

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb606t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
PMD0	60	60	93	93	A4	A4	I/O	DIG/ ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	61	61	94	94	B4	B4	I/O	DIG/ ST/TTL	Address/Data (Multiplexed Master modes)
PMD2	62	62	98	98	B3	B3	I/O	DIG/ ST/TTL	
PMD3	63	63	99	99	A2	A2	I/O	DIG/ ST/TTL	
PMD4	64	64	100	100	A1	A1	I/O	DIG/ ST/TTL	
PMD5	1	1	3	3	D3	D3	I/O	DIG/ ST/TTL	
PMD6	2	2	4	4	C1	C1	I/O	DIG/ ST/TTL	
PMD7	3	3	5	5	D2	D2	I/O	DIG/ ST/TTL	
PMD8	_	_	90	90	A5	A5	I/O	DIG/ ST/TTL	
PMD9	—	_	89	89	E6	E6	I/O	DIG/ ST/TTL	
PMD10	—	_	88	88	A6	A6	I/O	DIG/ ST/TTL	
PMD11	—	—	87	87	B6	B6	I/O	DIG/ ST/TTL	
PMD12	—	—	79	79	A9	A9	I/O	DIG/ ST/TTL	
PMD13	—	_	80	80	D8	D8	I/O	DIG/ ST/TTL	
PMD14	_	_	83	83	D7	D7	I/O	DIG/ ST/TTL	
PMD15	—	—	84	84	C7	C7	I/O	DIG/ ST/TTL	
PMRD/ PMWR	53	53	82	82	B8	B8	I/O	DIG/ ST/TTL	Parallel Master Port Read Strobe/Write Strobe
PMWR/ PMENB	52	52	81	81	C8	C8	I/O	DIG/ ST/TTL	Parallel Master Port Write Strobe/Enable Strobe
PWRGT	21	21	32	32	K4	K4	0	DIG	Real-Time Clock Power Control Output
PWRLCLK	48	48	74	74	B11	B11	I	ST	Real-Time Clock 50/60 Hz Clock Input

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
RPI32	—	—	40	40	K6	K6	Ι	DIG/ST	Remappable Peripherals
RPI33	—	—	18	18	G1	G1	I	DIG/ST	(input only)
RPI34	—	_	19	19	G2	G2	Т	DIG/ST	
RPI35	—	_	67	67	E8	E8	Т	DIG/ST	
RPI36	—	_	66	66	E11	E11	I	DIG/ST	
RPI37	48	48	74	74	B11	B11	I	DIG/ST	
RPI38	—	—	6	6	D1	D1	I	DIG/ST	
RPI39	_	_	7	7	E4	E4	Ι	DIG/ST	
RPI40	_	_	8	8	E2	E2	Ι	DIG/ST	
RPI41	_	_	9	9	E1	E1	Ι	DIG/ST	
RPI42	_	_	79	79	A9	A9	Ι	DIG/ST	
RPI43	_	_	47	47	L9	L9	I	DIG/ST	
SCL1	37	44	57	66	H10	E11	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output
SCL2	32	32	58	58	H11	H11	I/O	I ² C	I2C2 Synchronous Serial Clock Input/Output
SCL3	2	2	4	4	C1	C1	I/O	I ² C	I2C3 Synchronous Serial Clock Input/Output
SDA1	36	43	56	67	J11	E8	I/O	I ² C	I2C1 Data Input/Output
SDA2	31	31	59	59	G10	G10	I/O	I ² C	I2C2 Data Input/Output
SDA3	3	3	5	5	D2	D2	I/O	I ² C	I2C3 Data Input/Output
SOSCI	47	47	73	73	C10	C10	I	ANA/ ST	Secondary Oscillator/Timer1 Clock Input
SOSCO	48	48	74	74	B11	B11	0	ANA	Secondary Oscillator/Timer1 Clock Output
T1CK	22	22	33	33	L4	L4	Ι	ST	Timer1 Clock
ТСК	27	27	38	38	J6	J6	I	ST	JTAG Test Clock/Programming Clock Input
TDI	28	28	60	60	G11	G11	I	ST	JTAG Test Data/Programming Data Input
TDO	24	24	61	61	G9	G9	0	DIG	JTAG Test Data Output
TMPR	22	22	33	33	L4	L4	I	ST	Tamper Detect Input
TMS	23	23	17	17	G3	G3	I	ST	JTAG Test Mode Select Input
U5CTS	58	58	87	87	B6	B6	I	ST	UART5 CTS Output
U5RTS/ U5BCLK	55	55	84	84	C7	C7	0	DIG	UART5 RTS Input
U5RX	54	54	83	83	D7	D7	I	ST	UART5 Receive Input
U5TX	49	49	76	76	A11	A11	0	DIG	UART5 Transmit Output
U6CTS	46	46	72	72	D9	D9	I	ST	UART6 CTS Output
U6RTS/ U6BCLK	42	42	68	68	E9	E9	0	DIG	UART6 RTS Input

