

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb606-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
1	IC4/CTED4/PMD5/RE5	33	RP16/RF3
2	SCL3/IC5/PMD6/RE6	34	RP30/RF2
3	SDA3/IC6/PMD7/RE7	35	INT0/RF6
4	C1IND/RP21/ICM1/OCM1A/PMA5/RG6	36	SDA1/RG3
5	C1INC/RP26/OCM1B/PMA4/RG7	37	SCL1/RG2
6	C2IND/RP19/ICM2/OCM2A/PMA3/RG8	38	VDD
7	MCLR	39	OSCI/CLKI/RC12
8	C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	40	OSCO/CLKO/RC15
9	Vss	41	Vss
10	VDD	42	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
11	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	43	RP4/PMACK2/RD9
12	PGED3/AN4/C1INB/RP28/OCM3B/RB4	44	RP3/PMA15/PMCS2/RD10
13	AN3/C2INA/RB3	45	RP12/PMA14/PMCS1/RD11
14	AN2/CTCMP/C2INB/RP13/CTED13/RB2	46	CLC3OUT/RP11/U6CTS/ICM6/RD0
15	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	47	SOSCI/C3IND/RC13
16	PGED1/ALTCVREF+/ALTVREF+/AN0/ RP0 /PMA6/RB0	48	SOSCO/C3INC/RPI37/PWRLCLK/RC14
17	PGEC2/AN6/ RP6 /RB6	49	RP24/U5TX/ICM4/RD1
18	PGED2/AN7/ RP7 /U6TX/RB7	50	RP23/PMACK1/RD2
19	AVdd	51	RP22/ICM7/PMBE0/RD3
20	AVss	52	RP25/PMWR/PMENB/RD4
21	AN8/ RP8 /PWRGT/RB8	53	RP20/PMRD/PMWR/RD5
22	AN9/TMPR/RP9/T1CK/PMA7/RB9	54	C3INB/U5RX/OC4/RD6
23	TMS/CVREF/AN10/PMA13/RB10	55	C3INA/U5RTS/U5BCLK/OC5/RD7
24	TDO/AN11/REFI/PMA12/RB11	56	VCAP
25	Vss	57	N/C
26	VDD	58	U5CTS/OC6/RF0
27	TCK/AN12/U6RX/CTED2/PMA11/RB12	59	RF1
28	TDI/AN13/CTED1/PMA10/RB13	60	PMD0/RE0
29	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	61	PMD1/RE1
30	AN15/RP29/CTED6/PMA0/PMALL/RB15	62	PMD2/RE2
31	RP10/SDA2/PMA9/RF4	63	CTED9/PMD3/RE3
32	RP17/SCL2/PMA8/RF5	64	HLVDIN/CTED8/PMD4/RE4

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGA606)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

