


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | PIC                                                                             |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG                   |
| Peripherals                | Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT                                |
| Number of I/O              | 85                                                                              |
| Program Memory Size        | 256KB (85.5K x 24)                                                              |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | ·                                                                               |
| RAM Size                   | 32K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                       |
| Data Converters            | A/D 24x10/12b                                                                   |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 121-TFBGA                                                                       |
| Supplier Device Package    | 121-TFBGA (10x10)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb610t-i-bg |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

#### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.

|                 |                                     | Pin N                            | umber/Gri                        | d Locator                        |                         |                         |     |                 |                           |
|-----------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|-----|-----------------|---------------------------|
| Pin<br>Function | GA606<br>64-Pin<br>QFN/TQFP/<br>QFP | GB606<br>64-Pin QFN/<br>TQFP/QFP | GA610<br>100-Pin<br>TQFP/<br>QFP | GB610<br>100-Pin<br>TQFP/<br>QFP | GA612<br>121-Pin<br>BGA | GB612<br>121-Pin<br>BGA | I/O | Input<br>Buffer | Description               |
| IOCD0           | 46                                  | 46                               | 72                               | 72                               | D9                      | D9                      | Ι   | ST              | PORTD Interrupt-on-Change |
| IOCD1           | 49                                  | 49                               | 76                               | 76                               | A11                     | A11                     | Ι   | ST              |                           |
| IOCD2           | 50                                  | 50                               | 77                               | 77                               | A10                     | A10                     | Ι   | ST              |                           |
| IOCD3           | 51                                  | 51                               | 78                               | 78                               | B9                      | B9                      | Ι   | ST              |                           |
| IOCD4           | 52                                  | 52                               | 81                               | 81                               | C8                      | C8                      | Ι   | ST              |                           |
| IOCD5           | 53                                  | 53                               | 82                               | 82                               | B8                      | B8                      | Ι   | ST              |                           |
| IOCD6           | 54                                  | 54                               | 83                               | 83                               | D7                      | D7                      | Ι   | ST              |                           |
| IOCD7           | 55                                  | 55                               | 84                               | 84                               | C7                      | C7                      | Ι   | ST              |                           |
| IOCD8           | 42                                  | 42                               | 68                               | 68                               | E9                      | E9                      | Ι   | ST              |                           |
| IOCD9           | 43                                  | 43                               | 69                               | 69                               | E10                     | E10                     | Ι   | ST              |                           |
| IOCD10          | 44                                  | 44                               | 70                               | 70                               | D11                     | D11                     | Ι   | ST              |                           |
| IOCD11          | 45                                  | 45                               | 71                               | 71                               | C11                     | C11                     | Ι   | ST              |                           |
| IOCD12          | _                                   | _                                | 79                               | 79                               | A9                      | A9                      | Ι   | ST              |                           |
| IOCD13          | _                                   | —                                | 80                               | 80                               | D8                      | D8                      | Ι   | ST              |                           |
| IOCD14          | —                                   | —                                | 47                               | 47                               | L9                      | L9                      | Ι   | ST              |                           |
| IOCD15          | _                                   | _                                | 48                               | 48                               | K9                      | K9                      | Ι   | ST              |                           |
| IOCE0           | 60                                  | 60                               | 93                               | 93                               | A4                      | A4                      | Ι   | ST              | PORTE Interrupt-on-Change |
| IOCE1           | 61                                  | 61                               | 94                               | 94                               | B4                      | B4                      | Ι   | ST              |                           |
| IOCE2           | 62                                  | 62                               | 98                               | 98                               | B3                      | B3                      | Ι   | ST              |                           |
| IOCE3           | 63                                  | 63                               | 99                               | 99                               | A2                      | A2                      | Ι   | ST              |                           |
| IOCE4           | 64                                  | 64                               | 100                              | 100                              | A1                      | A1                      | Ι   | ST              |                           |
| IOCE5           | 1                                   | 1                                | 3                                | 3                                | D3                      | D3                      | Ι   | ST              |                           |
| IOCE6           | 2                                   | 2                                | 4                                | 4                                | C1                      | C1                      | Ι   | ST              |                           |
| IOCE7           | 3                                   | 3                                | 5                                | 5                                | D2                      | D2                      | Ι   | ST              |                           |
| IOCE8           |                                     | _                                | 18                               | 18                               | G1                      | G1                      | Ι   | ST              |                           |
| IOCE9           | _                                   | _                                | 19                               | 19                               | G2                      | G2                      | Ι   | ST              |                           |

#### TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$  input buffer XCVR = Dedicated Transceiver

# 2.2 Power Supply Pins

#### 2.2.1 DECOUPLING CAPACITORS

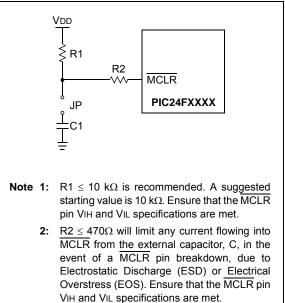
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1  $\mu$ F (100 nF), 16V-50V capacitor is recommended. The capacitor should be a low-ESR device with a self-resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01  $\mu$ F to 0.001  $\mu$ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1  $\mu$ F in parallel with 0.001  $\mu$ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

## 2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7  $\mu$ F to 47  $\mu$ F.


# 2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the  $\overline{\text{MCLR}}$  pin should be placed within 0.25 inch (6 mm) of the pin.