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

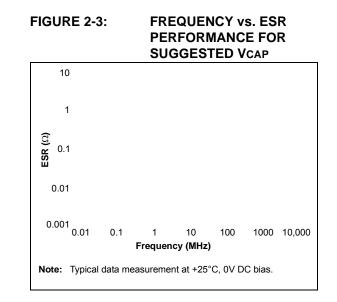
Legend: TTL =

TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

2.4 Voltage Regulator Pin (VCAP)


Note: This section applies only to PIC24FJ devices with an on-chip voltage regulator.

Refer to **Section 30.3** "**On-Chip Voltage Regulator**" for details on connecting and using the on-chip regulator.

A low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate the ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 33.0** "**Electrical Characteristics**" for additional information.

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS (0805 CASE SIZE)

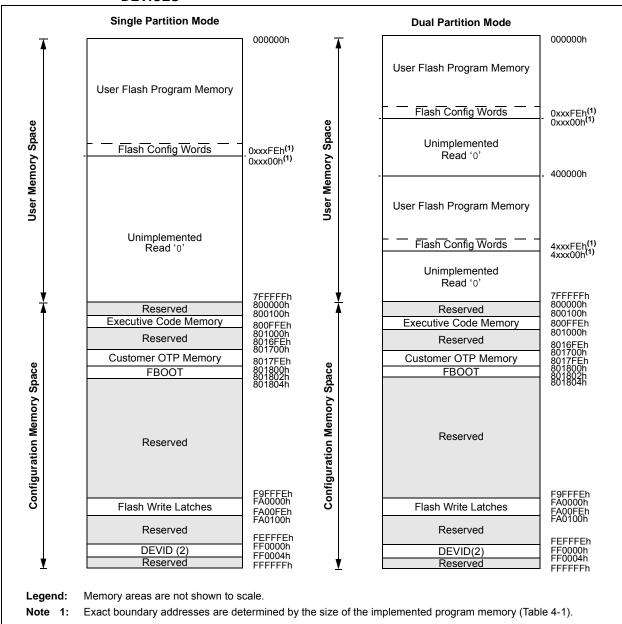
Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage
TDK	C2012X5R1E106K085AC	10 µF	±10%	25V
TDK	C2012X5R1C106K085AC	10 µF	±10%	16V
Kemet	C0805C106M4PACTU	10 µF	±10%	16V
Murata	GRM21BR61E106KA3L	10 µF	±10%	25V
Murata	GRM21BR61C106KE15	10 µF	±10%	16V

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADxPCFG register(s) or clearing all bits in the ANSx registers.

All PIC24F devices will have either one or more ADxPCFG registers, or several ANSx registers (one for each port); no device will have both. Refer to (Section 11.2 "Configuring Analog Port Pins (ANSx)") for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.


