

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb610t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams⁽¹⁾ (Continued)

PIC24FJXXXGA610 121-Pin BGA

	1	2	3	4	5	6	7	8	9	10	11	
A	O RE4	RE3	RG13	RE0	RG0	RF1	O N/C	O N/C	RD12	RD2	RD1	
в	O N/C	RG15	RE2	RE1	O RA7	RF0	O VCAP	RD5	RD3	O Vss	O RC14	
С	RE6		RG12	RG14	O RA6	⊖ N/C	O RD7	RD4	⊖ N/C	O RC13	RD11	
D	RC1	RE7	RE5	O N/C	⊖ N/C	O N/C	O RD6	RD13	RD0	O N/C	RD10	
E	O RC4	RC3	O RG6	RC2	O N/C	RG1	⊖ N/C	RA15	RD8	RD9	RA14	
F	MCLR	O RG8	O RG9	O RG7	O Vss	∩ N/C	∩ N/C		O RC12	O Vss	O RC15	
G	RE8	O RE9	RA0	O N/C		O Vss	O Vss	⊖ N/C	RA5	RA3	RA4	
н	O RB5	O RB4	∩ N/C	O N/C	⊖ N/C		∩ N/C	RF7	RF6	RG2	RA2	
J	O RB3	O RB2	O RB7	O AVDD	O RB11	RA1	O RB12	⊖ N/C	⊖ N/C	RF8	RG3	
к	O RB1	O RB0	O RA10	O RB8	∩ N/C	RF12	O RB14		RD15	RF3	RF2	
L	O RB6	O RA9	O AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5	

Legend: See Table 6 for a complete description of pin functions. Pinouts are subject to change. Note 1: Gray shading indicates 5.5V tolerant input pins.

		Pin N	umber/Gri	d Locator					
Pin Function	GA606 64-Pin QFN/TQFP/ QFP	GB606 64-Pin QFN/ TQFP/QFP	GA610 100-Pin TQFP/ QFP	GB610 100-Pin TQFP/ QFP	GA612 121-Pin BGA	GB612 121-Pin BGA	I/O	Input Buffer	Description
IOCF0	58	58	87	87	B6	B6	I	ST	PORTF Interrupt-on-Change
IOCF1	59	59	88	88	A6	A6	I	ST	
IOCF2	34	_	52	52	K11	K11	I	ST	
IOCF3	33	33	51	51	K10	K10	Ι	ST	
IOCF4	31	31	49	49	L10	L10	I	ST	
IOCF5	32	32	50	50	L11	L11	Ι	ST	
IOCF6	35	_	55	_	H9		I	ST	
IOCF7	—	34	54	54	H8	H8	I	ST	
IOCF8	_	_	53	53	J10	J10	I	ST	
IOCF12	_	_	40	40	K6	K6	I	ST	
IOCF13	—	_	39	39	L6	L6	I	ST	
IOCG0	—	—	90	90	A5	A5	Ι	ST	PORTG Interrupt-on-Change
IOCG1	—	—	89	89	E6	E6	Ι	ST	
IOCG2	37	37	57	57	H10	H10	Ι	ST	
IOCG3	36	36	56	56	J11	J11	Ι	ST	
IOCG6	4	4	10	10	E3	E3	Ι	ST	
IOCG7	5	5	11	11	F4	F4	Ι	ST	
IOCG8	6	6	12	12	F2	F2	I	ST	
IOCG9	8	8	14	14	F3	F3	I	ST	
IOCG12	—	—	96	96	C3	C3	I	ST	
IOCG13	—	—	97	97	A3	A3	I	ST	
IOCG14	—	—	95	95	C4	C4	I	ST	
IOCG15	—	—	1	1	B2	B2	I	ST	
HLVDIN	64	64	100	100	A1	A1	I	ANA	High/Low-Voltage Detect Input
MCLR	7	7	13	13	F1	F1	Ι	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OC4	54	54	83	83	D7	D7	0	DIG	Output Compare Outputs
OC5	55	55	84	84	C7	C7	0	DIG	
OC6	58	58	87	87	B6	B6	0	DIG	
OCM1A	4	4	10	10	E3	E3	0	DIG	MCCP1 Outputs
OCM1B	5	5	11	11	F4	F4	0	DIG	
OCM1C	—	—	1	1	B2	B2	0	DIG	
OCM1D	—	_	6	6	D1	D1	0	DIG	
OCM1E	—	_	91	91	C5	C5	0	DIG	
OCM1F	—	_	92	92	B5	B5	0	DIG	

