

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256ga610-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Full Pin Name	Pin	Full Pin Name
A1	HLVDIN/CTED8/PMD4/RE4	E1	AN16/RPI41/OCM3C/PMCS2/RC4
A2	CTED9/PMD3/RE3	E2	RPI40/OCM2D/RC3
A3	OCM2F/CTED10/RG13	E3	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6
A4	PMD0/RE0	E4	RPI39/OCM2C/RC2
A5	PMD8/RG0	E5	N/C
A6	PMD10/RF1	E6	PMD9/RG1
A7	N/C	E7	N/C
A8	N/C	E8	RPI35/PMBE1/RA15
A9	RPI42/OCM3E/PMD12/RD12	E9	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
A10	RP23/PMACK1/RD2	E10	RP4/PMACK2/RD9
A11	RP24/U5TX/ICM4/RD1	E11	RPI36/PMA22/RA14
B1	N/C	F1	MCLR
B2	OCM1C/CTED3/RG15	F2	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8
B3	PMD2/RE2	F3	AN20/C1INC/C2INC/C3INC/ RP27 /OCM2B/PMA2/PMALU/ RG9
B4	PMD1/RE1	F4	AN18/C1INC/RP26/OCM1B/PMA4/RG7
B5	AN22/OCM1F/PMA17/RA7	F5	Vss
B6	U5CTS/OC6/PMD11/RF0	F6	N/C
B7	VCAP	F7	N/C
B8	RP20/PMRD/PMWR/RD5	F8	VDD
B9	RP22/ICM7/PMBE0/RD3	F9	OSCI/CLKI/RC12
B10	Vss	F10	Vss
B11	SOSCO/C3INC/RPI37/PWRLCLK/RC14	F11	OSCO/CLKO/RC15
C1	SCL3/IC5/PMD6/RE6	G1	RPI33/PMCS1/RE8
C2	VDD	G2	AN21/ RPI34 /PMA19/RE9
C3	OCM2E/RG12	G3	TMS/OCM3D/RA0
C4	CTED11/PMA16/RG14	G4	N/C
C5	AN23/OCM1E/RA6	G5	VDD
C6	N/C	G6	Vss
C7	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7	G7	Vss
C8	RP25/PMWR/PMENB/RD4	G8	N/C
C9	N/C	G9	TDO/RA5
C10	SOSCI/C3IND/RC13	G10	SDA2/PMA20/RA3
C11	RP12/PMA14/PMCS1/RD11	G11	TDI/PMA21/RA4
D1	RPI38/OCM1D/RC1	H1	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5
D2	SDA3/IC6/PMD7/RE7	H2	PGED3/AN4/C1INB/RP28/OCM3B/RB4
D3	IC4/CTED4/PMD5/RE5	H3	N/C
D4	N/C	H4	N/C
D5	N/C	H5	N/C
D6	N/C	H6	VDD
D7	C3INB/U5RX/OC4/PMD14/RD6	H7	N/C
D8	OCM3F/PMD13/RD13	H8	RF7
D9	CLC3OUT/RP11/U6CTS/ICM6/RD0	H9	INT0/RF6
D10	N/C	H10	SCL1/RG2
D11	RP3/PMA15/PMCS2/RD10	H11	PMPCS1/SCL2/RA2

TABLE 6:	COMPLETE PIN FUNCTION DESCRIPTIONS	(PIC24FJXXXGA610 BGA)
----------	------------------------------------	-----------------------

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

1.2 DMA Controller

PIC24FJ1024GA610/GB610 family devices have a Direct Memory Access (DMA) Controller. This module acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Eight independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

