

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb610-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Full Pin Name	Pin	Full Pin Name		
A1	HLVDIN/CTED8/PMD4/RE4	E1	AN16/RPI41/OCM3C/PMCS2/RC4		
A2	CTED9/PMD3/RE3	E2	RPI40/OCM2D/RC3		
A3	OCM2F/CTED10/RG13	E3	AN17/C1IND/RP21/ICM1/OCM1A/PMA5/RG6		
A4	PMD0/RE0	E4	RPI39/OCM2C/RC2		
A5	PMD8/RG0	E5	N/C		
A6	PMD10/RF1	E6	PMD9/RG1		
A7	N/C	E7	N/C		
A8	N/C	E8	RPI35/PMBE1/RA15		
A9	RPI42/OCM3E/PMD12/RD12	E9	CLC4OUT/RP2/U6RTS/U6BCLK/ICM5/RD8		
A10	RP23/PMACK1/RD2	E10	RP4/PMACK2/RD9		
A11	RP24/U5TX/ICM4/RD1	E11	RPI36/PMA22/RA14		
B1	N/C	F1	MCLR		
B2	OCM1C/CTED3/RG15	F2	AN19/C2IND/RP19/ICM2/OCM2A/PMA3/RG8		
B3	PMD2/RE2	F3	AN20/C1INC/C2INC/C3INC/ RP27 /OCM2B/PMA2/PMALU/ RG9		
B4	PMD1/RE1	F4	AN18/C1INC/RP26/OCM1B/PMA4/RG7		
B5	AN22/OCM1F/PMA17/RA7	F5	Vss		
B6	U5CTS/OC6/PMD11/RF0	F6	N/C		
B7	VCAP	F7	N/C		
B8	RP20/PMRD/PMWR/RD5	F8	VDD		
B9	RP22/ICM7/PMBE0/RD3	F9	OSCI/CLKI/RC12		
B10	Vss	F10	Vss		
B11	SOSCO/C3INC/RPI37/PWRLCLK/RC14	F11	OSCO/CLKO/RC15		
C1	SCL3/IC5/PMD6/RE6	G1	RPI33/PMCS1/RE8		
C2	VDD	G2	AN21/RPI34/PMA19/RE9		
C3	OCM2E/RG12	G3	TMS/OCM3D/RA0		
C4	CTED11/PMA16/RG14	G4	N/C		
C5	AN23/OCM1E/RA6	G5	VDD		
C6	N/C	G6	Vss		
C7	C3INA/U5RTS/U5BCLK/OC5/PMD15/RD7	G7	Vss		
C8	RP25/PMWR/PMENB/RD4	G8	N/C		
C9	N/C	G9	TDO/RA5		
C10	SOSCI/C3IND/RC13	G10	SDA2/PMA20/RA3		
C11	RP12/PMA14/PMCS1/RD11	G11	TDI/PMA21/RA4		
D1	RPI38/OCM1D/RC1	H1	PGEC3/AN5/C1INA/RP18/ICM3/OCM3A/RB5		
D2	SDA3/IC6/PMD7/RE7	H2	PGED3/AN4/C1INB/RP28/OCM3B/RB4		
D3	IC4/CTED4/PMD5/RE5	H3	N/C		
D4	N/C	H4	N/C		
D5	N/C	H5	N/C		
D6	N/C	H6	VDD		
D7	C3INB/U5RX/OC4/PMD14/RD6	H7	N/C		
D8	OCM3F/PMD13/RD13	H8	RF7		
D9	CLC3OUT/RP11/U6CTS/ICM6/RD0	H9	INT0/RF6		
D10	N/C	H10	SCL1/RG2		
D11	RP3/PMA15/PMCS2/RD10	H11	PMPCS1/SCL2/RA2		