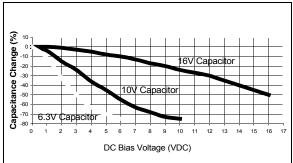
#### FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS



# 2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10  $\mu$ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/ +80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex:  $\pm 15\%$  over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of  $\pm 22\%$ . Due to the extreme temperature tolerance, a 10  $\mu$ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

#### FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS



When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16V for the 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

# 2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed  $100\Omega$ .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGECx/PGEDx), programmed into the device, match the physical connections for the ICSP to the Microchip debugger/ emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 31.0 "Development Support"**.

| File Name      | Address | All Resets | File Name                        | Address | All Resets |  |  |
|----------------|---------|------------|----------------------------------|---------|------------|--|--|
| CPU CORE       | ·       | •          | INTERRUPT CONTROLLER (CONTINUED) |         |            |  |  |
| WREG0          | 0000    | 0000       | IEC1                             | 009A    | 0000       |  |  |
| WREG1          | 0002    | 0000       | IEC2                             | 009C    | 0000       |  |  |
| WREG2          | 0004    | 0000       | IEC3                             | 009E    | 0000       |  |  |
| WREG3          | 0006    | 0000       | IEC4                             | 00A0    | 0000       |  |  |
| WREG4          | 0008    | 0000       | IEC5                             | 00A2    | 0000       |  |  |
| WREG5          | 000A    | 0000       | IEC6                             | 00A4    | 0000       |  |  |
| WREG6          | 000C    | 0000       | IEC7                             | 00A6    | 0000       |  |  |
| WREG7          | 000E    | 0000       | IPC0                             | 00A8    | 4444       |  |  |
| WREG8          | 0010    | 0000       | IPC1                             | 00AA    | 4444       |  |  |
| WREG9          | 0012    | 0000       | IPC2                             | 00AC    | 4444       |  |  |
| WREG10         | 0014    | 0000       | IPC3                             | 00AE    | 4444       |  |  |
| WREG11         | 0016    | 0000       | IPC4                             | 00B0    | 4444       |  |  |
| WREG12         | 0018    | 0000       | IPC5                             | 00B2    | 4404       |  |  |
| WREG13         | 001A    | 0000       | IPC6                             | 00B4    | 4444       |  |  |
| WREG14         | 001C    | 0000       | IPC7                             | 00B6    | 4444       |  |  |
| WREG15         | 001E    | 0800       | IPC8                             | 00B8    | 0044       |  |  |
| SPLIM          | 0020    | xxxx       | IPC9                             | 00BA    | 4444       |  |  |
| PCL            | 002E    | 0000       | IPC10                            | 00BC    | 4444       |  |  |
| РСН            | 0030    | 0000       | IPC11                            | 00BE    | 4444       |  |  |
| DSRPAG         | 0032    | 0000       | IPC12                            | 00C0    | 4444       |  |  |
| DSWPAG         | 0034    | 0000       | IPC13                            | 00C2    | 0440       |  |  |
| RCOUNT         | 0036    | xxxx       | IPC14                            | 00C4    | 4400       |  |  |
| SR             | 0042    | 0000       | IPC15                            | 00C6    | 4444       |  |  |
| CORCON         | 0044    | 0004       | IPC16                            | 00C8    | 4444       |  |  |
| DISICNT        | 0052    | xxxx       | IPC17                            | 00CA    | 4444       |  |  |
| TBLPAG         | 0054    | 0000       | IPC18                            | 00CC    | 0044       |  |  |
| INTERRUPT CONT | FROLLER |            | IPC19                            | 00CE    | 0040       |  |  |
| INTCON1        | 0080    | 0000       | IPC20                            | 00D0    | 4440       |  |  |
| INTCON2        | 0082    | 8000       | IPC21                            | 00D2    | 4444       |  |  |
| INTCON4        | 0086    | 0000       | IPC22                            | 00D4    | 4444       |  |  |
| IFS0           | 0088    | 0000       | IPC23                            | 00D6    | 4400       |  |  |
| IFS1           | 008A    | 0000       | IPC24                            | 00D8    | 4444       |  |  |
| IFS2           | 008C    | 0000       | IPC25                            | 00DA    | 0440       |  |  |
| IFS3           | 008E    | 0000       | IPC26                            | 00DC    | 0400       |  |  |
| IFS4           | 0090    | 0000       | IPC27                            | 00DE    | 4440       |  |  |
| IFS5           | 0092    | 0000       | IPC28                            | 00E0    | 4444       |  |  |
| IFS6           | 0094    | 0000       | IPC29                            | 00E2    | 0044       |  |  |
| IFS7           | 0096    | 0000       | INTTREG                          | 00E4    | 0000       |  |  |
| IEC0           | 0098    | 0000       |                                  |         |            |  |  |

TABLE 4-4:SFR MAP: 0000h BLOCK

Legend: — = unimplemented, read as '0'; x = undefined. Reset values are shown in hexadecimal.