1.3 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- **Configurable Logic Cell:** The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins.
- **Timing Modules:** The PIC24FJ1024GA610/GB610 family provides five independent, general purpose, 16-bit timers (four of which can be combined into two 32-bit timers). The devices also include 3 multiple output and 4 single output advanced Capture/Compare/PWM/Timer peripherals, and 6 independent legacy Input Capture and 6 independent legacy Output Compare modules.
- Communications: The PIC24FJ1024GA610/ GB610 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are 3 independent I²C modules that support both Master and Slave modes of operation. Devices also have, through the PPS feature, 6 independent UARTs with built-in IrDA[®] encoders/decoders and 3 SPI modules.
- Analog Features: All members of the PIC24FJ1024GA610/GB610 family include the new 12-bit A/D Converter (A/D) module and a triple comparator module. The A/D module incorporates a range of new features that allow the converter to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ1024GA610/ GB610 family include the CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Enhanced Parallel Master/Parallel Slave Port: This module allows rapid and transparent access to the microcontroller data bus, and enables the CPU to directly address external data memory. The parallel port can function in Master or Slave mode, accommodating data widths of 4, 8 or 16 bits and address widths of up to 23 bits in Master modes.
- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

1.4 Details on Individual Family Members

Devices in the PIC24FJ1024GA610/GB610 family are available in 64-pin, 100-pin and 121-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in six ways:

- Flash program memory (128 Kbytes for PIC24FJ128GX6XX devices, 256 Kbytes for PIC24FJ256GX6XX devices, 512 Kbytes for PIC24FJ512GX6XX devices and 1024 Kbytes for PIC24FJ1024GX6XX devices).
- Available I/O pins and ports (53 pins on 6 ports for 64-pin devices and 85 pins on 7 ports for 100-pin and 121-pin devices).
- Available Interrupt-on-Change Notification (IOC) inputs (53 on 64-pin devices and 85 on 100-pin and 121-pin devices).
- 4. Available remappable pins (29 pins on 64-pin devices, 44 pins on 100-pin and 121-pin devices).
- Available USB peripheral (available on PIC24FJXXXGB6XX devices; not available on PIC24FJXXXGA6XX devices).
- 6. Analog input channels (16 channels for 64-pin devices and 24 channels for 100-pin and 121-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1, Table 1-2 and Table 1-3.

A list of the pin features available on the PIC24FJ1024GA610/GB610 family devices, sorted by function, is shown in Table 1-3. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

2.4 Voltage Regulator Pin (VCAP)

Note: This section applies only to PIC24FJ devices with an on-chip voltage regulator.

Refer to **Section 30.3** "**On-Chip Voltage Regulator**" for details on connecting and using the on-chip regulator.

A low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate the ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 33.0 "Electrical Characteristics"** for additional information.

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS (0805 CASE SIZE)

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage
TDK	C2012X5R1E106K085AC	10 µF	±10%	25V
TDK	C2012X5R1C106K085AC	10 µF	±10%	16V
Kemet	C0805C106M4PACTU	10 µF	±10%	16V
Murata	GRM21BR61E106KA3L	10 µF	±10%	25V
Murata	GRM21BR61C106KE15	10 µF	±10%	16V

4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through EPMP.

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".

Figure 4-4 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read Page register (DSRPAG) or the Data Space Write Page register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). The data addressing range of the PIC24FJ1024GA610/ GB610 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is, in turn, a function of device pin count. Table 4-12 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to the *"dsPIC33/ PIC24 Family Reference Manual"*, **"Enhanced Parallel Master Port (EPMP)"** (DS39730).

TABLE 4-12:	TOTAL ACCESSIBLE DATA
	MEMORY

Family	Internal RAM	External RAM Access Using EPMP
PIC24FJXXXGX610	32K	Up to 16 Mbytes
PIC24FJXXXGX606	32K	Up to 64K

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-4: EXTENDED DATA SPACE

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address while Indirect Addressing	24-Bit EA Pointing to EDS	Comment
x ⁽¹⁾	x ⁽¹⁾	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾
		2000h to 7FFFh	002000h to 007FFFh	
001h	001h		008000h to 00FFFEh	
002h	002h		010000h to 017FFEh	
003h	003h		018000h to	
•	•		0187FEh	EPMP Memory Space
•	•	8000h to FFFFh	•	
•	•		•	
•	•		•	
•	•		•	
1FFh	1FFh		FF8000h to FFFFFEh	
000h	000h		Invalid Address	Address Error Trap ⁽³⁾

TABLE 4-13: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.