TABLE 1-3: PIC24FJ1024GA610/GB610 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus input buffer$

XCVR = Dedicated Transceiver

FIGURE 4-2: RELATIONSHIP BETWEEN PARTITIONS 1/2 AND ACTIVE/INACTIVE PARTITIONS

Configuration		Single Partition Mode								
Register	PIC24FJ1024GX6XX	PIC24FJ512GX6XX	PIC24FJ256GX6XX	PIC24FJ128GX6XX						
FSEC	0ABF00h	055F00h	02AF00h	015F00h						
FBSLIM	0ABF10h	055F10h	02AF10h	015F10h						
FSIGN	0ABF14h	055F14h	02AF14h	015F14h						
FOSCSEL	0ABF18h	055F18h	02AF18h	015F18h						
FOSC	0ABF1Ch	055F1Ch	02AF1Ch	015F1Ch						
FWDT	0ABF20h	055F20h	02AF20h	015F20h						
FPOR	0ABF24h	055F24h	02AF24h	015F24h						
FICD	0ABF28h	055F28h	02AF28h	015F28h						
FDEVOPT1	0ABF2Ch	055F2Ch	02AF2Ch	015F2Ch						
FBOOT	801800h									
		Dual Partiti	on Modes ⁽¹⁾							
FSEC ⁽²⁾	055F00h/455F00h	02AF00h/42AF00h	015700h/415700h	00AF00h/40AF00h						
FBSLIM ⁽²⁾	055F10h/455F10h	02AF10h/42AF10h	015710h/415710h	00AF10h/40AF10h						
FSIGN ⁽²⁾	055F14h/455F14h	02AF14h/42AF14h	015714h/415714h	00AF14h/40AF14h						
FOSCSEL	055F18h/455F18h	02AF18h/42AF18h	015718h/415718h	00AF18h/40AF18h						
FOSC	055F1Ch/455F1Ch	02AF1Ch/42AF1Ch	01571Ch/41571Ch	00AF1Ch/40AF1Ch						
FWDT	055F20h/455F20h	02AF20h/42AF20h	015720h/415720h	00AF20h/40AF20h						
FPOR	055F24h/455F24h	02AF24h/42AF24h	015724h/415724h	00AF24h/40AF24h						
FICD	055F28h/455F28h	02AF28h/42AF28h	015728h/415728h	00AF28h/40AF28h						
FDEVOPT1	055F2Ch/455F2Ch	02AF2Ch/42AF2Ch	01572Ch/41572Ch	00AF2Ch/40AF2Ch						
FBTSEQ ⁽³⁾	055FFCh/455FFCh	02AFFCh/42AFFCh	0157FCh/4157FCh	00AFFCh/40AFFCh						
FBOOT	801800h									

TABLE 4-2:CONFIGURATION WORD ADDRESSES

Note 1: Addresses shown for Dual Partition modes are for the Active/Inactive Partitions, respectively.

2: Changes to these Inactive Partition Configuration Words affect how the Active Partition accesses the Inactive Partition.

3: FBTSEQ is a 24-bit Configuration Word, using all three bytes of the program memory width.

7.4.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.4.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

REGISTER 8-1: SR: ALU STATUS REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

9.1 CPU Clocking Scheme

The system clock source can be provided by one of five sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Digitally Controlled Oscillator (DCO)
- · Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal PLL block, which can generate a 96 MHz USB module PLL clock, or a 4x, 6x or 8x PLL clock. If the 96 MHz PLL is used, the PLL clocks can then be postscaled, if necessary, and used as the system clock. If the 4x, 6x or 8x PLL multipliers are selected, the PLL clock can be used directly as a system clock. Refer to Section 9.6 "PLL Oscillator Modes and USB Operation" for additional information. The internal FRC provides an 8 MHz clock source.