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	41
3.0	CPU	
4.0	Memory Organization	
5.0	Direct Memory Access Controller (DMA)	
6.0	Flash Program Memory	89
7.0	Resets	97
8.0	Interrupt Controller	. 103
9.0	Oscillator Configuration	. 115
10.0	Power-Saving Features	. 137
11.0	I/O Ports	. 149
12.0	Timer1	. 185
13.0	Timer2/3 and Timer4/5	. 187
	Input Capture with Dedicated Timers	
	Output Compare with Dedicated Timers	
	Capture/Compare/PWM/Timer Modules (MCCP and SCCP)	
	Serial Peripheral Interface (SPI)	
	Inter-Integrated Circuit (I ² C)	
	Universal Asynchronous Receiver Transmitter (UART)	
	Universal Serial Bus with On-The-Go Support (USB OTG)	
	Enhanced Parallel Master Port (EPMP)	
	Real-Time Clock and Calendar with Timestamp	
	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	
	Configurable Logic Cell (CLC)	
	12-Bit A/D Converter with Threshold Detect	
	Triple Comparator Module	
	Comparator Voltage Reference	
	Charge Time Measurement Unit (CTMU)	
29.0	High/Low-Voltage Detect (HLVD)	. 387
	Special Features	
	Development Support	
	Instruction Set Summary	
	Electrical Characteristics	
	Packaging Information	
	ndix A: Revision History	
	Aicrochip Web Site	
	omer Change Notification Service	
	omer Support	
Prod	uct Identification System	. 465

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
PMD0	60	60	93	93	A4	A4	I/O	DIG/ ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	61	61	94	94	B4	B4	I/O	DIG/ ST/TTL	Address/Data (Multiplexed Master modes)
PMD2	62	62	98	98	B3	B3	I/O	DIG/ ST/TTL	
PMD3	63	63	99	99	A2	A2	I/O	DIG/ ST/TTL	
PMD4	64	64	100	100	A1	A1	I/O	DIG/ ST/TTL	
PMD5	1	1	3	3	D3	D3	I/O	DIG/ ST/TTL	
PMD6	2	2	4	4	C1	C1	I/O	DIG/ ST/TTL	
PMD7	3	3	5	5	D2	D2	I/O	DIG/ ST/TTL	
PMD8	_	_	90	90	A5	A5	I/O	DIG/ ST/TTL	
PMD9	—	_	89	89	E6	E6	I/O	DIG/ ST/TTL	
PMD10	—	_	88	88	A6	A6	I/O	DIG/ ST/TTL	
PMD11	—	—	87	87	B6	B6	I/O	DIG/ ST/TTL	
PMD12	—	—	79	79	A9	A9	I/O	DIG/ ST/TTL	
PMD13	—	_	80	80	D8	D8	I/O	DIG/ ST/TTL	
PMD14	_	_	83	83	D7	D7	I/O	DIG/ ST/TTL	
PMD15	—	—	84	84	C7	C7	I/O	DIG/ ST/TTL	
PMRD/ PMWR	53	53	82	82	B8	B8	I/O	DIG/ ST/TTL	Parallel Master Port Read Strobe/Write Strobe
PMWR/ PMENB	52	52	81	81	C8	C8	I/O	DIG/ ST/TTL	Parallel Master Port Write Strobe/Enable Strobe
PWRGT	21	21	32	32	K4	K4	0	DIG	Real-Time Clock Power Control Output
PWRLCLK	48	48	74	74	B11	B11	I	ST	Real-Time Clock 50/60 Hz Clock Input

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

XCVR = Dedicated Transceiver

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADxPCFG register(s) or clearing all bits in the ANSx registers.

All PIC24F devices will have either one or more ADxPCFG registers, or several ANSx registers (one for each port); no device will have both. Refer to (Section 11.2 "Configuring Analog Port Pins (ANSx)") for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

- For devices with an ADxPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADxPCFG or ANSx registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