If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

- For devices with an ADxPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADxPCFG or ANSx registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ1024GA610/GB610 FAMILY DEVICES

TABLE 4-1: PROGRAM MEMORY SIZES AND BOUNDARIES⁽¹⁾

	Program Memory	y Upper Boundary (
Device	Single Partition	Dual Part	ition Mode	Write Blocks ⁽²⁾	Erase Blocks ⁽²⁾	
	Mode	Active Partition Inactive Partition				
PIC24FJ1024GX6XX	0ABFFEh (352K)	055FFEh (176K)	455FFEh (176K)	2752	344	
PIC24FJ512GX6XX	055FFEh (176K)	02AFFEh (88k)	42AFFEh (88k)	1376	172	
PIC24FJ256GX6XX	02AFFEh (88K)	0157FEh (44k)	4157FEh (44k)	688	86	
PIC24FJ128GX6XX	015FFEh (44K)	00AFFEh (22k)	40AFFEh (22k)	352	44	

Note 1: Includes Flash Configuration Words.

2: 1 Write Block = 128 Instruction Words; 1 Erase Block = 1024 Instruction Words.

File Name	Address	All Resets	File Name	Address	All Resets
A/D	·		PERIPHERAL PIN S		
ADC1BUF0	0712	xxxx	RPINR0	0790	3F3F
ADC1BUF1	0714	xxxx	RPINR1	0792	3F3F
ADC1BUF2	0716	xxxx	RPINR2	0794	3F3F
ADC1BUF3	0718	xxxx	RPINR3	0796	3F3F
ADC1BUF4	071A	xxxx	RPINR4	0798	3F3F
ADC1BUF5	071C	xxxx	RPINR5	079A	3F3F
ADC1BUF6	071E	xxxx	RPINR6	079C	3F3F
ADC1BUF7	0720	xxxx	RPINR7	079E	3F3F
ADC1BUF8	0722	xxxx	RPINR8	07A0	003F
ADC1BUF9	0724	xxxx	RPINR11	07A6	3F3F
ADC1BUF10	0726	xxxx	RPINR12	07A8	3F3F
ADC1BUF11	0728	xxxx	RPINR14	07AC	3F3F
ADC1BUF12	072A	xxxx	RPINR15	07AE	003F
ADC1BUF13	072C	xxxx	RPINR17	07B2	3F00
ADC1BUF14	072E	xxxx	RPINR18	07B4	3F3F
ADC1BUF15	0730	xxxx	RPINR19	07B6	3F3F
ADC1BUF16	0732	xxxx	RPINR20	07B8	3F3F
ADC1BUF17	0734	xxxx	RPINR21	07BA	3F3F
ADC1BUF18	0736	xxxx	RPINR22	07BC	3F3F
ADC1BUF19	0738	xxxx	RPINR23	07BE	3F3F
ADC1BUF20	073A	xxxx	RPINR25	07C2	3F3F
ADC1BUF21	073C	xxxx	RPINR27	07C6	3F3F
ADC1BUF22	073E	xxxx	RPINR28	07C8	3F3F
ADC1BUF23	0740	xxxx	RPINR29	07CA	003F
ADC1BUF24	0742	xxxx	RPOR0	07D4	0000
ADC1BUF25	0744	xxxx	RPOR1	07D6	0000
AD1CON1	0746	0000	RPOR2	07D8	0000
AD1CON2	0748	0000	RPOR3	07DA	0000
AD1CON3	074A	0000	RPOR4	07DC	0000
AD1CHS	074C	0000	RPOR5	07DE	0000
AD1CSSH	074E	0000	RPOR6	07E0	0000
AD1CSSL	0750	0000	RPOR7	07E2	0000
AD1CON4	0752	0000	RPOR8	07E4	0000
AD1CON5	0754	0000	RPOR9	07E6	0000
AD1CHITH	0756	0000	RPOR10	07E8	0000
AD1CHITL	0758	0000	RPOR11	07EA	0000
AD1CTMENH	075A	0000	RPOR12	07EC	0000
AD1CTMENL	075C	0000	RPOR13	07EE	0000
AD1RESDMA	075E	0000	RPOR14	07F0	0000
NVM			RPOR15	07F2	0000
NVMCON	0760	0000			
NVMADR	0762	xxxx			
NVMADRU	0764	00xx			
NVMKEY	0766	0000			