Each clock source (POSC, SOSC, DCO, FRC and LPRC) can be used as an input to an additional divider, which can then be used to produce a divided clock source for use as a system clock (OSCFDIV).

The selected clock source is used to generate the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some Primary Oscillator configurations.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to **Section 30.1 "Configuration Bits"** for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a Power-on Reset. The OSCFDIV clock source is the default (unprogrammed) selection; the default input source to the OSCFDIV divider is the FRC clock source. Other oscillators may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (FOSC<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM<1> is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

REGISTER 11-44: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8
 RP17R<5:0>: RP17 Output Pin Mapping bits

 Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 RP16R<5:0>: RP16 Output Pin Mapping bits
- Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

REGISTER 11-45: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0
Legend:							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers).

15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

Maximum PWM Resolution (bits) = $\frac{\log_{10} \left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}{\log_{10}(2)}$ bits

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 32 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
 TCY = 2 * Tosc = 62.5 ns
 PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μs
 PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value)
 19.2 μs = (PR2 + 1) • 62.5 ns • 1
 PR2 = 306

 Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
 PWM Resolution = log₁₀(FCY/FPWM)/log₁₀2) bits
 = (log₁₀(16 MHz/52.08 kHz)/log₁₀2) bits
 = 8.3 bits

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

TABLE 15-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz) ⁽	(1)

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

^{© 2015-2016} Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PCIE	SCIE	BOEN	SDAHT ⁽¹⁾	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-7	Unimplemen	ted: Read as 'd)'				
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (I ² C Slave mode	only)		
	1 = Enables in 0 = Stop dete	nterrupt on dete	ection of Stop of are disabled	condition			
bit 5	SCIE: Start C	ondition Interru	pt Enable bit (I ² C Slave mode	e onlv)		
	1 = Enables i	nterrupt on dete	ection of Start	or Restart condi	itions		
	0 = Start dete	ction interrupts	are disabled				
bit 4	BOEN: Buffer	r Overwrite Ena	ble bit (I ² C Sla	ave mode only)			
	\perp = 12CXRCV of the 120	COV bit only if F	BF bit = 0	nerated for a re	ceived address	s/data byte, igno	oring the state
	0 = I2CxRCV	is only update	d when I2COV	' is clear			
bit 3	SDAHT: SDA	x Hold Time Se	lection bit ⁽¹⁾				
	1 = Minimum	of 300 ns hold	time on SDAx	after the falling	edge of SCLx		
hit 2	SBCDE: Slav	or 100 ris riolu ve Mode Bus Cr	ullision Detect	Enable bit $(l^2 C)$	Slave mode or		
	If. on the risin	a edge of SCL	x. SDAx is sa	mpled low whe	n the module is	s outputting a h	high state, the
	BCL bit is set	and the bus go	bes Idle. This	Detection mode	is only valid d	uring data and	ACK transmit
	sequences.	lava hua colligi	on interrunte				
	1 = Enables s 0 = Slave bus	collision interr	upts are disabl	ed			
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slave	mode only)			
	1 = Following	the 8th fallin	g edge of SC	CLx for a mate	ching received	address byte;	SCLREL bit
	0 = Address	NL<12>) will be holding is disab	e cleared and S	SCLX will be hel	d low		
bit 0	DHEN: Data I	Hold Enable bit	(I ² C Slave mo	ode only)			
	1 = Following	the 8th falling	edge of SCLx f	for a received da	ata byte; slave	hardware clears	s the SCLREL
	bit (I2Cx0	CONL<12>) and	d SCLx is held	low			
		ing is usabled					

REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

PIC24FJ1024GA610/GB610 FAMILY

FIGURE 19-1: UARTX SIMPLIFIED BLOCK DIAGRAM

PIC24FJ1024GA610/GB610 FAMILY

REGISTER 20-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R-x, HSC	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SE0	PKTDIS	—	HOSTEN	RESUME	PPBRST	USBEN
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	learable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