Pin	Function	Pin	Function
1	OCM1C/CTED3/RG15	51	RP16/USBID/RF3
2	Vdd	52	RP30/RF2
3	IC4/CTED4/PMD5/RE5	53	RP15 /RF8
4	SCL3/IC5/PMD6/RE6	54	VBUS/RF7
5	SDA3/IC6/PMD7/RE7	55	VUSB3V3
6	RPI38/OCM1D/RC1	56	D-/RG3
7	RPI39/OCM2C/RC2	57	D+/RG2
8	RPI40/OCM2D/RC3	58	PMPCS1/SCL2/RA2
9	AN16/RPI41/OCM3C/PMCS2/RC4	59	SDA2/PMA20/RA3
10	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6	60	TDI/PMA21/RA4
11	AN18/C1INC/RP26/OCM1B/PMA4/RG7	61	TDO/RA5
12	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8	62	VDD
13	MCLR	63	OSCI/CLKI/RC12
14	AN20/C1INC/C2INC/C3INC/RP27/OCM2B/PMA2/PMALU/RG9	64	OSCO/CLKO/RC15
15	Vss	65	Vss
16	VDD	66	RPI36/SCL1/PMA22/RA14
17	TMS/OCM3D/RA0	67	RPI35/SDA1/PMBE1/RA15
18	RPI33/PMCS1/RE8	68	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8
19	AN21/ RPI34 /PMA19/RE9	69	RP4/PMACK2/RD9
20	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5	70	RP3/PMA15/PMCS2/RD10
21	PGED3/AN4/C1INB/RP28/USBOEN/OCM3B/RB4	71	RP12/PMA14/PMCS1/RD11
22	AN3/C2INA/RB3	72	CLC3OUT/RP11/U6CTS/ICM6/INT0/RD0
23	AN2/CTCMP/C2INB/RP13/CTED13/RB2	73	SOSCI/C3IND/RC13
24	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	74	SOSCO/C3INC/RPI37/PWRLCLK/RC14
25	PGED1/ALTCVREF+/ALTVREF+/AN0/RP0/RB0	75	Vss
26	PGEC2/AN6/RP6/RB6	76	RP24/U5TX/ICM4/RD1
27	PGED2/AN7/ RP7 /U6TX/RB7	77	RP23/PMACK1/RD2
28	CVREF-/VREF-/PMA7/RA9	78	RP22/ICM7/PMBE0/RD3
29	CVREF+/VREF+/PMA6/RA10	79	RPI42/OCM3E/PMD12/RD12
30	AVDD	80	OCM3F/PMD13/RD13
31	AVss	81	RP25/PMWR/PMENB/RD4
32	AN8/ RP8 /PWRGT/RB8	82	RP20/PMRD/PMWR/RD5
33	AN9/TMPR/RP9/T1CK/RB9	83	C3INB/U5RX/OC4/PMD14/RD6
34	CVREF/AN10/PMA13/RB10	84	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7
35	AN11/REFI/PMA12/RB11	85	VCAP
36	Vss	86	N/C
37	Vdd	87	U5CTS/OC6/PMD11/RF0
38	TCK/RA1	88	PMD10/RF1
39	RP31/RF13	89	PMD9/RG1
40	RPI32/CTED7/PMA18/RF12	90	PMD8/RG0
41	AN12/U6RX/CTED2/PMA11/RB12	91	AN23/OCM1E/RA6
42	AN13/CTED1/PMA10/RB13	92	AN22/OCM1F/PMA17/RA7
43	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14	93	PMD0/RE0
44	AN15/RP29/CTED6/PMA0/PMALL/RB15	94	PMD1/RE1
45	Vss	95	CTED11/PMA16/RG14
46	VDD	96	OCM2E/RG12
47	RPI43/RD14	97	OCM2F/CTED10/RG13
48	RP5 /RD15	98	PMD2/RE2
49	RP10/PMA9/RF4	99	CTED9/PMD3/RE3
50	RP17/PMA8/RF5	100	HLVDIN/CTED8/PMD4/RE4

TABLE 5:	COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB610 TQFP)
----------	---

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

Pin Diagrams⁽¹⁾ (Continued)

PIC24FJXXXGA610 121-Pin BGA

	1	2	3	4	5	6	7	8	9	10	11	
A	O RE4	RE3	RG13	RE0	RG0	RF1	O N/C	O N/C	RD12	RD2	RD1	
в	O N/C	RG15	RE2	RE1	O RA7	RF0	O VCAP	RD5	RD3	O Vss	O RC14	
С	RE6		RG12	RG14	O RA6	⊖ N/C	O RD7	RD4	∩ N/C	O RC13	RD11	
D	RC1	RE7	RE5	O N/C	⊖ N/C	O N/C	O RD6	RD13	RD0	O N/C	RD10	
E	O RC4	RC3	O RG6	RC2	O N/C	RG1	⊖ N/C	RA15	RD8	RD9	RA14	
F	MCLR	O RG8	O RG9	O RG7	O Vss	∩ N/C	∩ N/C		O RC12	O Vss	O RC15	
G	RE8	O RE9	RA0	O N/C		O Vss	O Vss	O N/C	RA5	RA3	RA4	
н	O RB5	O RB4	∩ N/C	O N/C	⊖ N/C		∩ N/C	RF7	RF6	RG2	RA2	
J	O RB3	O RB2	O RB7	O AVDD	O RB11	RA1	O RB12	⊖ N/C	⊖ N/C	RF8	RG3	
к	O RB1	O RB0	O RA10	O RB8	∩ N/C	RF12	O RB14		RD15	RF3	RF2	
L	O RB6	O RA9	O AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5	

Legend: See Table 6 for a complete description of pin functions. Pinouts are subject to change. Note 1: Gray shading indicates 5.5V tolerant input pins.