| File Name            | Address | All Resets | File Name         | Address | All Resets |  |  |
|----------------------|---------|------------|-------------------|---------|------------|--|--|
| I/O                  |         |            | PORTD (CONTINUED) |         |            |  |  |
| PADCON               | 065E    | 0000       | ANSD              | 06A6    | FFFF       |  |  |
| IOCSTAT              | 0660    | 0000       | IOCPD             | 06A8    | 0000       |  |  |
| PORTA <sup>(1)</sup> | 1 1     |            | IOCND             | 06AA    | 0000       |  |  |
| TRISA                | 0662    | FFFF       | IOCFD             | 06AC    | 0000       |  |  |
| PORTA                | 0664    | 0000       | IOCPUD            | 06AE    | 0000       |  |  |
| LATA                 | 0666    | 0000       | IOCPDD            | 06B0    | 0000       |  |  |
| ODCA                 | 0668    | 0000       | PORTE             |         | 1          |  |  |
| ANSA                 | 066A    | FFFF       | TRISE             | 06B2    | FFFF       |  |  |
| IOCPA                | 066C    | 0000       | PORTE             | 06B4    | 0000       |  |  |
| IOCNA                | 066E    | 0000       | LATE              | 06B6    | 0000       |  |  |
| IOCFA                | 0670    | 0000       | ODCE              | 06B8    | 0000       |  |  |
| IOCPUA               | 0672    | 0000       | ANSE              | 06BA    | FFFF       |  |  |
| IOCPDA               | 0674    | 0000       | IOCPE             | 06BC    | 0000       |  |  |
| PORTB                | · ·     |            | IOCNE             | 06BE    | 0000       |  |  |
| TRISB                | 0676    | FFFF       | IOCFE             | 06C0    | 0000       |  |  |
| PORTB                | 0678    | 0000       | IOCPUE            | 06C2    | 0000       |  |  |
| LATB                 | 067A    | 0000       | IOCPDE            | 06C4    | 0000       |  |  |
| ODCB                 | 067C    | 0000       | PORTF             |         | 1          |  |  |
| ANSB                 | 067E    | FFFF       | TRISF             | 06C6    | FFFF       |  |  |
| IOCPB                | 0680    | 0000       | PORTF             | 06C8    | 0000       |  |  |
| IOCNB                | 0682    | 0000       | LATF              | 06CA    | 0000       |  |  |
| IOCFB                | 0684    | 0000       | ODCF              | 06CC    | 0000       |  |  |
| IOCPUB               | 0686    | 0000       | IOCPF             | 06D0    | 0000       |  |  |
| IOCPDB               | 0688    | 0000       | IOCNF             | 06D2    | 0000       |  |  |
| PORTC                |         |            | IOCFF             | 06D4    | 0000       |  |  |
| TRISC                | 068A    | FFFF       | IOCPUF            | 06D6    | 0000       |  |  |
| PORTC                | 068C    | 0000       | IOCPDF            | 06D8    | 0000       |  |  |
| LATC                 | 068E    | 0000       | PORTG             |         |            |  |  |
| ODCC                 | 0690    | 0000       | TRISG             | 06DA    | FFFF       |  |  |
| ANSC                 | 0692    | FFFF       | PORTG             | 06DC    | 0000       |  |  |
| IOCPC                | 0694    | 0000       | LATG              | 06DE    | 0000       |  |  |
| IOCNC                | 0696    | 0000       | ODCG              | 06E0    | 0000       |  |  |
| IOCFC                | 0698    | 0000       | ANSG              | 06E2    | FFFF       |  |  |
| IOCPUC               | 069A    | 0000       | IOCPG             | 06E4    | 0000       |  |  |
| IOCPDC               | 069C    | 0000       | IOCNG             | 06E6    | 0000       |  |  |
| PORTD                | I       |            | IOCFG             | 06E8    | 0000       |  |  |
| TRISD                | 069E    | FFFF       | IOCPUG            | 06EA    | 0000       |  |  |
| PORTD                | 06A0    | 0000       | IOCPDG            | 06EC    | 0000       |  |  |
| LATD                 | 06A2    | 0000       |                   |         |            |  |  |
| ODCD                 | 06A4    | 0000       |                   |         |            |  |  |

#### TABLE 4-10:SFR MAP: 0600h BLOCK

 $\label{eq:legend: Legend: Legend: Legend: Legend: Legend: Constant of the set of the s$ 

Note 1: PORTA and all associated bits are unimplemented in 64-pin devices and read as '0'.

## 8.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the product page using the link above, enter this URL in your browser: |
|-------|----------------------------------------------------------------------------------------------------------------|
|       | http://www.microchip.com/wwwproducts/<br>Devices.aspx?dDocName=en555464                                        |

#### 8.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

## 8.4 Interrupt Control and Status Registers

PIC24FJ1024GA610/GB610 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON4
- IFS0 through IFS7
- IEC0 through IEC7
- IPC0 through IPC29
- INTTREG

#### 8.4.1 INTCON1-INTCON4

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources.

The INTCON2 register controls global interrupt generation, the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The INTCON4 register contains the Software Generated Hard Trap bit (SGHT) and ECC Double-Bit Error (ECCDBE) trap.

#### 8.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

#### 8.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

#### 8.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

#### 8.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 8-2. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

#### 8.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "CPU with Extended Data Space (EDS)" (DS39732) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 8-3 through Register 8-6 in the following pages.

#### REGISTER 9-10: REFOTRIML: REFERENCE OSCILLATOR TRIM REGISTER LOW

| R/W-0         | R/W-0                                         | R/W-0                                                                                            | R/W-0                                           | R/W-0                                              | R/W-0                                      | R/W-0          | R/W-0         |
|---------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--------------------------------------------|----------------|---------------|
|               |                                               |                                                                                                  | ROTE                                            | RIM<0:7>                                           |                                            |                |               |
| bit 15        |                                               |                                                                                                  |                                                 |                                                    |                                            |                | bit 8         |
|               |                                               |                                                                                                  |                                                 |                                                    |                                            |                |               |
| R/W-0         | U-0                                           | U-0                                                                                              | U-0                                             | U-0                                                | U-0                                        | U-0            | U-0           |
| ROTRIM8       |                                               | —                                                                                                | _                                               | _                                                  | —                                          | —              |               |
| bit 7         |                                               |                                                                                                  |                                                 |                                                    |                                            |                | bit 0         |
|               |                                               |                                                                                                  |                                                 |                                                    |                                            |                |               |
| Legend:       |                                               |                                                                                                  |                                                 |                                                    |                                            |                |               |
| R = Readabl   | e bit                                         | W = Writable b                                                                                   | oit                                             | U = Unimplen                                       | nented bit, rea                            | d as '0'       |               |
| -n = Value at | POR                                           | '1' = Bit is set                                                                                 |                                                 | '0' = Bit is clea                                  | x = Bit is unkr                            | Bit is unknown |               |
|               | 000000000<br>000000001<br>000000010<br>•<br>• | rovide a fractiona<br>= 0/512 (0.0 divi<br>= 1/512 (0.0019<br>= 2/512 (0.0039<br>= 256/512 (0.50 | sor added to<br>53125 divisor<br>0625 divisor a | the RODIV<14:<br>added to the R<br>added to the RC | 0> value)<br>ODIV<14:0> v<br>0DIV<14:0> va | alue)<br>lue)  | e REFO clock. |
|               |                                               | = 510/512 (0.99<br>= 511/512 (0.99                                                               |                                                 |                                                    |                                            |                |               |
| bit 6-0       | Unimpleme                                     | nted: Read as '0                                                                                 | '                                               |                                                    |                                            |                |               |
|               |                                               |                                                                                                  |                                                 |                                                    |                                            |                |               |