Unimplemented: Read as '0'						
SE0: Live Single-Ended Zero Flag bit						
 1 = Single-ended zero is active on the USB bus 0 = No single-ended zero is detected 						
PKTDIS: Packet Transfer Disable bit						
 1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received 0 = SIE token and packet processing are enabled 						
Unimplemented: Read as '0'						
HOSTEN: Host Mode Enable bit						
 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled 						
RESUME: Resume Signaling Enable bit						
1 = Resume signaling is activated						
0 = Resume signaling is disabled						
PPBRST: Ping-Pong Buffers Reset bit						
 1 = Resets all Ping-Pong Buffer Pointers to the even BD banks 0 = Ping-Pong Buffer Pointers are not reset 						
USBEN: USB Module Enable bit						
 1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware 0 = USB module and supporting circuitry are disabled (device detached) 						

22.3 Registers

22.3.1 RTCC CONTROL REGISTERS

REGISTER 22-1: RTCCON1L: RTCC CONTROL REGISTER 1 (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
RTCEN	-	—	—	WRLOCK	PWCEN	PWCPOL	PWCPOE		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0		
RTCOE	OUTSEL2	OUTSEL1	OUTSEL0	—	_	<u> </u>	TSAEN		
bit 7							bit 0		
									
Legend:									
R = Readable	e bit	W = Writable	oit	U = Unimplem	ented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15	RTCEN: RTC 1 = RTCC is e	C Enable bit enabled and co	unts from sele	cted clock source	ce				
	0 = RICC is r	not enabled	. ,						
DIT 14-12		ted: Read as '(
DIT 11	WRLOCK: RTCC Register Write Lock 1 = RTCC registers are locked 0 = RTCC registers may be written to by user								
bit 10	PWCEN: Pow	ver Control Ena	ble bit						
	1 = Power co 0 = Power co	ontrol is enabled ontrol is disable	t b						
bit 9	PWCPOL: Po	ower Control Po	larity bit						
	1 = Power cor 0 = Power cor	ntrol output is a ntrol output is a	ctive-high ctive-low						
bit 8	PWCPOE: Po	ower Control O	utput Enable b	it					
	1 = Power con 0 = Power con	ntrol output pin ntrol output pin	is enabled is disabled						
bit 7	RTCOE: RTC	C Output Enab	le bit						
	1 = RTCC out 0 = RTCC out	tput is enabled tput is disabled							
bit 6-4	OUTSEL<2:0	>: RTCC Outp	ut Signal Selec	ction bits					
	111 = Unused 110 = Unused 101 = Unused 100 = Timestamp A event 011 = Power control 010 = RTCC input clock 001 = Second clock 000 = Alarm event								
bit 3-1	Unimplement	ted: Read as 'o)'						
bit 0	TSAEN: Time	estamp A Enabl	e bit						
	1 = Timestam 0 = Timestam	p event will oco p is disabled	cur when a low	pulse is detect	ed on the TMP	'R pin			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
YRTEN3	YRTEN2	YRTEN1	YRTEN0	YRONE3	YRONE2	YRONE1	YRONE0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	MTHTEN	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7	-		•		•	•	bit 0
Legend:							

REGISTER 22-18: TSADATEH: RTCC TIMESTAMP A DATE REGISTER (HIGH)⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits

bit 11-8 **YRONE<3:0>:** Binary Coded Decimal Value of Years '1' Digit bits

bit 7-5 **Unimplemented:** Read as '0'

- bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
- bit 3-0 MTHONE<2:0>: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.
- **Note 1:** If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