- 2: This Data Space can also be accessed by Direct Addressing.
- **3:** When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing							
	will concatenate the SRL register to the							
	MSB of the PC prior to the push.							

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be wordaligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-7: CALL STACK FRAME

EXAMPLE 6-3: PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

```
// C example using MPLAB XC16
unsigned long progAddr = 0xXXXXXX;
                                          // Address of word to program
unsigned int progDatalL = 0xXXXX;
                                          // Data to program lower word of word 1
                                          // Data to program upper byte of word 1
unsigned char progDatalH = 0xXX;
                                          // Data to program lower word of word 2
unsigned int progData2L = 0xXXXX;
unsigned char progData2H = 0xXX;
                                           // Data to program upper byte of word 2
//Set up NVMCON for word programming
NVMCON = 0 \times 4001;
                                            // Initialize NVMCON
TBLPAG = 0xFA;
                                            // Point TBLPAG to the write latches
//Set up pointer to the first memory location to be written
NVMADRU = progAddr>>16;
                                           // Initialize PM Page Boundary SFR
NVMADR = progAddr & 0xFFFF;
                                            // Initialize lower word of address
//Perform TBLWT instructions to write latches
__builtin_tblwtl(0, progData1L);
                                           // Write word 1 to address low word
__builtin_tblwth(0, progData2H);
                                            // Write word 1 to upper byte
                                           // Write word 2 to address low word
__builtin_tblwtl(1, progData2L);
__builtin_tblwth(1, progData2H);
                                           // Write word 2 to upper byte
asm("DISI #5");
                                            // Block interrupts with priority <7 for next 5
                                            // instructions
__builtin_write_NVM();
                                            // XC16 function to perform unlock sequence and set WR
```

7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in the FOSCSEL Flash Configuration Word (see Table 7-2). The NVMCON register is only affected by a POR.

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the Master Reset Signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

7.3 Brown-out Reset (BOR)

PIC24FJ1024GA610/GB610 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN<1:0> (FPOR<1:0>) Configuration bits.

When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in **Section 33.1 "DC Characteristics"**.

7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS39700).

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant			
POR	FNOSC<2:0> Configuration bits			
BOR	(FOSCSEL<2:0>)			
MCLR				
WDTO	(OSCCON<14:12>)			
SWR				

