented: Read as '0'								
bit 9-0	CTMEN_25:16>: CTMLL Enabled During Conversion bits ⁽¹⁾								
	1 = CTMU is 0 = CTMU is	s enabled and conn s not connected to t	lected to the this channe	e selected chani	nel during conv	version			

REGISTER 25-12: AD1CTMENH: A/D CTMU ENABLE REGISTER (HIGH WORD)

Note 1: CTMEN<23:16> bits are not available on 64-pin parts.

REGISTER 25-13: AD1CTMENL: A/D CTMU ENABLE REGISTER (LOW WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	CTMEN<15:8>									
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			CTM	/IEN<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown			
-										

bit 15-0 **CTMEN<15:0>:** CTMU Enabled During Conversion bits 1 = CTMU is enabled and connected to the selected channel during conversion 0 = CTMU is not connected to this channel

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	_	—	_	—	_	_	—
bit 23							bit 16
R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
AIVTDIS	—		—	CSS2	CSS1	CSS0	CWRP
bit 15							bit 8
R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
GSS1	GSS0	GWRP	—	BSEN	BSS1	BSS0	BWRP
bit 7							bit 0
			0				
Legend:	. 1. 11	PO = Program	n Once bit			1 (4)	
R = Readable	e bit	vv = vvritable	DIT		nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
h# 00 40			. ,				
DIT 23-16							
DIT 15				Disable bit	abla		
	1 = Disables A 0 = Enables A	AIVT: INTCOM	2<82 (AIVTEN) 2<82 (AIVTEN)) bit is available	able		
bit 14-12	Unimplemen	ted: Read as '	1'	,			
bit 11-9	CSS<2:0>: C	onfiguration Se	gment Code F	Protection Leve	l bits		
	111 = No pro	tection (other th	nan CWRP)				
	110 = Standa	ard security					
	10x = Enhance	ced security					
bit 8	CWPP: Confi	ecurity	ont Program V	Vrite Protection	bit		
bit o	1 = Configura	tion Segment i	s not write-pro	tected	bit		
	0 = Configura	tion Segment i	s write-protect	ed			
bit 7-6	GSS<1:0>: G	Seneral Segme	nt Code Protec	ction Level bits			
	11 = No prote	ection (other tha	an GWRP)				
	10 = Standar	d security					
h:4 C	0x = High sec						
DIT 5	GWRP: Gene	eral Segment P	rogram vvrite i				
	1 = General S 0 = General S	Segment is write	e-protected	J			
bit 4	Unimplemen	ted: Read as '	1'				
bit 3	BSEN: Boot Segment Control bit						
	1 = No Boot S	Segment is ena	bled				
	0 = Boot Seg	ment size is de	termined by B	SLIM<12:0>			
bit 2-1	BSS<1:0> : B	oot Segment C	ode Protectior	n Level bits			
	11 = No prote	ection (other tha	an BWRP)				
	10 = Standard	a security curity					
bit 0	BWRP. Root	Segment Prog	ram Write Prot	ection bit			
	1 = Boot Seg	ment can be wi	ritten				
	0 = Boot Seg	ment is write-p	rotected				

31.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

31.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 33-25: A/D MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
	Device Supply										
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 2.2		Lesser of: VDD + 0.3 or 3.6	V					
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V					
Reference Inputs											
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V					
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 1.7	V					
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	—	AVDD + 0.3	V					
Analog Inputs											
AD10	VINH-VINL	Full-Scale Input Span	VREFL		VREFH	V	(Note 1)				
AD11	Vin	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V					
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3		AVDD/3	V					
AD13		Leakage Current	_	±1.0	±610	nA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3V$, Source Impedance = $2.5 \text{ k}\Omega$				
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	2.5K	Ω	10-bit				
			A/D Acc	curacy			·				
AD20B	Nr	Resolution	—	12	—	bits					
AD21B	INL	Integral Nonlinearity	_	±1	< ±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V				
AD22B	DNL	Differential Nonlinearity	_	_	< ±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V				
AD23B	Gerr	Gain Error	_	±1	±4	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V				
AD24B	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V				
AD25B		Monotonicity ⁽¹⁾	_		_	_	Guaranteed				

Note 1:	Measurements are	aken with the external	VREF+ and VREF-	used as the A/D	voltage reference.
---------	------------------	------------------------	-----------------	-----------------	--------------------