Pin	Full Pin Name		Full Pin Name
J1	AN3/C2INA/RB3	K7	AN14/RP14/CTED5/CTPLS/PMA1/PMALH/RB14
J2	AN2/CTCMP/C2INB/RP13/CTED13/RB2	K8	VDD
J3	PGED2/AN7/ RP7 /U6TX/RB7	K9	RP5/RD15
J4	AVDD	K10	RP16/USBID/RF3
J5	AN11/REFI/PMA12/RB11	K11	RP30/RF2
J6	TCK/RA1	L1	PGEC2/AN6/ RP6 /RB6
J7	AN12/U6RX/CTED2/PMA11/RB12	L2	CVREF-/VREF-/PMA7/RA9
J8	N/C	L3	AVss
J9	N/C	L4	AN9/TMPR/ RP9 /T1CK / RB9
J10	RP15/RF8	L5	CVREF/AN10/PMA13/RB10
J11	D-/RG3	L6	RP31/RF13
K1	PGEC1/ALTCVREF-/ALTVREF-/AN1/RP1/CTED12/RB1	L7	AN13/CTED1/PMA10/RB13
K2	PGED1/ALTCVREF+/ALTVREF+/AN0/RP0/RB0	L8	AN15/RP29/CTED6/PMA0/PMALL/RB15
K3	CVREF+/VREF+/PMA6/RA10	L9	RPI43/RD14
K4	AN8/ RP8 /PWRGT/RB8	L10	RP10/PMA9/RF4
K5	N/C	L11	RP17/PMA8/RF5
K6	RPI32/CTED7/PMA18/RF12		

TABLE 7: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJXXXGB610 BGA) (CONTINUED)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

File Name	Address	All Resets	File Name	Address	All Resets		
MULTIPLE OUTPUT CAPTURE/COMPARE/PWM (CONTINUED)			MULTIPLE OUTPUT CAPTURE/COMPARE/PWM (CONTINUED)				
CCP2RAL	02A8	0000	CCP3PRL	02C8	FFFF		
CCP2RAH	02AA	0000	CCP3PRH	02CA	FFFF		
CCP2RBL	02AC	0000	CCP3RAL	02CC	0000		
CCP2RBH	02AE	0000	CCP3RAH	02CE	0000		
CCP2BUFL	02B0	0000	CCP3RBL	02D0	0000		
CCP2BUFH	02B2	0000	CCP3RBH	02D2	0000		
CCP3CON1L	02B4	0000	CCP3BUFL	02D4	0000		
CCP3CON1H	02B6	0000	CCP3BUFH	02D6	0000		
CCP3CON2L	02B8	0000	COMPARATORS				
CCP3CON2H	02BA	0100	CMSTAT	02E6	0000		
CCP3CON3L	02BC	0000	CVRCON	02E8	00xx		
CCP3CON3H	02BE	0000	CM1CON	02EA	0000		
CCP3STATL	02C0	00x0	CM2CON	02EC	0000		
CCP3STATH	02C2	0000	CM3CON	02EE	0000		
CCP3TMRL	O2C4	0000	ANALOG CONFIGURATION				
CCP3TMRH	02C6	0000	ANCFG	02F4	0000		

TABLE 4-6: SFR MAP: 0200h BLOCK (CONTINUED)

 $\label{eq:legend: Legend: Legend: Legend: Legend: Legend: Constant of the set of the s$