TABLE 8-2:INTERRUPT VECTOR DETAILS

laterand Occurs			Interrupt Bit Location			
Interrupt Source	#	IVI Address	Flag	Enable	Priority	
	Highest Na	atural Order Priori	ty			
INT0 – External Interrupt 0	0	000014h	IFS0<0>	IEC0<0>	INT0Interrupt	
IC1 – Input Capture 1	1	000016h	IFS0<1>	IEC0<1>	IC1Interrupt	
OC1 – Output Compare 1	2	000018h	IFS0<2>	IEC0<2>	OC1Interrupt	
T1 – Timer1	3	00001Ah	IFS0<3>	IEC0<3>	T1Interrupt	
DMA0 – Direct Memory Access 0	4	00001Ch	IFS0<4>	IEC0<4>	DMA0Interrupt	
IC2 – Input Capture 2	5	00001Eh	IFS0<5>	IEC0<5>	IC2Interrupt	
OC2 – Output Compare 2	6	000020h	IFS0<6>	IEC0<6>	OC2Interrupt	
T2 – Timer2	7	000022h	IFS0<7>	IEC0<7>	T2Interrupt	
T3 – Timer3	8	000024h	IFS0<8>	IEC0<8>	T3Interrupt	
SPI1 – SPI1 General	9	000026h	IFS0<9>	IEC0<9>	SPI1Interrupt	
SPI1TX – SPI1 Transfer Done	10	000028h	IFS0<10>	IEC0<10>	SPI1TXInterrupt	
U1RX – UART1 Receiver	11	00002Ah	IFS0<11>	IEC0<11>	U1RXInterrupt	
U1TX – UART1 Transmitter	12	00002Ch	IFS0<12>	IEC0<12>	U1TXInterrupt	
ADC1 – A/D Converter 1	13	00002Eh	IFS0<13>	IEC0<13>	ADC1Interrupt	
DMA1 – Direct Memory Access 1	14	000030h	IFS0<14>	IEC0<14>	DMA1Interrupt	
NVM – NVM Program/Erase Complete	15	000032h	IFS0<15>	IEC0<15>	NVMInterrupt	
SI2C1 – I2C1 Slave Events	16	000034h	IFS1<0>	IEC1<0>	SI2C1Interrupt	
MI2C1 – I2C1 Master Events	17	000036h	IFS1<1>	IEC1<1>	MI2C1Interrupt	
Comp – Comparator	18	000038h	IFS1<2>	IEC1<2>	CompInterrupt	
IOC – Interrupt-on-Change Interrupt	19	00003Ah	IFS1<3>	IEC1<3>	IOCInterrupt	
INT1 – External Interrupt 1	20	00003Ch	IFS1<4>	IEC1<4>	INT1Interrupt	
—	21	—	—	—	—	
CCP5 – Capture/Compare 5	22	000040h	IFS1<6>	IEC1<6>	CCP5Interrupt	
CCP6 – Capture/Compare 6	23	000042h	IFS1<7>	IEC1<7>	CCP6Interrupt	
DMA2 – Direct Memory Access 2	24	000044h	IFS1<8>	IEC1<8>	DMA2Interrupt	
OC3 – Output Compare 3	25	000046h	IFS1<9>	IEC1<9>	OC3Interrupt	
OC4 – Output Compare 4	26	000048h	IFS1<10>	IEC1<10>	OC4Interrupt	
T4 – Timer4	27	00004Ah	IFS1<11>	IEC1<11>	T4Interrupt	
T5 – Timer5	28	00004Ch	IFS1<12>	IEC1<12>	T5Interrupt	
INT2 – External Interrupt 2	29	00004Eh	IFS1<13>	IEC1<13>	INT2Interrupt	
U2RX – UART2 Receiver	30	000050h	IFS1<14>	IEC1<14>	U2RXInterrupt	
U2TX – UART2 Transmitter	31	000052h	IFS1<15>	IEC1<15>	U2TXInterrupt	
SPI2 – SPI2 General	32	000054h	IFS2<0>	IEC2<0>	SPI2Interrupt	
SPI2TX – SPI2 Transfer Done	33	000056h	IFS2<1>	IEC2<1>	SPI2TXInterrupt	
_	34	—	—	—	—	
_	35	_	—	—	—	
DMA3 – Direct Memory Access 3	36	00005Ch	IFS2<4>	IEC2<4>	DMA3Interrupt	
IC3 – Input Capture 3	37	00005Eh	IFS2<5>	IEC2<5>	IC3Interrupt	
IC4 – Input Capture 4	38	000060h	IFS2<6>	IEC2<6>	IC4Interrupt	
IC5 – Input Capture 5	39	000062h	IFS2<7>	IEC2<7>	IC5Interrupt	
IC6 – Input Capture 6	40	000064h	IFS2<8>	IEC2<8>	IC6Interrupt	

© 2015-2016 Microchip Technology Inc.