File Name	Address	All Resets	File Name	Address	All Resets		
MULTIPLE OUTPUT ((CONTINUED)	CAPTURE/COMPARE	/PWM	MULTIPLE OUTPUT CAPTURE/COMPARE/PWM (CONTINUED)				
CCP2RAL	02A8	0000	CCP3PRL	02C8	FFFF		
CCP2RAH	02AA	0000	CCP3PRH	02CA	FFFF		
CCP2RBL	02AC	0000	CCP3RAL	02CC	0000		
CCP2RBH	02AE	0000	CCP3RAH	02CE	0000		
CCP2BUFL	02B0	0000	CCP3RBL	02D0	0000		
CCP2BUFH	02B2	0000	CCP3RBH	02D2	0000		
CCP3CON1L	02B4	0000	CCP3BUFL	02D4	0000		
CCP3CON1H	02B6	0000	CCP3BUFH	02D6	0000		
CCP3CON2L	02B8	0000	COMPARATORS				
CCP3CON2H	02BA	0100	CMSTAT	02E6	0000		
CCP3CON3L	02BC	0000	CVRCON	02E8	00xx		
CCP3CON3H	02BE	0000	CM1CON	02EA	0000		
CCP3STATL	02C0	00x0	CM2CON	02EC	0000		
CCP3STATH	02C2	0000	CM3CON	02EE	0000		
CCP3TMRL	O2C4	0000	ANALOG CONFIGURATION				
CCP3TMRH	02C6	0000	ANCFG	02F4	0000		

TABLE 4-6: SFR MAP: 0200h BLOCK (CONTINUED)

 $\label{eq:legend: Legend: Legend: Legend: Legend: Legend: Constant of the set of the s$

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

9.5 FRC Active Clock Tuning

PIC24FJ1024GA610/GB610 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses active clock tuning from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that is well within the requirements of the *"USB 2.0 Specification"* regarding full-speed USB devices.

Note: The self-tune feature maintains sufficient accuracy for operation in USB Device mode. For applications that function as a USB host, a high-accuracy clock source (±0.05%) is still required.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the self-tuning feature, allowing the hardware to calibrate to a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 1, the system uses the Start-of-Frame (SOF) packets from an external USB host for its source. When STSRC = 0, the system uses the crystal-controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC Oscillator's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	To use the USB as a reference clock tuning source (STSRC = 1), the microcontroller must be configured for USB device opera- tion and connected to a non-suspended USB host or hub port.
	If the SOSC is to be used as the reference clock tuning source (STSRC = 0), the SOSC must also be enabled for clock tuning to occur.

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference, by greater than 0.2% in either direction, or whenever the frequency deviation is beyond the ability of the TUN<5:0> bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

REGISTER 11-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER

U-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	
	ANSC	<14:13>		—		—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0	
—	—	—	ANSC4 ⁽¹⁾	—		—	—	
bit 7							bit 0	
Legend:								
R = Readable bit W =		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	at POR	'1' = Bit is se	1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimpleme	nted: Read as '	0'					
bit 14-13	ANSC<14:1	3>: PORTC An	alog Function S	Selection bits				
	1 = Pin is co	nfigured in Ana	log mode; I/O p	ort read is disa	bled			
	0 = Pin is co	nfigured in Digi	tal mode; I/O p	ort read is enab	oled			
bit 12-5	Unimplemented: Read as '0'							
bit 4	ANSC4: PO	RTC Analog Fu	nction Selectio	n bit ⁽¹⁾				
		nfigured in Ana nfigured in Digi	•					
bit 3-0	Unimpleme	Unimplemented: Read as '0'						

- bit 3-0 Unimplemented: Read as '0'
- Note 1: ANSC4 is not available on 64-pin devices.

REGISTER 11-4: ANSD: PORTD ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	r-1	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSE)<7:6>	—	—	—	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	Reserved: Read as '1'

bit 12-8 Unimplemented: Read as '0'

- bit 7-6 ANSD<7:6>: PORTD Analog Function Selection bits
 - 1 = Pin is configured in Analog mode; I/O port read is disabled
 - 0 = Pin is configured in Digital mode; I/O port read is enabled

bit 5-0 Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

REGISTER 11-46: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP21R<5:0>: RP21 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP21 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: RP20 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP20 (see Table 11-4 for peripheral function numbers).

REGISTER 11-47: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

– RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
		1	1.1.201.2	11 23111	KFZ3KU
					bit 8
I-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
– RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
					bit 0
-					

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP23R<5:0>:** RP23 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP23 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP22R<5:0>:** RP22 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP22 (see Table 11-4 for peripheral function numbers).