File Name	Address	All Resets	File Name	Address	All Resets		
DMA (CONTINUED)			USB OTG (CONTIN	USB OTG (CONTINUED)			
DMAINT5	0500	0000	U1ADDR	056E	00xx		
DMASRC5	0502	0000	U1BDTP1	0570	0000		
DMADST5	0504	0000	U1FRML	0572	0000		
DMACNT5	0506	0001	U1FRMH	0574	0000		
DMACH6	0508	0000	U1TOK	0576	0000		
DMAINT6	050A	0000	U1SOF	0578	0000		
DMASRC6	050C	0000	U1BDTP2	057A	0000		
DMADST6	050E	0000	U1BDTP3	057C	0000		
DMACNT6	0510	0001	U1CNFG1	057E	0000		
DMACH7	0512	0000	U1CNFG2	0580	0000		
DMAINT7	0514	0000	U1EP0	0582	0000		
DMASRC7	0516	0000	U1EP1	0584	0000		
DMADST7	0518	0000	U1EP2	0586	0000		
DMACNT7	051A	0001	U1EP3	0588	0000		
USB OTG			U1EP4	058A	0000		
U10TGIR	0558	0000	U1EP5	058C	0000		
U10TGIE	055A	0000	U1EP6	058E	0000		
U10TGSTAT	055C	0000	U1EP7	0590	0000		
U10TGCON	055E	0000	U1EP8	0592	0000		
U1PWRC	0560	00x0	U1EP9	0594	0000		
U1IR	0562	0000	U1EP10	0596	0000		
U1IE	0564	0000	U1EP11	0598	0000		
U1EIR	0566	0000	U1EP12	059A	0000		
U1EIE	0568	0000	U1EP13	059C	0000		
U1STAT	056A	0000	U1EP14	059E	0000		
U1CON	056C	00x0	U1EP15	05A0	0000		

TABLE 4-9:SFR MAP: 0500h BLOCK

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0		
TRAPR	(1) IOPUWR ⁽¹⁾	SBOREN	RETEN ⁽²⁾	—	_	CM ⁽¹⁾	VREGS ⁽³⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1		
EXTR	SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾		
bit / bit (
l egend:									
R = Read	able bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
							-		
bit 15	TRAPR: Trap	Reset Flag bit	1)						
	1 = A Trap Co	onflict Reset has	s occurred						
	0 = A Trap Co	nflict Reset has	s not occurred		(1)				
bit 14		gal Opcode or I	Jninitialized W	Access Reset	Flag bit(")	ad W/ namiatan			
	⊥ = An illegal Address I	Pointer and cau	ised a Reset	address mode		ed w register	is used as an		
	0 = An illegal	opcode or Unir	nitialized W reg	gister Reset has	s not occurred				
bit 13	SBOREN: So	ftware Enable/[Disable of BOF	R bit					
	1 = BOR is tur	rned on in softw	/are						
hit 10		rnea oπ in soπw	/are						
DIL 12	1 = Retention	mode is enable	able bits / ad while device	e is in Sleen mo	ndes (1 2V regi	ilator enabled)			
	0 = Retention	mode is disable	ed		1.2 v roge				
bit 11-10	Unimplement	ted: Read as '0	3						
bit 9	CM: Configura	ation Word Misi	match Reset F	lag bit ⁽¹⁾					
	1 = A Configure	ration Word Mis	smatch Reset	has occurred	, al				
hit 8	0 = A Conligu VPECS: East		Smatch Reset	nas not occurre	ed .				
DILO	1 = Fast wake	-up is enabled	(uses more po	ower)					
	0 = Fast wake	-up is disabled	(uses less por	wer)					
bit 7	EXTR: Extern	al Reset (MCLI	R) Pin bit ⁽¹⁾						
	1 = A Master (Clear (pin) Res	et has occurre	d urred					
bit 6	SWR: Softwar	e Reset (Instru	ction) Flag bit	(1)					
	1 = A RESET i	nstruction has	been executed	i					
	0 = A reset i	nstruction has	not been exec	uted					
Note 1:	All of the Reset sta cause a device Re	atus bits may b eset.	e set or cleare	d in software. S	etting one of th	iese bits in soff	ware does not		
2:	If the LPCFG Con bit has no effect.	figuration bit is Retention mode	'1' (unprograme preserves the	nmed), the rete e SRAM conten	ntion regulator ts during Sleep	is disabled and).	d the RETEN		
3:	Re-enabling the re Sleep. Application	egulator after it is that do not u	enters Standb se the voltage	y mode will add regulator shoul	d a delay, T∨RE d set this bit to	G, when wakin prevent this d	g up from elay from		
4:	 occurring. If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting. 								