REGISTER 9-7: OSCFDIV: OSCILLATOR FRACTIONAL DIVISOR REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRIM	1<0:7>			
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
TRIM8		—	_	_	—	_	—
bit 7	-	· · ·			•		bit 0
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown	
bit 15-7	TRIM<0:8>: ⊺	Frim bits					
	Provides fract	tional additive to $0 = 0/512 (0.0)$	the DIV<14:0 divisor added	> value for the to DIVx value	1/2 period of t	he oscillator clo	ock.
	0000_0000_	1 = 1/512 (0.00)	1953125) divis 200625) divis	sor added to DI	Vx value		
	•	0 - 2/312 (0.00	590025) UNIS		x value		
	•						
	•						
	100000000	= 256/512 (0.	5000) divisor	added to DIVx v	value		
	•						
	•						
	1111_1111_	0 = 510/512 (0.	99609375) div	visor added to E	DIVx value		
	1111_1111_	1 = 511/512 (0.	998046875) d	ivisor added to	DIVx value		
bit 6-0	Unimplemen	ted: Read as '0	,				

Note 1: TRIMx values greater than zero are ONLY valid when DIVx values are greater than zero.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

REGISTER 11-42: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: RP13 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP13 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: RP12 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP12 (see Table 11-4 for peripheral function numbers).

REGISTER 11-43: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾
bit 15							bit 8
11_0	11_0						

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP15R<5:0>: RP15 Output Pin Mapping bits⁽¹⁾

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP14 (see Table 11-4 for peripheral function numbers).

Note 1: This pin is not available on 64-pin devices.

17.3 Audio Mode Operation

To initialize the SPIx module for Audio mode, follow the steps to initialize it for Master/Slave mode, but also set the AUDEN bit (SPIxCON1H<15>). In Master+Audio mode:

Select

Control

- This mode enables the device to generate SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L<15>) = 1.
- The SPIx module generates LRC and SCKx continuously in all cases, regardless of the transmit data, while in Master mode.
- The SPIx module drives the leading edge of LRC and SCKx within 1 SCKx period, and the serial data shifts in and out continuously, even when the TX FIFO is empty.

In Slave+Audio mode:

 This mode enables the device to receive SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L<15>) = 1.

Enable Master Clock

- The SPIx module drives zeros out of SDOx, but does not shift data out or in (SDIx) until the module receives the LRC (i.e., the edge that precedes the left channel).
- Once the module receives the leading edge of LRC, it starts receiving data if DISSDI (SPIxCON1L<4>) = 0 and the serial data shifts out continuously, even when the TX FIFO is empty.

20.3.1 CLEARING USB OTG INTERRUPTS

Unlike device-level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a MOV type instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a '1' to its location is referred to as "Write '1' to Clear". In register descriptions; this function is indicated by the descriptor, "K".

20.4 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

20.4.1 ENABLING DEVICE MODE

- Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit, PPBRST (U1CON<1>).
- 2. Disable all interrupts (U1IE and U1EIE = 00h).
- 3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
- 4. Verify that VBUS is present (non-OTG devices only).

- 5. Enable the USB module by setting the USBEN bit (U1CON<0>).
- Set the OTGEN bit (U1OTGCON<2>) to enable OTG operation.
- Enable the Endpoint 0 buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1).
- 8. Power up the USB module by setting the USBPWR bit (U1PWRC<0>).
- Enable the D+ pull-up resistor to signal an attach by setting the DPPULUP bit (U10TGCON<7>).

21.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only), 8-bit (Master and Slave modes) or 16-bit (Master mode only) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each Chip Select, and then assigning each Chip Select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP.

Key features of the EPMP module are:

- Extended Data Space (EDS) Interface Allows Direct Access from the CPU
- Up to 23 Programmable Address Lines
- Up to 2 Chip Select lines
- Up to 2 Acknowledgment Lines (one per Chip Select)
- 4-Bit, 8-Bit or 16-Bit Wide Data Bus
- Programmable Strobe Options (per Chip Select):
 - Individual read and write strobes or;
- Read/Write strobe with enable strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States

- Programmable Data Wait States (per Chip Select)
- Programmable Polarity on Control Signals (per Chip Select)
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer

21.1 Specific Package Variations

While all PIC24FJ1024GA610/GB610 family devices implement the EPMP, I/O pin constraints place some limits on 16-Bit Master mode operations in some package types. This is reflected in the number of dedicated Chip Select pins implemented and the number of dedicated address lines that are available. The differences are summarized in Table 21-1. All available EPMP pin functions are summarized in Table 21-2.