REGISTER 24-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
		DS4<2:0>				DS3<2:0>	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
		DS2<2:0>				DS1<2:0>	
bit 7							bit 0
.							
Legend:							
R = Readable	e bit	W = Writable b	It	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	own
bit 15	Unimplomo	ntod. Dood on (0)	,				
bit 14 12		Data Soloction MI	IX 4 Signal	Soloction bits			
DIL 14-12	111 - MCC	Data Selection Mi	JA 4 Signal				
	110 = MCC	P1 Compare Ever	nt Interrupt F	lag (CCP1IF)			
	101 = Unim	plemented					
	100 = CTM	J A/D Trigger					
	011 = SPIx	Input (SDIx) corre	esponding to	the CLCx modu	ile (see Table	24-1)	
	001 = Modu	le-specific CI Cx	output (see ⁻	Table 24-1)			
	000 = CLCI	NB I/O pin					
bit 11	Unimpleme	nted: Read as '0	,				
bit 10-8	DS3<2:0>:	Data Selection MI	JX 3 Signal	Selection bits			
	111 = MCC	P3 Compare Ever	nt Interrupt F	lag (CCP3IF)			
	110 = MCC	P2 Compare Ever	nt Interrupt F	lag (CCP2IF)			
	101 = DMA	Channel 1 interru	pt psponding to	the CLCy mod	ilo (coo Tablo	24 1)	
	011 = SPIx	Output (SDOx) co	prresponding	to the CLCx mod	odule (see Table	ble 24-1)	
	010 = Comp	parator 2 output				- /	
	001 = CLCx	output (see Table	e 24-1)				
L:1 7		NA I/O pin					
DIT /		ntea: Read as '0	IV 2 Sizzal	Coloction Lite			
DIT 0-4	111 - MCC	Data Selection MI	J⊼ ∠ Signal 3				
	110 = MCC	P2 Compare Ever	nt Interrupt F	lag (CCP2IF)			
	101 = DMA	Channel 0 interru	pt				
	100 = A/D c	onversion done ir	nterrupt		. —		
	011 = UAR	Tx TX input corres	sponding to t	he CLCx modul	e (see Table 2	4-1)	
	010 = Comp	output (see Table	- 24₋1)				
	000 = CLCI	NB I/O pin	5211)				
bit 3	Unimpleme	nted: Read as '0	,				
bit 2-0	DS1<2:0>:	Data Selection MI	JX 1 Signal	Selection bits			
	111 = Time r	3 match event					
	110 = Timer	2 match event					
	101 = Unim 100 = REEC	piemented					
	011 = INTR	C/LPRC clock so	urce				
	010 = SOS0	C clock source					
	001 = Syste	m clock (TCY)					
	000 = CLCI	NA I/O pin					

25.4 Achieving Maximum A/D Converter (ADC) Performance

In order to get the shortest overall conversion time (called the "throughput") while maintaining accuracy, several factors must be considered. These are described in detail below.

- Dependence of AVDD If the AVDD supply is < 2.7V, the Charge Pump Enable bit (PUMPEN, AD1CON3<13>) should be set to '1'. The input channel multiplexer has a varying resistance with AVDD (the lower AVDD, the higher the internal switch resistance). The charge pump provides a higher internal AVDD to keep the switch resistance as low as possible.
- Dependence on TAD The ADC timing is driven by TAD, not TCYC. Selecting the TAD time correctly is critical to getting the best ADC throughput. It is important to note that the overall ADC throughput is not simply the 'Conversion Time' of the SAR; it is the combination of the Conversion Time, the Sample Time and additional TAD delays for internal synchronization logic.
- Relationship between TCYC and TAD There is not a fixed 1:1 timing relationship between TCYC and TAD. The fastest possible throughput is fundamentally set by TAD (min), not by TCYC. The TAD time is set as a programmable integer multiple of TCYC by the ADCS<7:0> bits. Referring to Table 33-26, the TAD (min) time is greater than the 4 MHz period of the dedicated ADC RC clock generator. Therefore, TAD must be 2 TCYC in order to use the RC clock for fastest throughput. The TAD (min) is a multiple of 3.597 MHz as opposed to 4 MHz. To run as fast as possible, TCYC must be a multiple of TAD (min) because values of ADCSx are integers. For example, if a standard "color burst" crystal of 14.31818 MHz is used, TCYC is 279.4 ns, which is very close to TAD (min) and the ADC throughput is optimal. Running at 16 MHz will actually reduce the throughput, because TAD will have to be 500 ns as the TCYC of 250 ns violates TAD (min).
- Dependence on driving Source Resistance (Rs) Certain transducers have high output impedance (> 2.5 kΩ). Having a high Rs will require longer sampling time to charge the S/H capacitor through the resistance path (see Figure 25-3). The worst case scenario is a full-range voltage step of AVss to AVDD, with the sampling cap at AVSS. The capacitor time constant is (Rs + Ric + Rss) (CHOLD) and the sample time needs to be 6 time constants minimum (8 preferred). Since the ADC logic timing is TAD-based, the sample time (in TAD) must be long enough, over all conditions, to charge/discharge CHOLD. Do not assume one TAD is sufficient sample time; longer times may be required to achieve the accuracy needed by the application. The value of CHOLD is 40 pF.