REGISTER 7-1: RCON: RESET CONTROL REGISTER

9.6.1 CONSIDERATIONS FOR USB OPERATION

When using the USB On-The-Go module in PIC24FJ1024GA610/GB610 devices, users must always observe these rules in configuring the system clock:

- The system clock frequency must be 16 MHz or 32 MHz. System clock frequencies below 16 MHz are not allowed for USB module operation.
- The Oscillator modes listed in Table 9-3 are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module.
- For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- When the FRCPLL Oscillator mode is used for USB applications, the FRC self-tune system should be used as well. While the FRC is accurate, the only two ways to ensure the level of accuracy, required by the "USB 2.0 Specification" throughout the application's operating range, are either the self-tune system or manually changing the TUN<5:0> bits.

- The user must always ensure that the FRC source is configured to provide a frequency of 4 MHz or 8 MHz (RCDIV<2:0> = 001 or 000) and that the USB PLL prescaler is configured appropriately.
- All other Oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is Sleeping and waiting for a bus attachment).

9.7 Reference Clock Output

In addition to the CLKO output (Fosc/2), the PIC24FJ1024GA610/GB610 family devices can be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. CLKO is enabled by Configuration bit, OSCIOFCN, and is independent of the REFO reference clock. REFO is mappable to any I/O pin that has mapped output capability. Refer to Table 11-4 for more information. The REFO module block diagram is shown on Figure 9-3.

FIGURE 9-3: REFERENCE CLOCK GENERATOR

11.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pinselectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on a device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 11-4: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

11	Unlock Regi	sters					
asm	volatile	("MOV	#OSCCON, w1	\n"			
		"MOV	#0x46, w2	\n"			
		"MOV	#0x57, w3	\n"			
		"MOV.b	w2, [w1]	\n"			
		"MOV.b	w3, [w1]	\n"			
		"BCLR	OSCCON, #6")	;			
11	or use XC16	built-:	in macro:				
//	builtin_w	rite_0S0	CCONL(OSCCON &	0xbf);			
11	Configure I	nput Fui	nctions (Table 1	1-3)			
	// Assign U	1RX TO I	Pin RP0				
	RPINR18bits	.Ulrxr =	= 0;				
	// Assign UlCTS To Pin RP1						
	RPINR18bits	.U1CTSR	= 1;				
// Configure Output Functions (Table 11-4)							
	// Assign UlTX To Pin RP2						
	RPOR1bits.RP2R = 3;						
	// Assign II	1PTS TO	Din RD3				
	RPORIbits R	P3R = 4	;				
	11 011101 00 .10	1 510 - 1					
11	Lock Regist	ers					
asm	volatile	("MOV	#OSCCON, w1	\n"			
		"MOV	#0x46, w2	\n"			
		"MOV	#0x57, w3	\n"			
		"MOV.b	w2, [w1]	\n"			
		"MOV.b	w3, [w1]	\n"			
		"BSET	OSCCON, #6")	;			
//	or use VC16	built-	in macro:				
//	builtin w	rite OS	CONL(OSCCON	0x40):			
//	W		CONTRACTOR	0A10//			

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

REGISTER 11-42: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: RP13 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP13 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: RP12 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP12 (see Table 11-4 for peripheral function numbers).

REGISTER 11-43: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾
bit 15							bit 8
11_0	11_0						

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP15R<5:0>: RP15 Output Pin Mapping bits⁽¹⁾

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP14 (see Table 11-4 for peripheral function numbers).

Note 1: This pin is not available on 64-pin devices.