For 64-pin devices, the dedicated Chip Select pins (PMCS1 and PMCS2) are not implemented. In addition, only 16 address lines (PMA<15:0>) are available. If required, PMA14 and PMA15 can be remapped to function as PMCS1 and PMCS2, respectively.

The memory space addressable by the device depends on the number of address lines available, as well as the number of Chip Select signals required for the application. Devices with lower pin counts are more affected by Chip Select requirements, as these take away address lines. Table 21-1 shows the maximum addressable range for each pin count.

21.2 PMDOUT1 and PMDOUT2 Registers

The EPMP Data Output 1 and Data Output 2 registers are used only in Slave mode for buffered output data. These registers act as a buffer for outgoing data.

21.3 PMDIN1 and PMDIN2 Registers

The EPMP Data Input 1 and Data Input 2 registers are used in Slave modes to buffer incoming data. These registers hold data that is asynchronously clocked in.

In Master mode, PMDIN1 is the holding register for incoming data.

TABLE 21-1: EPMP FEATURE DIFFERENCES BY DEVICE PIN COUNT

Device	Dedicated Chip Select		Address	Data	Address Range (bytes)		
	CS1	CS2	Lines	Lines	No CS	1 CS ⁽¹⁾	2 CS ⁽¹⁾
PIC24FJXXXGX606 (64-Pin)	—	—	16	8	64K	32K	16K
PIC24FJXXXGX610 (100-Pin/121-Pin)	Х	Х	23	16		16M	

Note 1: PMA14 and PMA15 can be remapped to be dedicated Chip Selects.

^{© 2015-2016} Microchip Technology Inc.

REGISTER 21-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

R/W-0	U-0						
				00			00
IOCON	—	—		—	—		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	_	—	—	—	_	PMPTTL
bit 7							bit 0

Legend:

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 IOCON: Used for Non-PMP functionality

bit 14-1 Unimplemented: Read as '0'

bit 0 PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

22.3.3 RTCC VALUE REGISTERS

REGISTER 22-7: TIMEL: RTCC TIME REGISTER (LOW)

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_		—				_
bit 7							bit 0

Legend:

—

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits
	Contains a value from 0 to 5.
bit 11-8	SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits
	Contains a value from 0 to 9.
bit 7-0	Unimplemented: Read as '0'

REGISTER 22-8: TIMEH: RTCC TIME REGISTER (HIGH)

U-0	U-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0' bit 13-12 HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2. bit 11-8 HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits Contains a value from 0 to 9. bit 7 Unimplemented: Read as '0' bit 6-4 MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits Contains a value from 0 to 5. bit 3-0 MINONE<3:0>: Binary Coded Decimal Value of Minutes '1' Digit bits Contains a value from 0 to 9.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
YRTEN3	YRTEN2	YRTEN1	YRTEN0	YRONE3	YRONE2	YRONE1	YRONE0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	MTHTEN	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7			•		•	•	bit 0
Legend:							

REGISTER 22-18: TSADATEH: RTCC TIMESTAMP A DATE REGISTER (HIGH)⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits

bit 11-8 **YRONE<3:0>:** Binary Coded Decimal Value of Years '1' Digit bits

bit 7-5 **Unimplemented:** Read as '0'

- bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
- bit 3-0 MTHONE<2:0>: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.
- **Note 1:** If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