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 T32: 32-Bit Timer Mode Select bit^(3,4)
 - 1 = Timerx and Timery form a single 32-bit timer
 - 0 = Timerx and Timery act as two 16-bit timers
 - In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timerx Clock Source Select bit⁽²⁾ 1 = Timer source is selected by TECS<1:0>
 - 0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
 - 2: If TCS = 1 and TECS<1:0> = x1, the selected external timer input (TxCK or TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 3: In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.
 - 4: This bit is labeled T45 in the T4CON register.

15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

All devices in the PIC24FJ1024GA610/GB610 family feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

- Hardware-Configurable for 32-Bit Operation in all modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation with up to 31 User-Selectable Sync/Trigger Sources Available
- Two Separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for Greater Flexibility in Generating Pulses of Varying Widths
- Configurable for Single Pulse or Continuous Pulse Generation on an Output Event or Continuous PWM Waveform Generation
- Up to 6 cLock Sources Available for each module, Driving a Separate Internal 16-Bit Counter

15.1 General Operating Modes

15.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs. In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the module's internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/Trigger source.

15.1.2 CASCADED (32-BIT) MODE

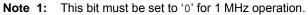
By default, each module operates independently with its own set of 16-Bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module (OCy) provides the Most Significant 16 bits. Wrap-arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more details on cascading, refer to the *"dsPIC33/ PIC24 Family Reference Manual"*, **"Output Compare with Dedicated Timer"** (DS70005159).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
<u> </u>	<u> </u>	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2 ⁽²⁾	ENFLT1 ⁽²⁾			
bit 15		OCCIDE	OUTOLLE	OUTOLLT	OUTOLLU		bit 8			
R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0			
ENFLT0	(2) OCFLT2 ^(2,3)	OCFLT1 ^(2,4)	OCFLT0 ^(2,4)	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾			
bit 7	1		L	l		•	bit 0			
Legend:		HSC = Hardw	are Settable/C	learable bit						
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	Unimplemen	ted: Read as ')'							
bit 13	OCSIDL: Out	put Compare x	Stop in Idle Mo	ode Control bit						
		ompare x halts								
				e in CPU Idle m	node					
bit 12-10		>: Output Com		elect bits						
	111 = Periphe 110 = Reserv	eral clock (Fcy)								
		01 = Reserved								
		er1 clock (only synchronous clock is supported)								
	011 = Timer5									
	010 = Timer4 001 = Timer3									
	001 = Timer3 000 = Timer2									
bit 9		It Input 2 Enab	e bit (2)							
		Comparator 1/2		ed ⁽³⁾						
	0 = Fault 2 is		,							
bit 8		lt Input 1 Enab								
	1 = Fault 1 (0 0 = Fault 1 is	DCFB pin) is er	abled ⁽⁴⁾							
bit 7		It Input 0 Enab	e hit(2)							
		DCFA pin) is er								
	0 = Fault 0 is									
bit 6	OCFLT2: Out	put Compare x	PWM Fault 2 ((Comparator 1/2	2/3) Condition	Status bit ^(2,3)				
	1 = PWM Fa	ult 2 has occur	ed							
		Fault 2 has oc								
bit 5				(OCFB pin) Cor	ndition Status b	bit ^(2,4)				
		ult 1 has occur Fault 1 has oc								
		1 4411 1 1143 00	curred							
Note 1:	The OCx output n "Peripheral Pin \$	Select (PPS)".	•				Section 11.4			
2:	The Fault input er									
3:	The Comparator channels, Compa					put controls the	e OC4-OC6			
4:	The OCFA/OCFB	e OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information,								

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".