#### **REGISTER 11-1:** ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER

| U-0    | U-0 | U-0 | U-0 | U-0 | R/W-1                     | R/W-1 | U-0   |
|--------|-----|-----|-----|-----|---------------------------|-------|-------|
| —      | —   | —   | —   | —   | ANSA<10:9> <sup>(1)</sup> |       | —     |
| bit 15 |     |     |     |     |                           |       | bit 8 |

| R/W-1        | R/W-1 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------------|-------|-----|-----|-----|-----|-----|-------|
| ANSA<7:6>(1) |       | —   | —   | —   | —   | —   | —     |
| bit 7        |       |     |     |     |     |     | bit 0 |

| Legend:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ıd as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

| bit 15-11 | Unimplemented: Read as '0'                                                                                                                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 10-9  | ANSA<10:9>: PORTA Analog Function Selection bits <sup>(1)</sup>                                                                                              |
|           | <ul> <li>1 = Pin is configured in Analog mode; I/O port read is disabled</li> <li>0 = Pin is configured in Digital mode; I/O port read is enabled</li> </ul> |
| bit 8     | Unimplemented: Read as '0'                                                                                                                                   |
| bit 7-6   | ANSA<7:6>: PORTA Analog Function Selection bits <sup>(1)</sup>                                                                                               |
|           | <ul> <li>1 = Pin is configured in Analog mode; I/O port read is disabled</li> <li>0 = Pin is configured in Digital mode; I/O port read is enabled</li> </ul> |
| bit 5-0   | Unimplemented: Read as '0'                                                                                                                                   |

**Note 1:** ANSA<10:9,7> bits are not available on 64-pin devices.

#### REGISTER 11-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER

| R/W-1                             | R/W-1 | R/W-1            | R/W-1 | R/W-1                              | R/W-1 | R/W-1           | R/W-1 |
|-----------------------------------|-------|------------------|-------|------------------------------------|-------|-----------------|-------|
|                                   |       |                  | ANS   | B<15:8>                            |       |                 |       |
| bit 15                            |       |                  |       |                                    |       |                 | bit 8 |
|                                   |       |                  |       |                                    |       |                 |       |
| R/W-1                             | R/W-1 | R/W-1            | R/W-1 | R/W-1                              | R/W-1 | R/W-1           | R/W-1 |
|                                   |       |                  | ANS   | B<7:0>                             |       |                 |       |
| bit 7                             |       |                  |       |                                    |       |                 | bit 0 |
|                                   |       |                  |       |                                    |       |                 |       |
| Legend:                           |       |                  |       |                                    |       |                 |       |
| R = Readable bit W = Writable bit |       |                  | oit   | U = Unimplemented bit, read as '0' |       |                 |       |
| -n = Value at POR '1'             |       | '1' = Bit is set |       | '0' = Bit is clea                  | ared  | x = Bit is unkr | nown  |

bit 15-0 ANSB<15:0>: PORTB Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

#### 11.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pinselectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on a device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

#### EXAMPLE 11-4: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

| //  | Unlock Regi | sters    |                  |        |
|-----|-------------|----------|------------------|--------|
| asm | volatile    | ("MOV    | #OSCCON, w1      | \n"    |
|     |             | "MOV     | #0x46, w2        | \n"    |
|     |             | "MOV     | #0x57, w3        | \n"    |
|     |             | "MOV.b   | w2, [w1]         | \n"    |
|     |             | "MOV.b   | w3, [w1]         | \n"    |
|     |             | "BCLR    | OSCCON, #6")     | ;      |
| //  | or use XC16 | built-:  | in macro:        |        |
| //  | builtin_w   | rite_0S0 | CCONL(OSCCON &   | 0xbf); |
| //  | Configure I | nput Fui | nctions (Table 1 | 11-3)  |
|     | // Assign U |          |                  |        |
|     | RPINR18bits | .U1RXR = | = 0;             |        |
|     | // Assign U | 1CTS To  | Pin RP1          |        |
|     | RPINR18bits | .U1CTSR  | = 1;             |        |
| //  | Configure O | utput Fi | unctions (Table  | 11-4)  |
|     | // Assign U | 1TX To I | Pin RP2          |        |
|     | RPOR1bits.R | P2R = 3  | ;                |        |
|     | // Assign U | 1RTS To  | Pin RP3          |        |
|     | RPOR1bits.R | P3R = 4  | ;                |        |
| //  | Lock Regist | ers      |                  |        |
| asm | volatile    | ("MOV    | #OSCCON, w1      | \n"    |
|     |             |          | #0x46, w2        |        |
|     |             | "MOV     | #0x57, w3        | \n"    |
|     |             |          | w2, [w1]         | \n"    |
|     |             | "MOV.b   | w3, [w1]         | \n"    |
|     |             | "BSET    | OSCCON, #6")     | ;      |
| //  | or use XC16 | built-:  | in macro:        |        |
| //  | builtin_w   | rite_OS  | CCONL(OSCCON     | 0x40); |

| U-0     | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |
|---------|-----|---------|---------|---------|---------|---------|---------|
| —       | —   | TCKIBR5 | TCKIBR4 | TCKIBR3 | TCKIBR2 | TCKIBR1 | TCKIBR0 |
| bit 15  |     |         |         |         |         |         | bit 8   |
|         |     |         |         |         |         |         |         |
| U-0     | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |
| _       | —   | TCKIAR5 | TCKIAR4 | TCKIAR3 | TCKIAR2 | TCKIAR1 | TCKIAR0 |
| bit 7   |     |         |         |         |         |         | bit 0   |
|         |     |         |         |         |         |         |         |
| Legend: |     |         |         |         |         |         |         |
|         |     |         |         |         |         |         |         |

#### REGISTER 11-22: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

| Legend:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | d as 'O'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 TCKIBR<5:0>: Assign MCCP/SCCP Clock Input B to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 TCKIAR<5:0>: Assign MCCP/SCCP Clock Input A to Corresponding RPn or RPIn Pin bits