TABLE 4-11: SFR MAP: 0700h BLOCK

9.1 CPU Clocking Scheme

The system clock source can be provided by one of five sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Digitally Controlled Oscillator (DCO)
- · Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal PLL block, which can generate a 96 MHz USB module PLL clock, or a 4x, 6x or 8x PLL clock. If the 96 MHz PLL is used, the PLL clocks can then be postscaled, if necessary, and used as the system clock. If the 4x, 6x or 8x PLL multipliers are selected, the PLL clock can be used directly as a system clock. Refer to Section 9.6 "PLL Oscillator Modes and USB Operation" for additional information. The internal FRC provides an 8 MHz clock source.

Each clock source (POSC, SOSC, DCO, FRC and LPRC) can be used as an input to an additional divider, which can then be used to produce a divided clock source for use as a system clock (OSCFDIV).

The selected clock source is used to generate the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some Primary Oscillator configurations.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to **Section 30.1 "Configuration Bits"** for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a Power-on Reset. The OSCFDIV clock source is the default (unprogrammed) selection; the default input source to the OSCFDIV divider is the FRC clock source. Other oscillators may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (FOSC<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM<1> is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00'). A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

9.5 FRC Active Clock Tuning

PIC24FJ1024GA610/GB610 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses active clock tuning from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that is well within the requirements of the *"USB 2.0 Specification"* regarding full-speed USB devices.

Note: The self-tune feature maintains sufficient accuracy for operation in USB Device mode. For applications that function as a USB host, a high-accuracy clock source (±0.05%) is still required.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the self-tuning feature, allowing the hardware to calibrate to a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 1, the system uses the Start-of-Frame (SOF) packets from an external USB host for its source. When STSRC = 0, the system uses the crystal-controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC Oscillator's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	To use the USB as a reference clock tuning source (STSRC = 1), the microcontroller must be configured for USB device opera- tion and connected to a non-suspended USB host or hub port.
	If the SOSC is to be used as the reference clock tuning source (STSRC = 0), the SOSC must also be enabled for clock tuning to occur.

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference, by greater than 0.2% in either direction, or whenever the frequency deviation is beyond the ability of the TUN<5:0> bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ1024GA610/GB610 family devices support a larger number of remappable input/output pins than remappable input only pins. In this device family, there are up to 44 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP31, and RPI32 through RPI43.

See Table 1-1 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I²C (input and output)
- Input Change Notifications
- EPMP Signals (input and output)
- Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pinselectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

11.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-12 through Register 11-35). Each register contains one or two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

TABLE TT-3. SELECTABLE INFOT SOUNCES (WAFS INFOT TO TONCTION).	TABLE 11-3 :	SELECTABLE INPUT SOURCES	(MAPS INPUT TO FUNCTION) ⁽¹⁾
--	---------------------	--------------------------	---