R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
OPSSRC ⁽¹⁾	RTRGEN ⁽²⁾	—	_	OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾				
bit 15		•					bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable I	bit	U = Unimplen	nented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown				
bit 15		Itput Postscaler									
				er output even	ts						
hit 11		ostscaler scales trigger Enable		errupt events							
bit 14		e can be retrig		PIGEN bit = 1							
				en TRIGEN bit :	= 1						
bit 13-12		ted: Read as '0									
bit 11-8	OPS3<3:0>: CCPx Interrupt Output Postscale Select bits ⁽³⁾										
	1111 = Interrupt every 16th time base period match										
	1110 = Interro	upt every 15th t	time base peri	od match							
		upt every 5th tir	mo haso norio	d match							
				d match or 4th	input capture e	vent					
	0010 = Interrupt every 3rd time base period match or 3rd input capture event										
	0001 = Interrupt every 2nd time base period match or 2nd input capture event 0000 = Interrupt after each time base period match or input capture event										
h:4 7		-	-	o match or inp	ut capture ever	It					
bit 7		Px Trigger Enal		ad							
		peration of time peration of time									
bit 6	ONESHOT: C	ne-Shot Mode	Enable bit								
				igger duration is	s set by OSCN	T<2:0>					
bit 5		t Trigger mode CPx Clock Sele									
				ule synchroniza	ation output sig	nal					
		•		nal is the Time							
bit 4-0	SYNC<4:0>:	CCPx Synchro	nization Sourc	e Select bits							
	See Table 16-	5 for the definit	tion of inputs.								
Note 1: Th	is control bit ha	is no function ir	n Input Capture	e modes.							
2: Th	is control bit ha	is no function w	hen TRIGEN	= 0.							
3: Ou	utput postscale	settings, from 1	: 5 to 1:16 (010	0-1111), will re	sult in a FIFO b	ouffer overflow f	or				
l.e.		d									

REGISTER 16-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

Input Capture modes.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_	_	—	_	_	_	
bit 15							bit	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	PCIE	SCIE	BOEN	SDAHT ⁽¹⁾	SBCDE	AHEN	DHEN	
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'		
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own	
bit 15-7	Unimplemen	ted: Read as '	0'					
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit ((I ² C Slave mode	only)			
	1 = Enables ir	nterrupt on det	ection of Stop	condition	•			
	0 = Stop dete	ction interrupts	are disabled					
bit 5	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)							
				or Restart condi	tions			
L:1 4		ction interrupts		ave mode only)				
bit 4			•	ave mode only) enerated for a re	coived address	data buta ign	oring the stat	
		COV bit only if				stata byte, igit	oring the stat	
		/ is only update		∕ is clear				
bit 3	SDAHT: SDA	x Hold Time Se	election bit ⁽¹⁾					
				after the falling				
				after the falling	-			
bit 2				Enable bit (I ² C		• ·		
				ampled low when Detection mode				
	sequences.	and the bus g		Detection mode			AGN transm	
		alave bus collis						
		collision interr	-					
bit 1		ess Hold Enable	-					
				CLx for a mate		address byte;	; SCLREL b	
		holding is disal		SCLx will be hel				
bit 0		Hold Enable bi		ode only)				
			-	for a received da	ata byte; slave	hardware clears	s the SCLRE	
	hit (I2Cx	CONL<12>) an	d SCI v is hold	d low				
	•	ding is disabled		1 IOW				

REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

20.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 20.5.1 "Enable Host Mode and Discover a Connected Device" and Section 20.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0<7>) bit. If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
- 3. Set up the BD for the current (even or odd) TX EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR<6:0>).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Token Complete Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the Retry Disable bit (RETRYDIS) is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 µs), then the target has detached (U1IR<0> is set).
- 7. Once the Token Complete Interrupt Flag occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to Step 2.
- **Note:** USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

20.6 OTG Operation

20.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). SRP can only be initiated at full speed. Software may do this by configuring a GPIO pin to disable an external power transistor, or voltage regulator enable signal, which controls the VBUS supply. When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or embedded host may repower the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

- 1. VBUS supply is below the session valid voltage.
- 2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for Condition 2.

Note:	When the A-device powers down the						
	VBUS supply, the B-device must discon-						
	nect its pull-up resistor from power. If the						
	device is self-powered, it can do this by						
	clearing DPPULUP (U1OTGCON<7>) and						
	DMPULUP (U1OTGCON<6>).						

The B-device may aid in achieving Condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON<7>). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by properly configuring the general purpose I/O port pin controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U1OTGIR<3>) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP bit).

The A-device must complete the SRP by driving USB Reset signaling.