#### REGISTER 11-23: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

| U-0    | U-0 | r-1 | r-1 | r-1 | r-1 | r-1 | r-1   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |
|        |     |     |     |     |     |     |       |
| U-0    | U-0 | r-1 | r-1 | r-1 | r-1 | r-1 | r-1   |
| _      | —   |     | _   | —   | —   |     | —     |
| bit 7  |     |     |     |     |     |     | bit 0 |

| Legend:           | r = Reserved bit |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | t, read as '0'     |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **Reserved**: Maintain as '1'

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **Reserved**: Maintain as '1'

#### REGISTER 17-11: SPIxURDTL: SPIx UNDERRUN DATA REGISTER LOW

| R/W-0      | R/W-0  | R/W-0            | R/W-0 | R/W-0        | R/W-0           | R/W-0  | R/W-0 |
|------------|--------|------------------|-------|--------------|-----------------|--------|-------|
|            |        |                  | URDA  | ATA<15:8>    |                 |        |       |
| bit 15     |        |                  |       |              |                 |        | bit 8 |
|            |        |                  |       |              |                 |        |       |
| R/W-0      | R/W-0  | R/W-0            | R/W-0 | R/W-0        | R/W-0           | R/W-0  | R/W-0 |
|            |        |                  | URD   | ATA<7:0>     |                 |        |       |
| bit 7      |        |                  |       |              |                 |        | bit 0 |
|            |        |                  |       |              |                 |        |       |
| Legend:    |        |                  |       |              |                 |        |       |
| R = Readab | le bit | W = Writable bit |       | U = Unimplem | ented bit, read | as '0' |       |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
|-------------------|------------------|-----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0 URDATA<15:0>: SPIx Underrun Data bits These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs. When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2-bit data, the SPIx only uses URDATA<7:0>.

#### REGISTER 17-12: SPIxURDTH: SPIx UNDERRUN DATA REGISTER HIGH

| R/W-0            | R/W-0 | R/W-0            | R/W-0 | R/W-0        | R/W-0           | R/W-0  | R/W-0 |
|------------------|-------|------------------|-------|--------------|-----------------|--------|-------|
|                  |       |                  | URDA  | TA<31:24>    |                 |        |       |
| bit 15           |       |                  |       |              |                 |        | bit 8 |
|                  |       |                  |       |              |                 |        |       |
| R/W-0            | R/W-0 | R/W-0            | R/W-0 | R/W-0        | R/W-0           | R/W-0  | R/W-0 |
|                  |       |                  | URDA  | TA<23:16>    |                 |        |       |
| bit 7            |       |                  |       |              |                 |        | bit 0 |
|                  |       |                  |       |              |                 |        |       |
| Legend:          |       |                  |       |              |                 |        |       |
| R = Readable bit |       | W = Writable bit |       | U = Unimplem | ented bit, read | as '0' |       |

#### bit 15-0 URDATA<31:16>: SPIx Underrun Data bits

'1' = Bit is set

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.

'0' = Bit is cleared

When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25-bit data, the SPIx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses URDATA<7:0>.

-n = Value at POR

x = Bit is unknown

| Pin Name<br>(Alternate Function) | Туре | Description                                                            |
|----------------------------------|------|------------------------------------------------------------------------|
| PMA<22:16>                       | 0    | Address Bus bits<22:16>                                                |
| PMA15                            | 0    | Address Bus bit 15                                                     |
|                                  | I/O  | Data Bus bit 15 (16-bit port with Multiplexed Addressing)              |
| (PMCS2)                          | 0    | Chip Select 2 (alternate location)                                     |
| PMA14                            | 0    | Address Bus bit 14                                                     |
|                                  | I/O  | Data Bus bit 14 (16-bit port with Multiplexed Addressing)              |
| (PMCS1)                          | 0    | Chip Select 1 (alternate location)                                     |
| PMA<13:8>                        | 0    | Address Bus bits<13:8>                                                 |
|                                  | I/O  | Data Bus bits<13:8> (16-bit port with Multiplexed Addressing)          |
| PMA<7:3>                         | 0    | Address Bus bits<7:3>                                                  |
| PMA2                             | 0    | Address Bus bit 2                                                      |
| (PMALU)                          | 0    | Address Latch Upper Strobe for Multiplexed Address                     |
| PMA1 I/O                         |      | Address Bus bit 1                                                      |
| (PMALH)                          | 0    | Address Latch High Strobe for Multiplexed Address                      |
| PMA0 I/O                         |      | Address Bus bit 0                                                      |
| (PMALL)                          | 0    | Address Latch Low Strobe for Multiplexed Address                       |
| PMD<15:8>                        | I/O  | Data Bus bits<15:8> (Demultiplexed Addressing)                         |
| PMD<7:4>                         | I/O  | Data Bus bits<7:4>                                                     |
|                                  | 0    | Address Bus bits<7:4> (4-bit port with 1-Phase Multiplexed Addressing) |
| PMD<3:0>                         | I/O  | Data Bus bits<3:0>                                                     |
| PMCS1 <sup>(1)</sup>             | 0    | Chip Select 1                                                          |
| PMCS2 <sup>(1)</sup>             | 0    | Chip Select 2                                                          |
| PMWR                             | I/O  | Write Strobe <sup>(2)</sup>                                            |
| (PMENB)                          | I/O  | Enable Signal <sup>(2)</sup>                                           |
| PMRD                             | I/O  | Read Strobe <sup>(2)</sup>                                             |
| (PMRD/PMWR)                      | I/O  | Read/Write Signal <sup>(2)</sup>                                       |
| PMBE1                            | 0    | Byte Indicator                                                         |
| PMBE0                            | 0    | Nibble or Byte Indicator                                               |
| PMACK1                           | I    | Acknowledgment Signal 1                                                |
| PMACK2                           | I    | Acknowledgment Signal 2                                                |

#### TABLE 21-2: ENHANCED PARALLEL MASTER PORT PIN DESCRIPTIONS

**Note 1:** These pins are implemented in 100-pin and 121-pin devices only.

2: Signal function depends on the setting of the MODE<1:0> and SM bits (PMCON1<9:8> and PMCSxCF<8>).