REGISTER 24-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—		DS4<2:0>				DS3<2:0>	
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
		DS2<2:0>				DS1<2:0>	
bit 7							bit 0
[
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkno	own
bit 15	Unimplomo	ntod. Dood on 'o	,				
bit 14 12		$\begin{array}{c} \mathbf{Meu.} \\ \mathbf{Reau} \\ \mathbf{as} \\ 0 \\ $	IX 4 Signal	Soloction bits			
DIL 14-12	111 - MCCI	Data Selection M	JA 4 Signal				
	111 = MCCI	P3 Compare Ever	nt Interrupt F	lag (CCP3IF)			
	101 = Unim	plemented					
	100 = CTM	J A/D Trigger					
	011 = SPIx	Input (SDIx) corre	esponding to	the CLCx modu	ile (see Table	24-1)	
	001 = Modu	lle-specific CLCx	output (see ⁻	Table 24-1)			
	000 = CLCII	NB I/O pin		,			
bit 11	Unimpleme	nted: Read as '0	,				
bit 10-8	DS3<2:0>: [Data Selection M	JX 3 Signal	Selection bits			
	111 = MCCP3 Compare Event Interrupt Flag (CCP3IF)						
	110 = MCCP2 Compare Event Interrupt Flag (CCP2IF)						
	101 = DMA Channel 1 Interrupt 100 = UARTx RX output corresponding to the CLCx module (see Table 24-1)						
	011 = SPIx	Output (SDOx) co	prresponding	to the CLCx mo	odule (see Tab	ole 24-1)	
	010 = Comparator 2 output						
	001 = CLCX 000 = CLCI	NA I/O pin	e 24-1)				
bit 7		nted: Read as '0	,				
bit 6-4	DS2<2:0>: Data Selection MUX 2 Signal Selection bits						
	111 = MCCP2 Compare Event Interrupt Flag (CCP2IF)						
	110 = MCCP1 Compare Event Interrupt Flag (CCP1IF)						
	101 = DMA Channel 0 interrupt						
	011 = UAR	Tx TX input corres	sponding to t	he CLCx module	e (see Table 2	4-1)	
	010 = Comp	parator 1 output				,	
	001 = CLCx	output (see Table	e 24-1)				
h # 0		NB I/O pin	,				
DIL 3		nted: Read as 0	IV 1 Signal	Coloction bits			
UIL ∠-U	111 - Timor			Selection DIts			
	110 = Timer	2 match event					
	101 = Unim	plemented					
	100 = REFC	Doutput					
	011 = INTR	C/LPRC clock source	urce				
	001 = Svste	m clock (Tcy)					
	000 = CLCII	NA I/O pin					

25.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"12-Bit A/D Converter with** Threshold Detect" (DS39739), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- · Conversion Speeds of up to 200 ksps (12-bit)
- Up to 24 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.

It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA Controller through Peripheral Indirect Addressing (PIA).

A simplified block diagram for the module is shown in Figure 25-1.

25.1 Basic Operation

To perform a standard A/D conversion:

- 1. Configure the module:
 - a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the positive and negative multiplexer inputs for each channel (AD1CHS<15:0>).
 - Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - e) Select the appropriate sample/ conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
 - g) Select how conversion results are presented in the buffer (AD1CON1<9:8> and AD1CON5 register).
 - h) Select the interrupt rate (AD1CON2<5:2>).
 - i) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit (IFS0<13>).
 - b) Enable the AD1IE interrupt (IEC0<13>).
 - c) Select the A/D interrupt priority (IPC3<6:4>).
- If the module is configured for manual sampling, set the SAMP bit (AD1CON1<1>) to begin sampling.

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
Clock Parameters									
AD50	Tad	A/D Clock Period	278			ns			
AD51	tRC	A/D Internal RC Oscillator Period		250	_	ns			
Conversion Rate									
AD55	tCONV	SAR Conversion Time, 12-Bit Mode		14		Tad			
AD55A		SAR Conversion Time, 10-Bit Mode	_	12		Tad			
AD56	FCNV	Throughput Rate			200	ksps	AVDD > 2.7V ⁽²⁾		
AD57	t SAMP	Sample Time		1		Tad	(Note 1)		
Clock Synchronization									
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	1.5		2.5	TAD			

TABLE 33-26: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: Throughput rate is based on AD55 + AD57 + AD61 and the period of TAD.

34.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-213B Sheet 1 of 2