REGISTER 20-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	IDIE: ID I	nterrupt Enable bit		
		rupt is enabled		
		rupt is disabled		
bit 6		IE: 1 Millisecond Timer Inter	rupt Enable bit	
		rupt is enabled rupt is disabled		
bit 5		E: Line State Stable Interrupt	t Enable bit	
DIL J		rupt is enabled		
		rupt is disabled		
bit 4		Bus Activity Interrupt Enable	e bit	
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 3	SESVDIE	: Session Valid Interrupt Ena	able bit	
		rupt is enabled		
	0 = Inter	rupt is disabled		
bit 2	SESEND	IE: B-Device Session End In	terrupt Enable bit	
		rupt is enabled		
		rupt is disabled		
bit 1	•	mented: Read as '0'		
bit 0		IE: A-Device VBUS Valid Inte	errupt Enable bit	
		rupt is enabled		
	0 = Inter	rupt is disabled		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit 8
D # 4 / 0	D 444 0	D 444 A	D #44.0	D 444 0	D 444 0	D 444 0	D # 4 4 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	nown
bit 15-13	CH0NB<2:0>	: Sample B Ch	annel 0 Negati	ive Input Select	bits		
	1xx = Unimpl	emented					
	01x = Unimpl	emented					
	001 = Unimpl	emented					
	000 = AVss						
bit 12-8	CH0SB<4:0>	: Sample B Cha	annel 0 Positiv	e Input Select I	bits		
	11110 = AV DI						
	11101 = AVs						
		d Gap Referen	ce (VBG) ⁽¹⁾				
	11011 = Rese						
	11010 = Rese			OTMUN			
		hannels conne		CTMU tempera	aturo concor)		
	10000 = NOC 10111 = AN2		cied (used ioi	C I NO tempera	ature sensor)		
	10111 = AN2 10110 = AN2						
	10101 = AN2						
	10100 = AN2	0					
	10011 = AN1	9					
	10010 = AN1						
	10001 = AN1						
	10000 = AN1						
	01111 = AN1 01110 = AN1	-					
	01110 = AN1 01101 = AN1						
	01100 = AN1						
	01011 = AN1						
	01010 = AN1						
	01001 = AN9						
	01000 = AN8						
	00111 = AN7						
	00110 = AN6						
	00101 = AN5						
	00100 = AN4						
	00011 = AN3						
	00010 = AN2 00001 = AN1						
	00001 = ANT 00000 = ANO						
bit 7 5			annol O Nogoti	ivo Input Solast	hite		
bit 7-5		-	-	ive Input Select	. 0115		
	Same definition	ons as for CHO	INDS2.U2.				
		0					
bit 4-0		: Sample A Cha		e Input Select I	bits		

REGISTER 25-6: AD1CHS: A/D SAMPLE SELECT REGISTER

Note 1: These input channels do not have corresponding memory-mapped result buffers.