A small amount of charge is present at the ADC input pin when the sample switch is closed. If Rs is high, this will generate a DC error exceeding 1 LSB. Keeping Rs < 50 Ω is recommenced for best results. The error can also be reduced by increasing sample time (a 2 k Ω value of Rs requires a 3 μ S sample time to eliminate the error).

• Calculating Throughput – The throughput of the ADC is based on TAD. The throughput is given by:

$$Throughput = \left(\frac{l}{Sample Time + SAR Conversion Time + Clock Sync Time}\right)$$

where:

Sample Time is the calculated TAD periods for the application.

SAR Conversion Time is 12 TAD for 10-bit and 14 TAD for 12-bit conversions.

Clock Sync Time is 2.5 TAD (worst case scenario).

For example, using an 8 MHz FRC means the TCYC = 250 ns. This requires: TAD = 2 TCYC = 500 ns.Therefore, the throughput is:

$$Throughput = \left(\frac{1}{500 \text{ ns} + 14 \cdot 500 \text{ ns} + 2.5 \cdot 500 \text{ ns}}\right) = 114.28 \text{ KS/sec}$$

Note that the clock sync delay could be as little as 1.5 TAD, which could produce 121 KS/sec, but that cannot be ensured as the timing relationship is asynchronous and not specified. The worst case timing of 2.5 TAD should be used to calculate throughput.

For example, if a certain transducer has a 20 k Ω output impedance, the maximum sample time is determined by:

Sample Time =
$$6 \cdot (RS + RIC + RSS) \cdot CHOLD$$

= $6 \cdot (20K + 250 + 350) \cdot 40 \, pF$
= $4.95 \, \mu S$

If TAD = 500 ns, this requires a Sample Time of 4.95 us/500 ns = 10 TAD (for a full-step voltage on the transducer output).