Input Name	Function Name	Register	Function Mapping Bits	
Output Compare Trigger 1	OCTRIG1	RPINR0<5:0>	OCTRIG1R<5:0>	
External Interrupt 1	INT1	RPINR0<13:8>	INT1R<5:0>	
External Interrupt 2	INT2	RPINR1<5:0>	INT2R<5:0>	
External Interrupt 3	INT3	RPINR1<13:8>	INT3R<5:0>	
External Interrupt 4	INT4	RPINR2<5:0>	INT4R<5:0>	
Output Compare Trigger 2	OCTRIG2	RPINR2<13:8>	OCTRIG2R<5:0>	
Timer2 External Clock	T2CK	RPINR3<5:0>	T2CKR<5:0>	
Timer3 External Clock	T3CK	RPINR3<13:8>	T3CKR<5:0>	
Timer4 External Clock	T4CK	RPINR4<5:0>	T4CKR<5:0>	
Timer5 External Clock	T5CK	RPINR4<13:8>	T5CKR<5:0>	
Input Capture 1	IC1	RPINR7<5:0>	IC1R<5:0>	
Input Capture 2	IC2	RPINR7<13:8>	IC2R<5:0>	
Input Capture 3	IC3	RPINR8<5:0>	IC3R<5:0>	
Output Compare Fault A	OCFA	RPINR11<5:0>	OCFAR<5:0>	
Output Compare Fault B	OCFB	RPINR11<13:8>	OCFBR<5:0>	
CCP Clock Input A	TCKIA	RPINR12<5:0>	TCKIAR<5:0>	
CCP Clock Input B	TCKIB	RPINR12<13:8>	TCKIBR<5:0>	
UART3 Receive	U3RX	RPINR17<13:8>	U3RXR<5:0>	
UART1 Receive	U1RX	RPINR18<5:0>	U1RXR<5:0>	
UART1 Clear-to-Send	U1CTS	RPINR18<13:8>	U1CTSR<5:0>	
UART2 Receive	U2RX	RPINR19<5:0>	U2RXR<5:0>	
UART2 Clear-to-Send	U2CTS	RPINR19<13:8>	U2CTSR<5:0>	
SPI1 Data Input	SDI1	RPINR20<5:0>	SDI1R<5:0>	
SPI1 Clock Input	SCK1IN	RPINR20<13:8>	SCK1R<5:0>	
SPI1 Slave Select Input	SS1IN	RPINR21<5:0>	SS1R<5:0>	
UART3 Clear-to-Send	U3CTS	RPINR21<13:8>	U3CTSR<5:0>	
SPI2 Data Input	SDI2	RPINR22<5:0>	SDI2R<5:0>	
SPI2 Clock Input	SCK2IN	RPINR22<13:8>	SCK2R<5:0>	
SPI2 Slave Select Input	SS2IN	RPINR23<5:0>	SS2R<5:0>	
Generic Timer External Clock	TxCK	RPINR23<13:8>	TXCKR<5:0>	
CLC Input A	CLCINA	RPINR25<5:0>	CLCINAR<5:0>	
CLC Input B	CLCINB	RPINR25<13:8>	CLCINBR<5:0>	
UART4 Receive	U4RX	RPINR27<5:0>	U4RXR<5:0>	
UART4 Clear-to-Send	U4CTS	RPINR27<13:8>	U4CTSR<5:0>	
SPI3 Data Input	SDI3	RPINR28<5:0>	SDI3R<5:0>	
SPI3 Clock Input	SCK3IN	RPINR28<13:8>	SCK3R<5:0>	
SPI3 Slave Select Input	SS3IN	RPINR29<5:0>	SS3R<5:0>	

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

11.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ1024GA610/GB610 family of devices implements a total of 40 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (24)
- Output Remappable Peripheral Registers (16)

Note: Input and Output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 11.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 11-12: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCTRIG1R5	OCTRIG1R4	OCTRIG1R3	OCTRIG1R2	OCTRIG1R1	OCTRIG1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCTRIG1R<5:0>: Assign Output Compare Trigger 1 to Corresponding RPn or RPIn Pin bits

REGISTER 11-13: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	—	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0		
bit 15							bit 8		
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									
bit 15-14	Unimplemer	ited: Read as 'o)'						
bit 13-8									

bit 7-6 Unimplemented: Read as '0'

bit 5-0 INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits

REGISTER 17-6: SPIxBUFL: SPIx BUFFER REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAT	A<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DA	TA<7:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimpleme	ented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				nown

bit 15-0 DATA<15:0>: SPIx FIFO Data bits

When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses DATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2-bit data, the SPIx only uses DATA<7:0>.