# 22.3 Registers

22.3.1 RTCC CONTROL REGISTERS

#### REGISTER 22-1: RTCCON1L: RTCC CONTROL REGISTER 1 (LOW)

| R/W-0         | U-0                                                           | U-0               | U-0             | R/W-0             | R/W-0            | R/W-0           | R/W-0  |
|---------------|---------------------------------------------------------------|-------------------|-----------------|-------------------|------------------|-----------------|--------|
| RTCEN         | —                                                             | —                 | —               | WRLOCK            | PWCEN            | PWCPOL          | PWCPOE |
| bit 15        |                                                               |                   |                 |                   |                  |                 | bit 8  |
|               |                                                               |                   |                 |                   |                  |                 |        |
| R/W-0         | R/W-0                                                         | R/W-0             | R/W-0           | U-0               | U-0              | U-0             | R/W-0  |
| RTCOE         | OUTSEL2                                                       | OUTSEL1           | OUTSEL0         | —                 | —                | _               | TSAEN  |
| bit 7         |                                                               |                   |                 |                   |                  |                 | bit 0  |
|               |                                                               |                   |                 |                   |                  |                 |        |
| Legend:       |                                                               |                   |                 |                   |                  |                 |        |
| R = Readable  | e bit                                                         | W = Writable      | bit             | U = Unimplen      | nented bit, read | 1 as '0'        |        |
| -n = Value at | POR                                                           | '1' = Bit is set  |                 | '0' = Bit is clea | ared             | x = Bit is unkr | nown   |
|               |                                                               |                   |                 |                   |                  |                 |        |
| bit 15        | RTCEN: RTC                                                    | C Enable bit      |                 |                   |                  |                 |        |
|               | 1 = RTCC is e                                                 | enabled and co    | unts from sele  | cted clock sour   | ce               |                 |        |
|               | 0 = RTCC is r                                                 |                   |                 |                   |                  |                 |        |
| bit 14-12     | Unimplement                                                   | ted: Read as '    | )'              |                   |                  |                 |        |
| bit 11        |                                                               | TCC Register V    |                 |                   |                  |                 |        |
|               | •                                                             | isters are lock   |                 |                   |                  |                 |        |
|               |                                                               | isters may be     | •               | ser               |                  |                 |        |
| bit 10        |                                                               | ver Control Ena   |                 |                   |                  |                 |        |
|               | 1 = Power control is enabled<br>0 = Power control is disabled |                   |                 |                   |                  |                 |        |
| bit 9         |                                                               | ower Control Po   |                 |                   |                  |                 |        |
| bit o         |                                                               | ntrol output is a | -               |                   |                  |                 |        |
|               |                                                               | ntrol output is a |                 |                   |                  |                 |        |
| bit 8         | PWCPOE: Po                                                    | ower Control O    | utput Enable bi | it                |                  |                 |        |
|               | 1 = Power cor                                                 | ntrol output pin  | is enabled      |                   |                  |                 |        |
|               | 0 = Power cor                                                 | ntrol output pin  | is disabled     |                   |                  |                 |        |
| bit 7         |                                                               | C Output Enab     | ole bit         |                   |                  |                 |        |
|               |                                                               | put is enabled    |                 |                   |                  |                 |        |
|               |                                                               | put is disabled   |                 | 4:                |                  |                 |        |
| bit 6-4       | 111 = Unused                                                  | >: RTCC Outp      | ut Signal Selec | ction dits        |                  |                 |        |
|               | 111 = Unused<br>110 = Unused                                  |                   |                 |                   |                  |                 |        |
|               | 101 = Unused                                                  |                   |                 |                   |                  |                 |        |
|               | 100 <b>= Timest</b> a                                         |                   |                 |                   |                  |                 |        |
|               | 011 = Power                                                   |                   |                 |                   |                  |                 |        |
|               | 010 = RTCC i<br>001 = Second                                  |                   |                 |                   |                  |                 |        |
|               | 000 = Alarm e                                                 |                   |                 |                   |                  |                 |        |
| bit 3-1       | Unimplement                                                   | ted: Read as 'd   | )'              |                   |                  |                 |        |
| bit 0         | TSAEN: Time                                                   | stamp A Enabl     | e bit           |                   |                  |                 |        |
|               | 1 = Timestam                                                  | p event will occ  | our when a low  | pulse is detect   | ted on the TMF   | R pin           |        |
|               | 0 = Timestam                                                  | p is disabled     |                 |                   |                  |                 |        |
|               |                                                               |                   |                 |                   |                  |                 |        |

| U-0    | U-0 | R/W-0   | R/W-0   | R/W-0   | R/W-0   | R/W-0   | R/W-0   |
|--------|-----|---------|---------|---------|---------|---------|---------|
| —      | —   | DAYTEN1 | DAYTEN0 | DAYONE3 | DAYONE2 | DAYONE1 | DAYONE0 |
| bit 15 |     |         |         |         |         |         | bit 8   |
|        |     |         |         |         |         |         |         |
| U-0    | U-0 | U-0     | U-0     | U-0     | R/W-0   | R/W-0   | R/W-0   |
| —      | —   | —       | —       | —       | WDAY2   | WDAY1   | WDAY0   |
| bit 7  |     |         |         |         |         |         | bit 0   |
|        |     |         |         |         |         |         |         |

#### REGISTER 22-13: ALMDATEL: RTCC ALARM DATE REGISTER (LOW)

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                       |
|-----------|------------------------------------------------------------------|
| bit 13-12 | DAYTEN<1:0>: Binary Coded Decimal Value of Days '10' Digit bits  |
|           | Contains a value from 0 to 3.                                    |
| bit 11-8  | DAYONE<3:0>: Binary Coded Decimal Value of Days '1' Digit bits   |
|           | Contains a value from 0 to 9.                                    |
| bit 7-3   | Unimplemented: Read as '0'                                       |
| bit 2-0   | WDAY<2:0>: Binary Coded Decimal Value of Weekdays '1' Digit bits |
|           | Contains a value from 0 to 6.                                    |