R/W-0	K/W-0	R/W-0	K/W-0	U-0	U-0	R/W-0	R/W-0
ASEN	LPEN	CIMREQ	BGREQ		—	ASIN11	ASINTO
bit 15							bit 8
11-0	11-0	11-0	11-0	R/W-0	R/\\/_0	R/W/-0	R/W-0
				WM1	WMO	CM1	CM0
bit 7						OWN	bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
L							
bit 15	ASEN: Auto-	Scan Enable bit					
	1 = Auto-scar	n is enabled					
	0 = Auto-scar	n is disabled					
bit 14	LPEN: Low-P	ower Enable bi	t				
	$\perp = Low powe$ 0 = Full powe	er is enabled after is enabled after	er scan er scan				
bit 13	CTMREQ: C	TMU Request b	t				
	1 = CTMU is	enabled when t	he A/D is enat	oled and active			
	0 = CTMU is	not enabled by	the A/D				
bit 12	BGREQ: Ban	id Gap Request	bit				
	1 = Band gap 0 = Band gap	is enabled whe	en the A/D is e by the A/D	nabled and act	ive		
bit 11-10	Unimplemen	ted: Read as 'o	3				
bit 9-8	ASINT<1:0>:	Auto-Scan (Th	reshold Detect	t) Interrupt Mod	e bits		
	11 = Interrup	t after Threshold	d Detect seque	ence has comp	leted and valid	compare has c	occurred
	10 = Interrup	t after valid com	pare has occu	irred	latad		
	00 = No inter	rupt	Delect Seque	ence has comp	leteu		
bit 7-4	Unimplemen	ted: Read as '0	,				
bit 3-2	WM<1:0>: W	rite Mode bits					
	11 = Reserve	ed					
	10 = Auto-co	mpare only (cor	version result	s are not save	d, but interrupts	s are generated	d when a valid
	01 = Convert	and save (con	version results	and ASINTX Di	locations as de	etermined by th	e register bits
	when a	match occurs, a	is defined by t	he CMx bits)		5	0
	00 = Legacy	operation (conv	ersion data is	saved to a loca	tion determine	d by the Buffer	register bits)
bit 1-0	CM<1:0>: Co	mpare Mode bi	ts			In the second states of	6 (1)
	11 = Outside defined	by the correspondence	: valla match nding buffer p	occurs if the o	conversion res	uit is outside o	of the window
	10 = Inside V	Vindow mode: V	alid match occ	curs if the conve	ersion result is	inside the wind	ow defined by
	01 = Greater	Than mode: Va	lid match occu	rs if the result is	s greater than t	he value in the	corresponding
	Buffer re	egister an mode: Valid	natch occurs i	f the result is la	ss than the valu	le in the correst	oonding Ruffer
	register						

REGISTER 25-5: AD1CON5: A/D CONTROL REGISTER 5

28.4 Measuring Die Temperature

The CTMU can be configured to use the A/D to measure the die temperature using dedicated A/D Channel 24. Perform the following steps to measure the diode voltage:

- The internal current source must be set for either 5.5 μ A (IRNG<1:0> = 0x2) or 55 μ A (IRNG<1:0> = 0x3).
- In order to route the current source to the diode, the EDG1STAT and EDG2STAT bits must be equal (either both '0' or both '1').
- The CTMREQ bit (AD1CON5<13>) must be set to '1'.
- The A/D Channel Select bits must be 24 (0x18) using a single-ended measurement.

The voltage of the diode will vary over temperature according to the graphs shown below (Figure 28-4). Note that the graphs are different, based on the magnitude of

the current source selected. The slopes are nearly linear over the range of -40°C to +100°C and the temperature can be calculated as follows:

EQUATION 28-2:

For 5.5 µA Current Source:

$$Tdie = \frac{710 \ mV - V diode}{1.8}$$

where Vdiode is in mV, Tdie is in °C

For 55 µA Current Source:

$$Tdie = \frac{760 \ mV - V diode}{1.55}$$

where *Vdiode* is in *mV*, *Tdie* is in °C

FIGURE 28-4: DIODE VOLTAGE (mV) vs. DIE TEMPERATURE (TYPICAL)

30.5 Program Verification and Code Protection

PIC24FJ1024GA610/GB610 family devices offer basic implementation of CodeGuard[™] Security that supports General Segment (GS) security and Boot Segment (BS) security. This feature helps protect individual Intellectual Property.

Note:	For more information on usage, configura-
	tion and operation, refer to the "dsPIC33/
	PIC24 Family Reference Manual",
	"CodeGuard™ Intermediate Security"
	(DS70005182).

30.6 JTAG Interface

PIC24FJ1024GA610/GB610 family devices implement a JTAG interface, which supports boundary scan device testing.

30.7 In-Circuit Serial Programming

PIC24FJ1024GA610/GB610 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power (VDD), ground (Vss) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

30.8 Customer OTP Memory

PIC24FJ1024GA610/GB610 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application checksums
- Code revision information
- Product information
- Serial numbers
- System manufacturing dates
- Manufacturing lot numbers

OTP memory cannot be written by program execution (i.e., TBLWT instructions); it can only be written during device programming. Data is not cleared by a chip erase.

Note: Data in the OTP memory section MUST NOT be programmed more than once.

30.9 In-Circuit Debugger

This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement $ICSP^{TM}$ connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair, designated by the ICS<1:0> Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820