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	—	CVREFP	CVREFM1	CVREFM0
bit 15	·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as 'd)'				
bit 10	CVREFP: Co	mparator Voltag	ge Reference	Select bit (valid	only when CR	EF is '1')	
		s used as a refe					
		<4:0> bits (5-bit	,	•		•	
bit 9-8		•	bit 9-8 CVREFM<1:0>: Comparator Band Gap Reference Source Select bits (valid on				
			wided ee en in	with the the ender			
			ovided as an ir	put to the comp	parators		
	00 = Band ga 01 = Reserve 10 = Reserve	ed	ovided as an ir	put to the comp	parators		
	01 = Reserve 10 = Reserve	ed			parators		
bit 7	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com	ed ed is provided as nparator Voltage	an input to the e Reference E	comparators	parators		
bit 7	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir	ed is provided as nparator Voltage cuit is powered	an input to the e Reference E l on	comparators	parators		
	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir	ed is provided as nparator Voltage rcuit is powered rcuit is powered	an input to the e Reference E on down	comparators nable bit	parators		
bit 7 bit 6	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com	ed is provided as nparator Voltage cuit is powered cuit is powered nparator VREF C	an input to the e Reference E l on l down Dutput Enable	comparators nable bit bit	parators		
	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo	ed is provided as nparator Voltage rcuit is powered rcuit is powered	an input to the e Reference E on down Dutput Enable utput on the C ¹	e comparators nable bit bit √REF pin			
	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo	ed is provided as parator Voltage cuit is powered cuit is powered nparator VREF C ltage level is ou	an input to the Reference E on down Dutput Enable utput on the C ¹ sconnected fro	e comparators nable bit bit VREF pin om the CVREF p			
bit 6	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo CVRSS: Com 1 = Comparat	ed is provided as parator Voltage cuit is powered cuit is powered parator VREF C ltage level is ou tage level is dis parator VREF S tor reference so	an input to the Reference E on down Dutput Enable utput on the C sconnected fro Gource Selectio purce, CVRSRC	e comparators nable bit bit VREF pin om the CVREF p on bit := CVREF+ – C'	in VREF-		
bit 6 bit 5	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo 0 = CVREF vo 1 = Comparat 0 = Comparat	ed is provided as aparator Voltage rouit is powered aparator VREF Co ltage level is ou aparator VREF S tor reference so tor reference so	an input to the e Reference E on down Dutput Enable utput on the C sconnected fro source Selectio purce, CVRSRC purce, CVRSRC	e comparators nable bit bit VREF pin om the CVREF p on bit c = CVREF+ – C c = AVDD – AVS	in VREF- S		
bit 6	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo CVRSS: Com 1 = Comparat 0 = Comparat	ed is provided as aparator Voltage rouit is powered acuit is powered aparator VREF C altage level is ou atage level is ou aparator VREF S tor reference so comparator VRE	an input to the e Reference E on down Dutput Enable utput on the C sconnected fro source Selectio purce, CVRSRC purce, CVRSRC	e comparators nable bit bit VREF pin om the CVREF p on bit c = CVREF+ – C c = AVDD – AVS	in VREF- S		
bit 6 bit 5	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo CVRSS: Com 1 = Comparat 0 = Comparat 0 = CVR<4:0>: C When CVRSS	ed is provided as aparator Voltage rouit is powered acuit is powered aparator VREF C altage level is out aparator VREF S tor reference so comparator VRE S = 1:	an input to the Reference E on down Dutput Enable utput on the C sconnected fro ource, CVRSRC ource, CVRSRC F Value Select	comparators nable bit bit VREF pin om the CVREF p on bit c = CVREF + - C' c = AVDD - AVSCcion 0 ≤ CVR < 42	in VREF- S :0> ≤ 31 bits		
bit 6 bit 5	01 = Reserve 10 = Reserve 11 = CVREF+ CVREN: Com 1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo CVRSS: Com 1 = Comparat 0 = Comparat 0 = CVR<4:0>: C When CVRSS	ed is provided as parator Voltage cuit is powered rouit is powered parator VREF C lage level is ou lage level is ou parator VREF S tor reference so tor reference so comparator VRE S = 1: REF-) + (CVR<4	an input to the Reference E on down Dutput Enable utput on the C sconnected fro ource, CVRSRC ource, CVRSRC F Value Select	comparators nable bit bit VREF pin om the CVREF p on bit c = CVREF + - C' c = AVDD - AVSCcion 0 ≤ CVR < 42	in VREF- S :0> ≤ 31 bits		

REGISTER 27-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

REGISTER 30-9: FPOR CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—	—	—	_	
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
		—	_	—	_	_	
bit 15							bit 8
U-1	U-1	U-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
_	—	—	—	DNVPEN	LPCFG	BOREN1	BOREN0
bit 7							bit 0

Legend:	PO = Program Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '1'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-4	Unimplemented: Read as '1'
bit 3	DNVPEN: Downside Voltage Protection Enable bit
	 1 = Downside protection is enabled when BOR is inactive; POR can be re-armed as needed (can result in extra POR monitoring current once POR is re-armed) 0 = Downside protection is disabled when BOR is inactive
bit 2	LPCFG: Low-Power Regulator Control bit
	1 = Retention feature is not available
	0 = Retention feature is available and controlled by RETEN during Sleep
bit 1-0	BOREN<1:0>: Brown-out Reset Enable bits
	 11 = Brown-out Reset is enabled in hardware; SBOREN bit is disabled 10 = Brown-out Reset is enabled only while device is active and is disabled in Sleep; SBOREN bit is disabled
	01 = Brown-out Reset is controlled with the SBOREN bit setting00 = Brown-out Reset is disabled in hardware; SBOREN bit is disabled