#### REGISTER 22-14: ALMDATEH: RTCC ALARM DATE REGISTER (HIGH)

| R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0   | R/W-0   | R/W-0   | R/W-0   |
|--------|--------|--------|--------|---------|---------|---------|---------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3  | YRONE2  | YRONE1  | YRONE0  |
| bit 15 |        |        |        |         |         |         | bit 8   |
|        |        |        |        |         |         |         |         |
| U-0    | U-0    | U-0    | R/W-0  | R/W-0   | R/W-0   | R/W-0   | R/W-0   |
| —      | —      | —      | MTHTEN | MTHONE3 | MTHONE2 | MTHONE1 | MTHONE0 |
| bit 7  |        |        |        |         |         |         | bit 0   |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15-12 | YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits |
|-----------|-----------------------------------------------------------------|
|           |                                                                 |

bit 11-8 YRONE<3:0>: Binary Coded Decimal Value of Years '1' Digit bits

bit 7-5 Unimplemented: Read as '0'

- bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
- bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

#### 25.4 Achieving Maximum A/D Converter (ADC) Performance

In order to get the shortest overall conversion time (called the "throughput") while maintaining accuracy, several factors must be considered. These are described in detail below.

- Dependence of AVDD If the AVDD supply is < 2.7V, the Charge Pump Enable bit (PUMPEN, AD1CON3<13>) should be set to '1'. The input channel multiplexer has a varying resistance with AVDD (the lower AVDD, the higher the internal switch resistance). The charge pump provides a higher internal AVDD to keep the switch resistance as low as possible.
- Dependence on TAD The ADC timing is driven by TAD, not TCYC. Selecting the TAD time correctly is critical to getting the best ADC throughput. It is important to note that the overall ADC throughput is not simply the 'Conversion Time' of the SAR; it is the combination of the Conversion Time, the Sample Time and additional TAD delays for internal synchronization logic.
- Relationship between TCYC and TAD There is not a fixed 1:1 timing relationship between TCYC and TAD. The fastest possible throughput is fundamentally set by TAD (min), not by TCYC. The TAD time is set as a programmable integer multiple of TCYC by the ADCS<7:0> bits. Referring to Table 33-26, the TAD (min) time is greater than the 4 MHz period of the dedicated ADC RC clock generator. Therefore, TAD must be 2 TCYC in order to use the RC clock for fastest throughput. The TAD (min) is a multiple of 3.597 MHz as opposed to 4 MHz. To run as fast as possible, TCYC must be a multiple of TAD (min) because values of ADCSx are integers. For example, if a standard "color burst" crystal of 14.31818 MHz is used, TCYC is 279.4 ns, which is very close to TAD (min) and the ADC throughput is optimal. Running at 16 MHz will actually reduce the throughput, because TAD will have to be 500 ns as the TCYC of 250 ns violates TAD (min).
- Dependence on driving Source Resistance (Rs) Certain transducers have high output impedance (> 2.5 kΩ). Having a high Rs will require longer sampling time to charge the S/H capacitor through the resistance path (see Figure 25-3). The worst case scenario is a full-range voltage step of AVss to AVDD, with the sampling cap at AVSS. The capacitor time constant is (Rs + Ric + Rss) (CHOLD) and the sample time needs to be 6 time constants minimum (8 preferred). Since the ADC logic timing is TAD-based, the sample time (in TAD) must be long enough, over all conditions, to charge/discharge CHOLD. Do not assume one TAD is sufficient sample time; longer times may be required to achieve the accuracy needed by the application. The value of CHOLD is 40 pF.

A small amount of charge is present at the ADC input pin when the sample switch is closed. If Rs is high, this will generate a DC error exceeding 1 LSB. Keeping Rs < 50 $\Omega$  is recommenced for best results. The error can also be reduced by increasing sample time (a 2 k $\Omega$  value of Rs requires a 3  $\mu$ S sample time to eliminate the error).

• Calculating Throughput – The throughput of the ADC is based on TAD. The throughput is given by:

$$Throughput = \left(\frac{l}{Sample Time + SAR Conversion Time + Clock Sync Time}\right)$$

where:

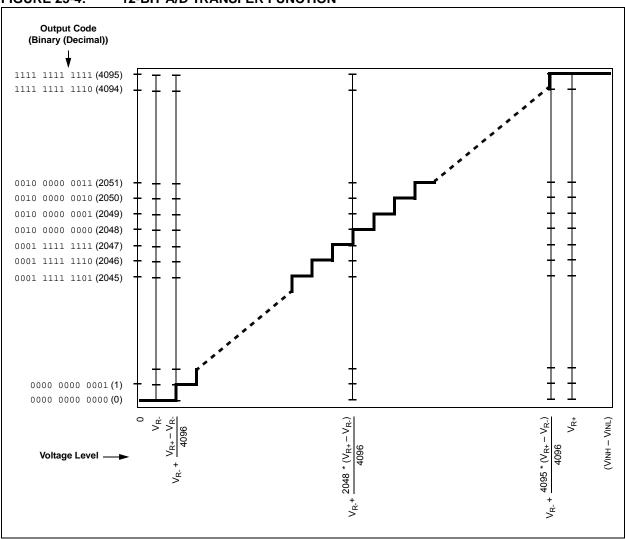
*Sample Time* is the calculated TAD periods for the application.

*SAR Conversion Time* is 12 TAD for 10-bit and 14 TAD for 12-bit conversions.

*Clock Sync Time* is 2.5 TAD (worst case scenario).

For example, using an 8 MHz FRC means the TCYC = 250 ns. This requires: TAD = 2 TCYC = 500 ns.Therefore, the throughput is:

$$Throughput = \left(\frac{1}{500 \text{ ns} + 14 \cdot 500 \text{ ns} + 2.5 \cdot 500 \text{ ns}}\right) = 114.28 \text{ KS/sec}$$


Note that the clock sync delay could be as little as 1.5 TAD, which could produce 121 KS/sec, but that cannot be ensured as the timing relationship is asynchronous and not specified. The worst case timing of 2.5 TAD should be used to calculate throughput.