R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC	
ACKSTAT	TRSTAT	ACKTIM	_	—	BCL	GCSTAT	ADD10	
bit 15					•	•	bit 8	
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	
bit 7							bit 0	
Legend:		C = Clearabl	e bit	HS = Hardwa	re Settable bit			
R = Readable	e bit	W = Writable	e bit	U = Unimplen	nented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	own	
HSC = Hardw	vare Settable/C	Clearable bit						
bit 15	bit 15 ACKSTAT: Acknowledge Status bit (updated in all Master and Slave modes) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave							
bit 14	TRSTAT: Tra 1 = Master tr 0 = Master tr	insmit Status t ansmit is in pr ansmit is not i	bit (when oper rogress (8 bits in progress	ating as I ² C ma + ACK)	aster; applicable	to master trans	mit operation)	
bit 13	ACKTIM: Ac	knowledge Tir	me Status bit (valid in I ² C Sla	ive mode only)			
	1 = Indicates 0 = Not an A	l ² C bus is in cknowledge s	an Acknowled equence, clea	lge sequence, s red on 9th risir	set on 8th falling ng edge of SCLx	edge of SCLx o clock	clock	
bit 12-11	Unimplemen	nted: Read as	·'0'					
bit 10	BCL: Bus Co	ollision Detect	bit (Master/SI	ave mode; clea	ared when I ² C m	odule is disable	d, I2CEN = 0)	
	1 = A bus co 0 = No bus c	llision has bee collision has be	en detected du een detected	iring a master o	or slave transmit	t operation		
bit 9	GCSTAT: Ge	eneral Call Sta	tus bit (cleare	d after Stop de	tection)			
	1 = General 0 = General	call address w call address w	as received as not receive	ed				
bit 8	ADD10: 10-E	Bit Address St	atus bit (cleare	ed after Stop de	etection)			
	1 = 10-bit ad 0 = 10-bit ad	dress was ma dress was not	tched matched					
bit 7	IWCOL: I2C	x Write Collisio	on Detect bit					
	 1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy; must be cleared in software 0 = No collision 							
bit 6	I2COV: I2Cx	Receive Ove	rflow Flag bit					
	1 = A byte w care" in 0 = No over	vas received w Transmit mod flow	hile the I2CxF e, must be cle	RCV register is ared in softwar	still holding the e	previous byte; I2	COV is a "don't?	
bit 5	D/A: Data/Ad	ddress bit (wh	en operating a	as I ² C slave)				
	1 = Indicates 0 = Indicates	that the last to that the last t	oyte received on the second seco	was data or transmitted v	was an address			
bit 4	P: I2Cx Stop	bit						
	Updated when 1 = Indicates 0 = Stop bit w	en Start, Rese that a Stop b vas not detect	t or Stop is de it has been de ed last	tected; cleared tected last	when the I ² C m	odule is disable	d, I2CEN = 0.	

REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER

20.1 Hardware Configuration

20.1.1 DEVICE MODE

20.1.1.1 D+ Pull-up Resistor

PIC24FJ1024GB610 family devices have a built-in 1.5 kΩ resistor on the D+ line that is available when the microcontroller is operating in Device mode. This is used to signal an external host that the device is operating in Full-Speed Device mode. It is engaged by setting the USBEN bit (U1CON<0>) and powering up the USB module (USBPWR = 1). If the OTGEN bit (U1OTGCON<2>) is set, then the D+ pull-up is enabled through the DPPULUP bit (U1OTGCON<7>).

20.1.1.2 The VBUS Pin

In order to meet the *"USB 2.0 Specification"* requirement, relating to the back drive voltage on the D+/Dpins, the USB module incorporates VBUS-level sensing comparators. When the comparators detect the VBUS level below the VA_SESS_VLD level, the hardware will automatically disable the D+ pull-up resistor described in **Section 20.1.1.1 "D+ Pull-up Resistor"**. This allows the device to automatically meet the back drive requirement for D+ and D-, even if the application firmware does not explicitly monitor the VBUS level. Therefore, the VBUS microcontroller pin should not be left floating in USB Device mode application designs, and should normally be connected to the VBUS pin on the USB connector/cable (either directly or through a small resistance \leq 100 ohms).

20.1.1.3 Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are:

- · Bus Power Only mode
- · Self-Power Only mode
- Dual Power with Self-Power Dominance

Bus Power Only mode (Figure 20-2) is effectively the simplest method. All power for the application is drawn from the USB.