REGISTER 17-7: SPIxBUFH: SPIx BUFFER REGISTER HIGH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAT	ΓA<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAT	ГA<23:16>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimpleme	ented bit, read	as '0'	
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is			x = Bit is unkr	nown	

bit 15-0 DATA<31:16>: SPIx FIFO Data bits

When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25-bit data, the SPIx uses DATA<31:16>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses DATA<23:16>.

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect) 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (the character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (the character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit, 1 → 0 transition); will reset the receive buffer and the RSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	The value of this bit only affects the transmit properties of the module when the $IrDA^{\otimes}$ encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

20.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the *"On-The-Go Supplement"* to the *"USB 2.0 Specification"* for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in the suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF, U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power down the VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

20.7 USB OTG Module Registers

There are a total of 37 memory-mapped registers associated with the USB OTG module. They can be divided into four general categories:

- USB OTG Module Control (12)
- USB Interrupt (7)
- USB Endpoint Management (16)
- USB VBUS Power Control (2)

This total does not include the (up to) 128 BD registers in the BDT. Their prototypes, described in Register 20-1 and Register 20-2, are shown separately in **Section 20.2 "USB Buffer Descriptors and the BDT"**.

All USB OTG registers are implemented in the Least Significant Byte (LSB) of the register. Bits in the upper byte are unimplemented and have no function. Note that some registers are instantiated only in Host mode, while other registers have different bit instantiations and functions in Device and Host modes.

The registers described in the following sections are those that have bits with specific control and configuration features. The following registers are used for data or address values only:

- U1BDTP1, U1BDTP2 and U1BDTP3: Specifies the 256-word page in data RAM used for the BDT; 8-bit value with bit 0 fixed as '0' for boundary alignment.
- U1FRML and U1FRMH: Contains the 11-bit byte counter for the current data frame.

REGISTER 20-6: U1STAT: USB STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8

R-0, HSC	U-0	U-0					
ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI ⁽¹⁾	—	—
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-4	ENDPT<3:0>: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer.) 1111 = Endpoint 15 1110 = Endpoint 14
	•
	•
	0001 = Endpoint 1
	0000 = Endpoint 0
bit 3	DIR: Last BD Direction Indicator bit
	1 = The last transaction was a transmit transfer (TX)
	0 = The last transaction was a receive transfer (RX)
bit 2	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾
	1 = The last transaction was to the odd BD bank
	0 = The last transaction was to the even BD bank
bit 1-0	Unimplemented: Read as '0'

Note 1: This bit is only valid for endpoints with available even and odd BD registers.

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 20-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R-x, HSC	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	SE0	PKTDIS	_	HOSTEN	RESUME	PPBRST	USBEN
bit 7							bit 0

Legend:	gend: U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	learable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

Unimplemented: Read as '0'						
SE0: Live Single-Ended Zero Flag bit						
 1 = Single-ended zero is active on the USB bus 0 = No single-ended zero is detected 						
PKTDIS: Packet Transfer Disable bit						
 1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received 0 = SIE token and packet processing are enabled 						
Unimplemented: Read as '0'						
HOSTEN: Host Mode Enable bit						
 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled 						
RESUME: Resume Signaling Enable bit						
1 = Resume signaling is activated						
0 = Resume signaling is disabled						
PPBRST: Ping-Pong Buffers Reset bit						
 1 = Resets all Ping-Pong Buffer Pointers to the even BD banks 0 = Ping-Pong Buffer Pointers are not reset 						
USBEN: USB Module Enable bit						
 1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware 0 = USB module and supporting circuitry are disabled (device detached) 						

25.2 Extended DMA Operations

In addition to the standard features available on all 12-bit A/D Converters, PIC24FJ1024GA610/GB610 family devices implement a limited extension of DMA functionality. This extension adds features that work with the device's DMA Controller to expand the A/D module's data storage abilities beyond the module's built-in buffer.

The Extended DMA functionality is controlled by the DMAEN bit (AD1CON1<11>); setting this bit enables the functionality. The DMABM bit (AD1CON1<12>) configures how the DMA feature operates.