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 32-2: INSTRUCTION SET OVERVIEW (CONTINUED)

PIC24FJ1024GA610/GB610 FAMILY

F

Flash Program Memory	89
and Table Instructions	
Control Registers	90
Double-Word Programming	95
Enhanced ICSP Operation	90
JTAG Operation	90
Operations	90
Programming Algorithm	93
RTSP Operation	

G

Guidelines for Getting Started with 16-Bit MCUs	41
Analog/Digital Pins Configuration During ICSP	46
External Oscillator Pins	45
ICSP Pins	44
Master Clear (MCLR) Pin	42
Power Supply Pins	42
Unused I/Os	46
Voltage Regulator Pin (VCAP)	43

Н

High/Low-Voltage Detect (HLVD)	. 387
High/Low-Voltage Detect. See HLVD.	

I

I/O Ports 1	49
Analog Port Pins Configuration (ANSx) 1	50
Configuring Analog/Digital Function of I/O Pins 1	150
Input Voltage Levels for Port/Pin Tolerated	
Description Input 1	150
Open-Drain Configuration1	
Parallel (PIO)1	
Peripheral Pin Select1	
Write/Read Timing1	
I ² C	
Clock Rates2	249
Communicating as Master in Single	
Master Environment2	247
Reserved Addresses2	249
Setting Baud Rate as Bus Master2	249
Slave Address Masking	
In-Circuit Debugger	106
Input Capture	
32-Bit Cascaded Mode1	194
Operations1	194
Synchronous and Trigger Modes1	193
Input Capture with Dedicated Timers1	93
Instruction Set	
Overview	113
Summary4	¥11
Symbols Used in Opcode Descriptions4	1 12
Interfacing Program and Data Memory Spaces	76
Inter-Integrated Circuit. See I ² C.	
Internet Address4	1 63
Interrupt Controller 1	
Alternate Interrupt Vector Table 1	03
Control and Status Registers1	08
Interrupt Vector Details 1	
Interrupt Vector Table (IVT) 1	103
Reset Sequence1	103
Resources1	108
Trap Vectors 1	104
Vector Tables1	04
Interrupt-on-Change (IOC) 1	154

JTAG Interface	406
к	
Key Features	389
L	
Low-Voltage/Retention Regulator	403

Μ

J

Memory Organization	53
Program Memory Space	53
Microchip Internet Web Site	463
MPLAB ASM30 Assembler, Linker, Librarian	408
MPLAB Integrated Development	
Environment Software	407
MPLAB PM3 Device Programmer	409
MPLAB REAL ICE In-Circuit Emulator System	409
MPLINK Object Linker/MPLIB Object Librarian	408

Ν

Ο

-	
On-Chip Voltage Regulator	403
POR	403
Standby Mode	403
Oscillator Configuration	115
Clock Switching	126
Sequence	126
Configuration Bit Values for Clock Selection	117
Control Registers	117
FRC Self-Tuning	127
Initial Configuration on POR	116
USB Operation	128
Special Considerations	130
Output Compare with Dedicated Timers	199
Operating Modes	199
32-Bit Cascaded Mode	199
Synchronous and Trigger Modes	199
Operations	200

Ρ

Packaging	
Details	443
Marking	441
Peripheral Enable Bits	139
Peripheral Module Disable Bits	139
Peripheral Pin Select (PPS)	159
Available Peripherals and Pins	159
Configuration Control	162
Considerations for Selection	163
Control Registers	164
Input Mapping	160
Mapping Exceptions	162
Output Mapping	161
Peripheral Priority	159
Selectable Input Sources	160
Selectable Output Sources	
PIC24FJ1024GA610/GB610 Family	
Pinout Descriptions	