To meet the inrush current requirements of the *"USB 2.0 Specification"*, the total effective capacitance, appearing across VBUS and ground, must be no more than 10 μ F.

In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable. During the USB Suspend mode, the D+ or Dpull-up resistor must remain active, which will consume some of the allowed suspend current.

In Self-Power Only mode (Figure 20-3), the USB application provides its own power, with very little power being pulled from the USB. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

To meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable when the USB module is operated in USB Device mode.

The Dual Power mode with Self-Power Dominance (Figure 20-4) allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current previously described, and must not enable the USB module until VBUS is driven high.

FIGURE 20-2: BUS-POWERED INTERFACE EXAMPLE

FIGURE 20-3: SELF-POWER ONLY

FIGURE 20-4:

DUAL POWER EXAMPLE

^{© 2015-2016} Microchip Technology Inc.

REGISTER 20-8: U1CON: USB CONTROL REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15		•					bit 8

R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'			
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	learable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	JSTATE: Live Differential Receiver J-State Flag bit
	 1 = J-state (differential '0' in low speed, differential '1' in full speed) is detected on the USB 0 = No J-state is detected
bit 6	SE0: Live Single-Ended Zero Flag bit
	1 = Single-ended zero is active on the USB bus0 = No single-ended zero is detected
bit 5	TOKBUSY: Token Busy Status bit
	1 = Token is being executed by the USB module in On-The-Go state0 = No token is being executed
bit 4	USBRST: USB Module Reset bit
	1 = USB Reset has been generated for a software Reset; application must set this bit for 50 ms, then clear it
	0 = USB Reset is terminated
bit 3	HOSTEN: Host Mode Enable bit
	 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	 1 = Resume signaling is activated; software must set bit for 10 ms and then clear to enable remote wake-up 0 = Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	 1 = Resets all Ping-Pong Buffer Pointers to the even BD banks 0 = Ping-Pong Buffer Pointers are not reset
bit 0	SOFEN: Start-of-Frame Enable bit
	 1 = Start-of-Frame token is sent every one 1 ms 0 = Start-of-Frame token is disabled

REGISTER 20-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	_		_
bit 15				-			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CN	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable hit		U = Unimplen	nented bit read	1 as '0'	

R = Readable bit	vv = vvritable bit	$\mathbf{U} = \mathbf{U}$ nimplemented bit, read	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **CNT<7:0>:** Start-of-Frame Size bits Value represents 10 + (packet size of n bytes). For example: 0100 1010 = 64-byte packet 0010 1010 = 32-byte packet 0001 0010 = 8-byte packet

© 2015-2016 Microchip Technology Inc.

Pin Name (Alternate Function)	Туре	Description
PMA<22:16>	0	Address Bus bits<22:16>
PMA15	0	Address Bus bit 15
	I/O	Data Bus bit 15 (16-bit port with Multiplexed Addressing)
(PMCS2)	0	Chip Select 2 (alternate location)
PMA14	0	Address Bus bit 14
	I/O	Data Bus bit 14 (16-bit port with Multiplexed Addressing)
(PMCS1)	0	Chip Select 1 (alternate location)
PMA<13:8>	0	Address Bus bits<13:8>
	I/O	Data Bus bits<13:8> (16-bit port with Multiplexed Addressing)
PMA<7:3>	0	Address Bus bits<7:3>
PMA2	0	Address Bus bit 2
(PMALU)	0	Address Latch Upper Strobe for Multiplexed Address
PMA1	I/O	Address Bus bit 1
(PMALH)	0	Address Latch High Strobe for Multiplexed Address
PMA0	I/O	Address Bus bit 0
(PMALL)	0	Address Latch Low Strobe for Multiplexed Address
PMD<15:8>	I/O	Data Bus bits<15:8> (Demultiplexed Addressing)
PMD<7:4>	I/O	Data Bus bits<7:4>
	0	Address Bus bits<7:4> (4-bit port with 1-Phase Multiplexed Addressing)
PMD<3:0>	I/O	Data Bus bits<3:0>
PMCS1 ⁽¹⁾	0	Chip Select 1
PMCS2 ⁽¹⁾	0	Chip Select 2
PMWR	I/O	Write Strobe ⁽²⁾
(PMENB)	I/O	Enable Signal ⁽²⁾
PMRD	I/O	Read Strobe ⁽²⁾
(PMRD/PMWR)	I/O	Read/Write Signal ⁽²⁾
PMBE1	0	Byte Indicator
PMBE0	0	Nibble or Byte Indicator
PMACK1	Ι	Acknowledgment Signal 1
PMACK2	Ι	Acknowledgment Signal 2