For example, if a certain transducer has a 20 k $\Omega$  output impedance, the maximum sample time is determined by:

Sample Time = 
$$6 \cdot (RS + RIC + RSS) \cdot CHOLD$$
  
=  $6 \cdot (20K + 250 + 350) \cdot 40 \, pF$   
=  $4.95 \, \mu S$ 

If TAD = 500 ns, this requires a Sample Time of 4.95 us/500 ns = 10 TAD (for a full-step voltage on the transducer output).

# PIC24FJ1024GA610/GB610 FAMILY



#### FIGURE 25-4: 12-BIT A/D TRANSFER FUNCTION

#### REGISTER 30-7: FOSC CONFIGURATION REGISTER

| U-1    | U-1    | U-1     | U-1                  | U-1     | U-1      | U-1     | U-1     |
|--------|--------|---------|----------------------|---------|----------|---------|---------|
| —      | _      |         | —                    | —       | —        | —       | —       |
| bit 23 |        |         |                      |         |          |         | bit 16  |
|        |        |         |                      |         |          |         |         |
| U-1    | U-1    | U-1     | U-1                  | U-1     | U-1      | U-1     | U-1     |
| —      | —      |         | —                    | —       |          |         | —       |
| bit 15 |        |         |                      |         |          |         | bit 8   |
|        |        |         |                      |         |          |         |         |
| R/PO-1 | R/PO-1 | R/PO-1  | R/PO-1               | R/PO-1  | R/PO-1   | R/PO-1  | R/PO-1  |
| FCKSM1 | FCKSM0 | IOL1WAY | PLLSS <sup>(1)</sup> | SOSCSEL | OSCIOFCN | POSCMD1 | POSCMD0 |
| bit 7  |        |         |                      |         |          |         | bit 0   |

| Legend:           | PO = Program Once bit |                             |                    |
|-------------------|-----------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit      | U = Unimplemented bit, read | as '1'             |
| -n = Value at POR | '1' = Bit is set      | '0' = Bit is cleared        | x = Bit is unknown |

| bit 23-8 | Unimplemented: Read as '1'                                                                                                                                                                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 7-6  | FCKSM<1:0>: Clock Switching and Monitor Selection bits                                                                                                                                                                                        |
|          | <ul> <li>1x = Clock switching and the Fail-Safe Clock Monitor are disabled</li> <li>01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled</li> <li>00 = Clock switching and the Fail-Safe Clock Monitor are enabled</li> </ul> |
| bit 5    | IOL1WAY: Peripheral Pin Select Configuration bit                                                                                                                                                                                              |
|          | <ul> <li>1 = The IOLOCK bit can be set only once (with unlock sequence).</li> <li>0 = The IOLOCK bit can be set and cleared as needed (with unlock sequence)</li> </ul>                                                                       |
| bit 4    | PLLSS: PLL Source Selection Configuration bit <sup>(1)</sup>                                                                                                                                                                                  |
|          | <ul> <li>1 = PLL is fed by the Primary Oscillator (EC, XT or HS mode)</li> <li>0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator</li> </ul>                                                                                              |
| bit 3    | SOSCSEL: SOSC Selection Configuration bit                                                                                                                                                                                                     |
|          | 1 = Crystal (SOSCI/SOSCO) mode<br>0 = Digital (SOSCI) mode                                                                                                                                                                                    |
| bit 2    | OSCIOFCN: CLKO Enable Configuration bit                                                                                                                                                                                                       |
|          | <ul> <li>1 = CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configured<br/>for EC mode)</li> </ul>                                                                                                  |
|          | 0 = CLKO output is disabled                                                                                                                                                                                                                   |
| bit 1-0  | POSCMD<1:0>: Primary Oscillator Configuration bits                                                                                                                                                                                            |
|          | <ul> <li>11 = Primary Oscillator mode is disabled</li> <li>10 = HS Oscillator mode is selected (10 MHz-32 MHz)</li> <li>01 = XT Oscillator mode is selected (1.5 MHz-10 MHz)</li> <li>00 = External Clock mode is selected</li> </ul>         |
|          |                                                                                                                                                                                                                                               |

Note 1: When the primary clock source is greater than 8 MHz, this bit must be set to '0' to prevent overclocking the PLL.

#### TABLE 33-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

| DC CHARACTERISTICS |           | Standard Operating Conditions: 2.0Operating temperature-40                  |                                   | V to 3.6V (unless otherwise st $0^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |          |       |                                                    |
|--------------------|-----------|-----------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------|----------|-------|----------------------------------------------------|
| Param<br>No.       | Symbol    | Characteristic                                                              | Min                               | Тур                                                                                | Max      | Units | Conditions                                         |
| Operati            | ng Voltag | e                                                                           |                                   |                                                                                    |          |       |                                                    |
| DC10               | Vdd       | Supply Voltage                                                              | 2.0                               | _                                                                                  | 3.6      | V     | BOR is disabled                                    |
|                    |           |                                                                             | VBOR                              | _                                                                                  | 3.6      | V     | BOR is enabled                                     |
| DC12               | Vdr       | RAM Data Retention<br>Voltage <sup>(1)</sup>                                | Greater of:<br>VPORREL or<br>VBOR | _                                                                                  |          | V     | VBOR is used only if BOR<br>is enabled (BOREN = 1) |
| DC16               | VPOR      | VDD Start Voltage<br>to Ensure Internal<br>Power-on Reset Signal            | Vss                               | _                                                                                  | _        | V     | (Note 2)                                           |
| DC17A              | SVDD      | Recommended<br>VDD Rise Rate<br>to Ensure Internal<br>Power-on Reset Signal | 1V/20 ms                          | _                                                                                  | 1V/10 µS | sec   | (Note 2, Note 4)                                   |
| DC17B              | VBOR      | Brown-out Reset<br>Voltage on VDD Transition,<br>High-to-Low                | 2.0                               | 2.1                                                                                | 2.2      | V     | (Note 3)                                           |

**Note 1:** This is the limit to which VDD may be lowered and the RAM contents will always be retained.

**2:** If the VPOR or SVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

**3:** On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

4: VDD rise times outside this window may not internally reset the processor and are not parametrically tested.

# THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

# **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support