25.2.1 EXTENDED BUFFER MODE

Extended Buffer mode (DMABM = 1) maps the A/D Data Buffer registers and data from all channels above 26 into a user-specified area of data RAM. This allows users to read the conversion results of channels above 26, which do not have their own memory-mapped A/D buffer locations, from data memory.

To accomplish this, the DMA must be configured in Peripheral Indirect Addressing mode and the DMA destination address must point to the beginning of the buffer. The DMA count must be set to generate an interrupt after the desired number of conversions.

In Extended Buffer mode, the A/D control bits will function similarly to non-DMA modes. The BUFREGEN bit will still select between FIFO mode and Channel-Aligned mode, but the number of words in the destination FIFO will be determined by the SMPI<4:0> bits in DMA mode. In FIFO mode, the BUFM bit will still split the output FIFO into two sets of 13 results (the SMPIx bits should be set accordingly), and the BUFS bit will still indicate which set of results is being written to and which can be read.

25.2.2 PIA MODE

When DMABM = 0, the A/D module is configured to function with the DMA Controller for Peripheral Indirect Addressing (PIA) mode operations. In this mode, the A/D module generates an 11-bit Indirect Address (IA). This is ORed with the destination address in the DMA Controller to define where the A/D conversion data will be stored.

In PIA mode, the buffer space is created as a series of contiguous smaller buffers, one per analog channel. The size of the channel buffer determines how many analog channels can be accommodated. The size of the buffer is selected by the DMABL<2:0> bits (AD1CON4<2:0>). The size options range from a single word per buffer to 128 words. Each channel is allocated a buffer of this size, regardless of whether or not the channel will actually have conversion data.

The IA is created by combining the base address within a channel buffer with three to five bits (depending on the buffer size) to identify the channel. The base address ranges from zero to seven bits wide, depending on the buffer size. The address is right-padded with a '0' in order to maintain address alignment in the Data Space. The concatenated channel and base address bits are then left-padded with zeros, as necessary, to complete the 11-bit IA.

The IA is configured to auto-increment which channel is written in each analog input's sub-buffer during write operations by using the SMPIx bits (AD1CON2<6:2>).

As with PIA operations for any DMA-enabled module, the base destination address in the DMADSTn register must be masked properly to accommodate the IA. Table 25-1 shows how complete addresses are formed. Note that the address masking varies for each buffer size option. Because of masking requirements, some address ranges may not be available for certain buffer sizes. Users should verify that the DMA base address is compatible with the buffer size selected.

Figure 25-2 shows how the parts of the address define the buffer locations in data memory. In this case, the module "allocates" 256 bytes of data RAM (1000h to 1100h) for 32 buffers of four words each. However, this is not a hard allocation and nothing prevents these locations from being used for other purposes. For example, in the current case, if Analog Channels 1, 3 and 8 are being sampled and converted, conversion data will only be written to the channel buffers, starting at 1008h, 1018h and 1040h. The holes in the PIA buffer space can be used for any other purpose. It is the user's responsibility to keep track of buffer locations and prevent data overwrites.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG				
bit 15					<u> </u>		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0				
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable b	bit	U = Unimplei	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		x = Bit is unkn	own						
bit 15	CTMUEN: C	TMU Enable bit									
	1 = Module is	s enabled									
	0 = Module is	s disabled									
bit 14	Unimplemer	nted: Read as '0	,								
bit 13	CTMUSIDL: CTMU Stop in Idle Mode bit										
		ues module operations module operations module operations and the second s			lle mode						
bit 12	 0 = Continues module operation in Idle mode TGEN: Time Generation Enable bit 										
	 1 = Enables edge delay generation and routes the current source to the comparator pin 0 = Disables edge delay generation and routes the current source to the selected A/D input pin 										
bit 11	EDGEN: Edge Enable bit										
	1 = Edges are not blocked 0 = Edges are blocked										
bit 10	EDGSEQEN: Edge Sequence Enable bit										
		vent must occur sequence is nee		2 event can oc	cur						
bit 9	IDISSEN: Analog Current Source Control bit										
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded 										
bit 8	CTTRIG: CTMU Trigger Control bit										
	1 = Trigger output is enabled 0 = Trigger output is disabled										
bit 7-2	ITRIM<5:0>: Current Source Trim bits										
	011111 = Ma 011110	aximum positive	change from	nominal currer	nt						
	•										
	000000 = No	inimum positive ominal current o inimum negative	utput specified	by IRNG<1:0	>						
	•										