TABLE 21-2: ENHANCED PARALLEL MASTER PORT PIN DESCRIPTIONS

Note 1: These pins are implemented in 100-pin and 121-pin devices only.

2: Signal function depends on the setting of the MODE<1:0> and SM bits (PMCON1<9:8> and PMCSxCF<8>).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_									
bit 15 bit 8										
U-0	U-0	U-0 R/C-0 U-0 R/C-0 R-0 R-0 R-0								
	ALMEVT — TSAEVT ⁽¹⁾ SYNC ALMSYNC HALFSEC									
bit 7 bit 0										
Legend: C = Clearable bit										
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-6	it 15-6 Unimplemented: Read as '0'									
bit 5	ALMEVT: Ala	ALMEVT: Alarm Event bit								
	1 = An alarm (1 = An alarm event has occurred								
hit 1		0 = An alarm event has not occurred								
DIL 4		Unimplemented: Read as '0'								
DIL 3	TSAEVT: Timestamp A Event bit ⁽¹⁾									
	 1 = A timestamp event has occurred 0 = A timestamp event has not occurred 									
bit 2	SYNC: Synchronization Status bit									
	1 = Time registers may change during software read									
	0 = Time registers may be read safely									
bit 1	ALMSYNC: Alarm Synchronization Status bit									
	1 = Alarm registers (ALMTIME and ALMDATE) and Alarm Mask bits (AMASK<3:0>) should not									
modified, and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software re							ftware read			
h:+ 0	0 = Alarm registers and Alarm Control bits may be written/modified safely									
U JIG		all Second Sta	ius Dit'-'							
	1 = Second half period of a second 0 = First half period of a second									
••										
Note 1: User software may write a '1' to this location to initiate a Timestamp A event; timestamp capture is not valid until TSAEVT reads as '1'.										

REGISTER 22-6: RTCSTATL: RTCC STATUS REGISTER (LOW)

2: This bit is read-only; it is cleared to '0' on a write to the SECONE<3:0> bits.

		Standard Operating Conditions: Operating temperature				2.0V to 3.6V (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial	
Param No.	Characteristic	Min	Тур	Max	Units	Conditions	
F20	FRC Accuracy @ 8 MHz	-1.5	+0.15	1.5	%	$2.0V \le VDD \le 3.6V, 0^{\circ}C \le TA \le +85^{\circ}C$ (Note 1)	
		-2.0		2.0	%	$2.0V \leq V \text{DD} \leq 3.6V \text{, } -40^{\circ} C \leq T \text{A} \leq 0^{\circ} C$	
		-0.20	+0.05	-0.20	%	$2.0V \le VDD \le 3.6V$, 0°C $\le TA \le +85$ °C, self-tune is enabled and locked (Note 2)	
F21	LPRC @ 31 kHz	-20		20	%	VCAP Output Voltage = 1.8V	
F22	OSCTUN Step-Size	_	0.05		%/bit		
F23	FRC Self-Tune Lock Time		5	8	ms	(Note 3)	

TABLE 33-20: INTERNAL RC ACCURACY

Note 1: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

2: Accuracy is measured with respect to the reference source.

3: Time from reference clock stable, and in range, to FRC tuned within range specified by F20 (with self-tune).

TADLE JJ-ZT. INCOUCLATON STANT-OF THE	TABLE 33-21:	RC OSCILLATOR START-UP	TIME
---------------------------------------	--------------	-------------------------------	------

AC CHARACTERISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
FR0	TFRC	FRC Oscillator Start-up Time	—	15	_	μS	
FR1	TLPRC	Low-Power RC Oscillator Start-up Time	-	50	—	μS	

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoq, KEELoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1204-5