REGISTER 28-1: CTMUCON1L: CTMU CONTROL REGISTER 1 LOW

30.5 Program Verification and Code Protection

PIC24FJ1024GA610/GB610 family devices offer basic implementation of CodeGuard[™] Security that supports General Segment (GS) security and Boot Segment (BS) security. This feature helps protect individual Intellectual Property.

Note:	For more information on usage, configura-							
	tion and operation, refer to the "dsPIC33/							
	PIC24 Family Reference Manual",							
	"CodeGuard™ Intermediate Security"							
	(DS70005182).							

30.6 JTAG Interface

PIC24FJ1024GA610/GB610 family devices implement a JTAG interface, which supports boundary scan device testing.

30.7 In-Circuit Serial Programming

PIC24FJ1024GA610/GB610 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (Vss) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

30.8 Customer OTP Memory

PIC24FJ1024GA610/GB610 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application checksums
- Code revision information
- Product information
- Serial numbers
- System manufacturing dates
- Manufacturing lot numbers

OTP memory cannot be written by program execution (i.e., TBLWT instructions); it can only be written during device programming. Data is not cleared by a chip erase.

Note: Data in the OTP memory section MUST NOT be programmed more than once.

30.9 In-Circuit Debugger

This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSPTM connections to \overline{MCLR} , VDD, VSs and the PGECx/PGEDx pin pair, designated by the ICS<1:0> Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions	
	Vol	Output Low Voltage						
DO10		I/O Ports	_	—	0.4	V	IOL = 6.6 mA, VDD = 3.6V	
			_	—	0.8	V	IOL = 18 mA, VDD = 3.6V	
			_	—	0.35	V	IOL = 5.0 mA, VDD = 2V	
DO16		OSCO/CLKO	_	—	0.18	V	IOL = 6.6 mA, VDD = 3.6V	
			_	—	0.2	V	IOL = 5.0 mA, VDD = 2V	
	Vон	Output High Voltage						
DO20		I/O Ports	3.4	—	—	V	IOH = -3.0 mA, VDD = 3.6V	
			3.25	—	—	V	IOH = -6.0 mA, VDD = 3.6V	
			2.8	—	—	V	Іон = -18 mA, VDD = 3.6V	
			1.65	—	—	V	IOH = -1.0 mA, VDD = 2V	
			1.4	—	—	V	IOH = -3.0 mA, VDD = 2V	
DO26		OSCO/CLKO	3.3	—	—	V	IOH = -6.0 mA, VDD = 3.6V	
			1.85	—	—	V	Iон = -1.0 mA, Vdd = 2V	

TABLE 33-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-10: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS				ing temp	-		: 2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial	
Param No.	Symbol	mbol Characteristic		Typ ⁽¹⁾	Max	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10000		_	E/W	-40°C to +85°C	
D131	Vpr	VDD for Read	VMIN		3.6	V	VMIN = Minimum operating voltage	
D132B		VDD for Self-Timed Write	VMIN		3.6	V	VMIN = Minimum operating voltage	
D133A	Tiw	Self-Timed Word Write Cycle Time	—	20	_	μS		
		Self-Timed Row Write Cycle Time	—	1.5	_	ms		
D133B	TIE	Self-Timed Page Erase Time	20	—	40	ms		
D134	TRETD	Characteristic Retention	20	—	_	Year	If no other specifications are violated	
D135	IDDP	Supply Current during Programming	_	5	—	mA		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.